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Abstract: Ship instance segmentation in synthetic aperture radar (SAR) images is a hard and challeng-
ing task, which not only locates ships but also obtains their shapes with pixel-level masks. However,
in ocean SAR images, because of the consistent reflective intensities of ships, the appearances of
different ships are similar, thus making it far too difficult to distinguish ships when they are in
densely packed groups. Especially when ships have incline directions and large aspect ratios, the
horizontal bounding boxes (HB-Boxes) used by all the instance-segmentation networks that we know
so far inevitably contain redundant backgrounds, docks, and even other ships, which mislead the
following segmentation. To solve this problem, a novel ship instance-segmentation network, called
SRNet, is proposed with rotated bounding boxes (RB-Boxes), which are taken as the foundation
of segmentation. Along the directions of ships, the RB-Boxes can surround the ships tightly, but
a minor deviation will corrupt the integrity of the ships’ masks. To improve the performance of
the RB-Boxes, a dual feature alignment module (DAM) was designed to obtain the representative
features with the direction and shape information of ships. On account of the difference between the
classification task and regression task, two different sampling location calculation strategies were
used in two convolutional kernels of the DAM, making these locations distributed dynamically on
the ships’ bodies and along the ships’ boundaries. Moreover, to improve the effectiveness of training,
a new adaptive Intersection-over-Union threshold (AIoU) was proposed based on the aspect-ratio
information of ships to raise positive samples. To obtain the masks in the RB-Boxes, a new Mask-
segmentation Head (MaskHead) with the twice sampling processes was explored. In experiments
to evaluate the RB-Boxes, the accuracy of the RB-Boxes output from the Detection Head (DetHead)
of SRNet outperformed eight rotated object-detection networks. In experiments to evaluate the
final segmentation masks, compared with several classic and state-of-the-art instance-segmentation
networks, our proposed SRNet achieved more accurate ship instance masks in SAR images. The
ablation studies demonstrated the effectiveness of the DAM in the SRNet and the AIoU for our
network training.

Keywords: synthetic aperture radar (SAR) image; ship instance segmentation; rotated bounding box;
dual feature alignment; adaptive IoU threshold (AIoU)

1. Introduction

Synthetic aperture radar (SAR) is a kind of active microwave imaging sensor that is
able to work at all times in severe weather conditions; therefore, SAR is always used for
ocean observation [1]. With the development of SAR-related technology, the quantity of
SAR ocean data increases rapidly, and automatic ship-information-extraction has become
a crucial technology for the understanding of various ocean scenes. Ship instance seg-
mentation is an all-around ship-information-extraction technology. Although it is harder
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than ordinary detection [2], it is able to obtain the location and mask of each ship and
thus is used widely in various fields. In the military field, ship instance segmentation is
helpful to analyze the marine situation and improve marine defense capacity. In the civil
field, ship instance segmentation is helpful for the monitoring and management of marine
transportation [3]. Therefore, the instance segmentation for ships in SAR images has drawn
many researchers’ attention.

At present, many instance-segmentation networks are proposed for optical images
and remote-sensing images, such as Mask RCNN [4], Mask Scoring RCNN [5], Cascade
Mask RCNN [6], Hybrid Task Cascade [7], and FL CSE ROIE [8]. These networks obtain
the masks of the objects based on horizontal bounding boxes (HB-Boxes), which get some
achievement but have unavoidable problems for ships in SAR images, as shown in Figure 1.
Different from the RGB information in the optical images, which can clearly reflect each
ship in detail, the reflection intensities of ships and even docks in SAR images which are
obtained via the SAR sensors based on the electromagnetic wave are similar. Therefore,
densely packed ships are confused easily, and the docks also can be segmented as ships.
The first row and the second row of Figure 1 list three source SAR images and their ground-
truth images. From (a) and (c) of the first row, we can see that the parallel ships have a
similar appearance, and (b) of the first row shows us that the dock where a ship is moored
looks like a part of the ship. For the ship instance-segmentation networks mentioned
above, because of the inclining directions and large aspect ratios of ships, their HB-Boxes
contain other information which cannot be distinguished by the following segmentation
process. When objects with similar reflection characteristics are contained in one HB-Box,
the segmentation network cannot determine which parts belong to the ship that really
needs to be segmented. As shown in the third row of Figure 1, which lists three instance
masks based on HB-Boxes, (a) illustrates that the densely packed ships are segmented
repeatedly, (b) illustrates that the dock is segmented to a part of the ship, and (c) illustrates
that the parallel ships are predicted to one ship.
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Figure 1. Visual comparison between the instance masks from the HB-Box-based Mask RCNN and
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berthing in a dock. (c) The scene of parallel ships.

Different from the HB-Boxes, the RB-Boxes can grasp the directions of ships and
surround ships tightly. Therefore, the following segmentation process extracts masks easily
in the RB-Boxes containing fewer backgrounds, thus making it possible to avoid missed
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segmentation, repeated segmentation, and error segmentation. Based on this idea, a novel
instance-segmentation framework based on RB-Boxes is formed. The fourth row of Figure 1
lists the instance masks output from our SRNet based on this framework, which is able
to eliminate the problems mentioned above to correctly segment the ships in different
scenes. It should be noted that the detection of RB-Boxes is the core of the framework,
which directly influences the segmentation performance. Therefore, the accuracy of the
RB-Box needs to be improved further.

Recently, many rotated object detection networks have been proposed to obtain the RB-
Boxes for remote-sensing images, such as faster RCNN [9], RetinaNet [10], Reppoints [11],
ROI Trans [12], R3Det [13], ReDet [14], Oriented RCNN [15], and S2ANet [16]. In these
networks, before producing the regression and classification of RB-Boxes, the feature
sampling locations are unable to fit ships completely for effective feature extraction, and the
same feature maps, which reflect the single property of ships, are used to produce both the
RB-Boxes and their classification scores. In their training processes, the positive samples of
the ships with large aspect ratios are distributed on their center areas; thus, the samples at
the bow and stern are not effectively trained.

For the RB-Boxes of ships, the segmentation strategy for HB-Boxes cannot be used,
and how to obtain the instance masks from the RB-Boxes is another obstacle. Because
the RB-Boxes are misaligned with the grids of feature maps and the original image, it is
necessary to design sampling strategies to set up the corresponding relationships between
the sampling locations in the RB-Boxes and the grids.

Based on the instance-segmentation framework based on RB-Boxes mentioned above,
a ship instance-segmentation network, called SRNet, is proposed in this paper. To raise
the accuracy of RB-Boxes, a new dual feature alignment module (DAM) is designed to
refine the feature maps from the feature pyramid network (FPN [17]), and a new adaptive
IoU threshold (AIoU) calculation method is presented to raise the positive samples in
the network training process. In the DAM, on account of the properties of the regres-
sion task and classification task, two alignment convolutions extract the feature maps for
regression and classification, respectively, based on two different convolutional kernels.
In these kernels, the sampling locations change with the directions and shapes of ships.
In the network training, the aspect ratio of each ship is considered in the calculation of
the Intersection-over-Union (IoU) threshold [18], which is used to rationally allocate the
samples at the bow and stern to positive samples. With the RB-Boxes output from the
DetHead of the SRNet, a MaskHead is designed to extract the features in the RB-Boxes by
feature sampling and then predict the masks based on these features and transfer them
onto the original image.

In sum, the main contributions of our paper are as follows:

1. The new instance-segmentation framework based on RB-Boxes is proposed for ships
in SAR images, which reduces missed segmentation, repeated segmentation, and
error segmentation.

2. The new dual feature alignment module (DAM) is designed to extract the feature maps
for the regression task and classification task. In this module, two different sampling
strategies for the two convolutional kernels are used, which ensure the two alignment
convolutions enable to focus on the areas beneficial to their corresponding tasks.

3. The adaptive IoU threshold (AIoU) calculation method for the sample allocation is
proposed. On account of the aspect ratio of each ship, the AIoU raises the number of
positive samples, and the features at the bow and stern are effectively trained.

4. The MaskHead is designed to obtain masks in RB-Boxes and transfer them onto the
original image.

2. Related Works
2.1. Instance Segmentation

Instance segmentation obtains the locations and masks of objects, which is more
accurate than ordinary detection [2]. With the progress of deep learning, many instance-
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segmentation networks are proposed for optical images and remote-sensing images [19].
These networks are the HB-Box-based segmentation networks, which first locate the objects
with HB-Boxes and then predict instance mask in each HB-Box. Mask RCNN [4] achieves
instance segmentation by adding the mask branch in the RCNN of Faster RCNN [9]
and improves the detection performance by the ROI Align [4]. Mask Scoring RCNN [5]
combines the classification scores and IoU scores to calculate the mask scores to improve
the instance masks’ qualities. Cascade Mask RCNN [6] cascades RCNN three times based
on Mask RCNN to improve the accuracy of location and segmentation. Hybrid Task
Cascade [7] proposes a new cascade structure and attaches a semantic branch to supply
semantic information. FL CSE ROIE [8] achieves instance segmentation by combining
context ROI extractor [20], attention mechanisms [21–23], and CARAFEB [24] so as to
improve the location performance. In general, these networks have made a great effort to
improve the performance of the HB-Box-based location and the quality of segmentation in
HB-Boxes. However, due to a lack of consideration for the imaging method of SAR sensors
and the complex ocean scene in SAR images, these HB-Box-based networks cannot achieve
a good performance for ship instance segmentation in SAR images.

2.2. Object Detection

Object detection in SAR images is an important part of SAR-image understanding,
and many accurate detection methods for different application requirements are proposed.
Armando Marino et al. researched the ship detection method based on spectral analysis [25].
T. Zhang et al. proposed a two-stage ship detection method for PolSAR images [26]. X.
G. Leng et al. designed a ship detection method based on complex generalized Gaussian
distribution fast shape parameter estimation [27]. For instance-segmentation networks,
object detection is also the primary step. In the beginning, object detection networks
based on HB-Boxes for optical images are proposed [28], such as Faster RCNN [9] and
RetinaNet [10]. Faster RCNN [9] is a classic detection network with a two-stage structure,
which improves HB-Box-based location precision. This network has been used in many
object detection tasks, such as ship detection for SAR images. RetinaNet [10] proposes
the focal loss function to improve the quality of HB-Box-based location by balancing the
samples. Although great efforts have been made to improve the location precision in these
networks based on HB-Boxes, the HB-Boxes of ships in SAR images always contain too
much redundant information, due to the ships sailing and berthing in arbitrary directions.
Especially the densely packed ships, which always have similar reflection characteristics,
may be contained in one HB-Box.

For remote-sensing images, many object detection networks based on RB-Boxes are
proposed [29] in order to obtain more accurate location information. Rotated RetinaNet [10]
attaches extra angle prediction to the source RetinaNet for rotated object detection. How-
ever, this network does not align the features with the shapes of the ships, leading to
bad rotated detection precision. R3Det [13] and S2ANet [16] propose different alignment
methods to optimize features. R3Det fuses features of five key points to obtain aligned
features and S2ANet extracts aligned features by an alignment convolution, but the two
networks use the same feature maps for both the classification task and regression task.
The difference between classification and regression for ships is not considered in them.
ROI Trans [12] and ReDet [14] extract rotation invariant features to improve the location
precision with RROI extractors and E2CNN [30], respectively, and ReDet [14] aligns features
with the angles of RB-Boxes to improve the location precision further. Oriented RCNN [15]
represents RB-Boxes by the distance from vertexes of RB-Boxes to the vertexes of RB-Boxes’
bounding boxes, which proposed a new oriented RPN to balance the accuracy and speed.
However, these networks are trained with the sample allocation strategy with a fixed IoU
threshold, which leads to undersampling or oversampling for ship detection due to various
aspect ratios of ships. ATSS [31] is a frequently used sample allocation strategy, which
calculates the different IoU thresholds for different ground-truth boxes. However, ATSS [31]
only considers the information of the samples in the neighborhood of the center of the



Remote Sens. 2023, 15, 1324 5 of 27

ground truth, leading to a bad performance on the large aspect ratio ships. In a word, from
the feature extraction to the sample allocation for network training, the properties of ships
are not considered thoroughly by these networks. Thus, improvement of the RB-Box-based
detection for ships in SAR images is crucial work in our proposed SRNet.

3. Methodology

In this section, based on RB-Boxes, the ship instance-segmentation network SRNet is
described in detail. Because the RB-Boxes surround ships tightly and contain fewer back-
grounds, a slight deviation of the RB-Boxes will corrupt the completeness of segmentation.
To improve the location accuracy of the RB-Boxes, the DAM is presented, in which the
two alignment convolutions are designed for the regression task and classification task.
In addition, an AIoU is adopted for network training to increase the positive samples at
the bow and stern, which trained the features comprehensively. To predict the instance
masks in the RB-Boxes, the MaskHead is presented with a feature-sampling strategy and a
mask-sampling strategy.

In the following subsections, the overall architecture of the SRNet is introduced first.
Then the three crucial modules, DAM, DetHead, and MaskHead, are described. Finally, the
AIoU and the loss functions are presented.

3.1. Architecture

The overview architecture of our SRNet is shown in Figure 2. We can see that the
SRNet consists of a feature-extraction procedure, a detection procedure, and a segmentation
procedure. The feature-extraction procedure consists of a backbone and FPN, which outputs
the feature maps of five scales. With these feature maps, the DAM in the detection procedure
produces two kinds of aligned feature maps for each scale, and then the DetHead outputs
the RB-Boxes of ships based on the results of the DAM and determines the scale that each
ship is in. Finally, the MaskHead segments the ships in the RB-Boxes by using the feature
maps of FPN from the corresponding scales.
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Figure 2. Overview of the proposed SRNet, consisting of a feature extraction procedure, a detection
procedure, and a segmentation procedure. In the feature extraction procedure, the FPN takes feature
maps C3, C4, and C5 extracted by the backbone as inputs and then outputs semantic feature maps
P3–P7. In the detection procedure, these semantic feature maps are first transmitted to the DAM to
produce the classification feature maps and regression feature maps. Then the DetHead takes the
outputs of DAM as inputs to output the RB-Boxes and their classification scores. The segmentation
procedure takes the RB-Boxes and the semantic feature maps as inputs and then outputs the final
instance masks.

3.2. Dual Feature Alignment Module

In SAR images, because ships always have arbitrary directions and various aspect
ratios, the standard convolution based on the regular grid kernel makes it difficult to obtain
the features corresponding to the shapes of ships, thus causing the misalignments between
the standard convolutions and the rotated ships [32]. Moreover, the classification and regres-
sion tasks need to extract the features with different properties [33–36]. The classification
task concentrates on the areas of the object itself to predict a correct classification score [36].
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On the other hand, the regression task concentrates on the areas of the object itself and
the areas around the object to predict an accurate object position [36]. Thus, the proposed
DAM is designed to extract two different feature maps with different characters, using
two alignment convolutions, which are based on two kinds of specially designed sampling
locations. The two alignment convolutions are the classification alignment convolution
(CAConv) and the regression alignment convolution (RAConv).

As shown in Figure 3, the sampling locations of RAConv (a) are uniformly distributed
on the ship area and its bounding areas, and the sampling locations of CAConv (b) are
intensively distributed inside the ship area. Therefore, the RAConv based on the sampling
locations (a) can easily extract the feature map with the properties needed by the regression
task, and the CAConv based on the sampling locations (b) can easily extract the feature
map with the properties needed by the classification task. To do this, some parameters
(the center coordinates, the width and height, and the rotation angle of the convolutional
kernel) are needed to calculate these two kinds of sampling locations. Especially due to
the fact that the sampling locations of CAConv are not on the regular center points, nine
offsets are needed. Therefore, in DAM, two lightweight convolutional branches are used to
produce these parameters.
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As shown in Figure 4, with the feature map (FS) of each scale (S) as input, the R-
Anchor branch uses a three-layer convolutional network to predict the coordinates (CK) of
the kernel based on a horizontal square anchor [10], which includes the center coordinate,
(X, Y); the width and height, (W, H); and the rotation angle, θ. The C-Offset branch also
uses a three-layer convolutional network to estimate the 9 offsets of the sampling locations
of the kernel, represented by O =

{(
Oxi, Oyi

)∣∣i = 1, · · · , 9
}

.
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Figure 4. Overview of the DAM, which consists of two convolutional branches (R-Anchor branch
and C-Offset branch) and two alignment convolutions (RAConv and CAConv). With the feature map
(FS) of scale (S) as input, the R-Anchor branch produces the kernel coordinates (CK), and the C-Offset
branch produces the sampling offsets (O). The WS × HS × Channel represents a feature map with the
width of Ws, the height of Hs, and the channel of Channel extracted by convolution. With the kernel
coordinates (CK) and the sampling offsets (O), the RAConv and CAConv produce the regression
feature map (FS

RA) and classification feature map (FS
CA), respectively.
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With these parameters calculated by the R-Anchor branch and the C-Offset branch,
the initial sampling locations of standard convolutions can be moved to the sampling
locations of RAConv and CAConv, respectively, by the deformation step, rotation step, and
translation step. Figure 5a,b correspond to the three steps.
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Firstly, the initial sampling locations perform the deformation step to obtain the kernel-
aligned sampling locations. As shown in the left figure of (a), for RAConv, the initial
sampling locations of a standard 3 × 3 kernel are deformed, corresponding to the width
and height (W, H) of the kernel predicted by the R-Anchor branch to obtain the kernel-
aligned sampling locations of RAConv, PK

RAC. In the left figure of (b), for CAConv, the initial
sampling locations of a standard 3 × 3 kernel are added, along with the 9 sampling offsets
(O) estimated by the CAConv, and then reshaped according to the width and height (W, H)
of the kernel; the kernel-aligned sampling locations of CAConv, PK

CAC, can be obtained after
this deformation step. The calculation processes of two kernel-aligned sampling locations,
PK

RAC and PK
CAC, are described by Equation (1).{

PK
RAC = P ∗

(
∆W ∆H

)
PK

CAC = (P + O) ∗
(

∆W ∆H
) (1)

where the P represents the 9 initial sampling locations of the standard kernel, defined as
{(x, y)|x = −1, 0, 1 and y = −1, 0, 1}; O includes 9 sampling offsets, defined as{(

Oxi, Oyi
)∣∣i = 1, · · · , 9

}
; ∆W and ∆H are W/3 and H/3; and * indicates the element-

wise product.
Secondly, the kernel-aligned sampling locations perform the rotation step and trans-

lation step to obtain the feature-aligned sampling locations. As shown in the middle and
right figures of (a) and (b), the two kinds of kernel-aligned sampling locations are firstly
rotated by the rotation angle (θ) predicted by the R-Anchor branch and then transferred to
the feature map coordinate system. The two kinds of feature-aligned sampling locations
of RAConv and CAConv, PF

RAC and PF
CAC, can be obtained after these two steps. The

calculation processes can be described by Equation (2):{
PF

RAC = (X, Y) + PK
RACRθ

PF
CAC = (X, Y) + PK

CACRθ
(2)

where Rθ = (cos(θ),− sin(θ); sin(θ), cos(θ)) is a rotation matrix.
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Thirdly, with the two kinds of sampling locations calculated by the three steps, the
convolutional kernels are aligned with the ships. The feature map with the properties
needed by the regression task is extracted by the RAConv based on the feature-aligned
sampling locations, PF

RAC. The feature map with the properties needed by the classification
task is extracted by the CAConv based on the feature-aligned sampling locations, PF

CAC.
These feature map extraction processes are achieved by the deformable convolution, which
is the weighted sum of the feature values at the 9 sampling locations, which are described
by Equation (3): 

FS
RA =

9
∑

i=1
WS

RA(i)FS(PF
RAC(i)

)
FS

CA =
9
∑

i=1
WS

CA(i)FS(PF
CAC(i)

) (3)

where WS
RA and WS

CA represent convolutional weights of the RAConv and the CAConv,
and the optimal values of these parameters are calculated gradually during the network
training. FS(p) denotes the features at the location p in FS.

Due to the results of the R-Anchor branch including the center coordinate, shape, and
rotation angle of ships, the DetHead predicts the final RB-Boxes more easily based on them
rather than restarts. Thus, besides the regression feature map and the classification feature
map, the CK values are also inputted into the DetHead as the initial anchors to produce the
final RB-Boxes of ships.

3.3. DetHead and MaskHead

The DetHead and MaskHead are two output heads, as shown in Figure 6, that are
both designed on the lightweight convolutional framework commonly used in various
object-detection networks and instance-segmentation networks [10,13,16,28,31,32,36]. In
(a), the DetHead contains two branches, the FS

RA and FS
CA, which are extracted by the DAM

and taken as inputs to produce RB-Boxes based on CK and their classification scores. Then,
based on the classification scores, the rotated NMS algorithm, in which the rotated IoU
calculation algorithm is used, filters the RB-Boxes to remove the overlapping and redundant
RB-Boxes and produces the final RB-Boxes and their corresponding classification scores.
In (b), the MaskHead chooses a single-scale feature map, FSl , from FPN according to the
area of each RB-Box [4] and extracts the texture feature map, FSl

T , with a fully convolutional
network. Then, with FSl

T , the instance masks in the final RB-Boxes are predicted by the
RB-Box instance mask prediction as follows.
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Figure 6. Overviews of the DetHead (a) and the MaskHead (b). In (a), FS
RA and FS

CA are input into two
different three-layer convolutional networks to predict the RB-Boxes and their classification scores.
Then the rotated NMS algorithm produces the final results. In (b), with the FSl as input, the feature
map, FSl

T , output from a three-layer convolutional network and the RB-Boxes is used to produce the
final instance masks by the RB-Box instance mask prediction.
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Due to the RB-Boxes having arbitrary directions and the ROI Align [4] used in many
HB-Box-based instance-segmentation networks obtaining the feature sampling locations in
a horizontal area, the ROI Align [4] cannot be used in our MaskHead directly. Therefore, as
shown in Figure 7, we sample the features in the RB-Boxes first, then predict the instance
masks in the RB-Boxes by a 1 × 1 convolution, and finally transfer the masks in the
RB-Boxes onto the origin image.
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Figure 7. The pipeline of the RB-Box instance mask prediction: (a) indicates the feature sampling
process, and (b) indicates the mask sampling process. In (a), the feature values in the RB-Box are
computed with their nearest feature values in FSl

T . Then a standard 1 × 1 convolution, Conv, is used
to produce the instance mask, MR, in the RB-Box. In (b), the instance mask values in instance mask
MMS are computed with their nearest mask values in the RB-Box instance mask, MR. Then, the MMS

is enlarged 2Sl times to obtain the instance mask MI in the original SAR image.

As shown in Figure 7a, we divide the RB-Box uniformly into a 28 × 28 grid, and the
bins in it have the same size. The center points in these bins are selected as the feature
sampling locations, PFS. The bilinear interpolation algorithm is used to calculate the
features FFS at the PFS with the four nearest feature points in FSl

T . The feature sampling
process can be described by Equation (4):

FFS = Bilinear
(

FSl
T

(
Near

(
PFS

∣∣∣FSl
T

)))
(4)

where Near(p|F ) represents the coordinates of the four nearest feature points of the co-
ordinate p in F, and FSl

T (p) represents the features at the coordinates p in FSl
T . Bilinear

represents the bilinear algorithm.
With FFS as input, the corresponding instance mask, MR, in the RB-Box can be pre-

dicted by a 1 × 1 convolution. Then, as shown in Figure 7b, we choose the feature points in
the RB-Box as the mask sampling locations, PMS. The same as the feature sampling, the
instance mask values at the mask sampling locations are aligned using their four nearest
instance mask values in MR to produce the instance mask MMS in the coordinate system of
the feature map FSl

T . The mask sampling process can be described by Equation (5):

MMS = Bilinear(MR(Near(PMS|MR ))) (5)

where MR(p) represents the mask values at the coordinate p in MR. With the scale Sl of the
input FSl , the instance mask MMS is enlarged 2Sl times to output the final instance mask
MI in the original SAR image.

Because of the dense sampling points in the RB-Boxes, the bilinear interpolation
algorithm computes more accurate values for each sampling location, especially the instance
mask values on the boundary of ships.
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3.4. Network Training
3.4.1. Adaptive IoU Threshold

As mentioned in Section 3.2, the outputs of the R-Anchor branch directly influence
the performance of the two alignment convolutions in the DAM and the final RB-Boxes
predicted by the DetHead, which can be improved by reasonably raising the number of
positive samples in network training. The frequently used sampling allocation strategy,
ATSS [31], calculates an IoU threshold to gather positive samples, which considers the
mean and standard deviation of the IoUs of the samples nearby the center of the RB-Box
ground truth. Because this IoU threshold reflects the statistic value of the IoUs around
the center of the ground truth box, it is more suitable for the object whose aspect ratio
approximates 1. However, the ships in SAR images always have large aspect ratios. The
IoU thresholds, which are calculated based on the center neighborhood samples only, will
suppress the positive samples at the bow and stern, and thus the features at the bow and
stern cannot be effectively trained. As shown in Figure 8a, the positive samples allocated
by ATSS are distributed near the center of ground truth, but there are almost no positive
samples at the bow and stern.
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Therefore, on account of the aspect ratios of ships, a novel adaptive IoU threshold,
called AIoU, is used in our network training to raise positive samples, as shown in Figure 8b.
For each ship, we calculate the angle between its length and width and normalize it with
2/π to limit it to 0 to 1. From Figure 9 we can see that the larger the aspect ratio, the larger
the normalized angle becomes. Then we invert the normalized angle by Equation (6) to
obtain the factor F:

F = 1− 2/π arctan(α · Aspect(GT)) (6)

where Aspect(GT) represents the aspect ratio of a ship, α is a factor which is used to adjust
the change rate of F, and arctan represents the arctangent function.

Remote Sens. 2023, 15, x FOR PEER REVIEW 11 of 29 
 

 

 
Figure 8. Comparison illustration of two IoU thresholds. (a) The positive sample allocation results 
of the ATSS. (b) The positive sample allocation results of the new adaptive IoU threshold with the 
aspect ratio. The green square boxes represent positive samples, and the green points represent their 
center points. 

Therefore, on account of the aspect ratios of ships, a novel adaptive IoU threshold, 
called AIoU, is used in our network training to raise positive samples, as shown in Figure 
8b. For each ship, we calculate the angle between its length and width and normalize it 
with 2 π  to limit it to 0 to 1. From Figure 9 we can see that the larger the aspect ratio, 
the larger the normalized angle becomes. Then we invert the normalized angle by Equa-
tion (6) to obtain the factor F : 

( )( )21 arctanF Aspect GTπ α= − ⋅  (6)

where ( )Aspect GT  represents the aspect ratio of a ship, α  is a factor which is used to 
adjust the change rate of F , and arctan  represents the arctangent function. 

 
Figure 9. Illustration of the factor F  and the normalized angle with 1α = . The horizontal axis 
represents the aspect ratio. The vertical axis represents the value of the factor F  and the normal-
ized angle. 

Moreover, the AIoU can be obtained by Equation (7): 

AIoU ATSST T F= ⋅  (7)

where the ATSST  is the IoU threshold calculated by ATSS. As shown in Figure 9, F  de-
creases with the increase of the aspect ratio, which reasonably adjusts the IoU threshold 
to raise the positive samples.  

To evaluate the effectiveness of our AIoU, we test the number of positive samples for 
a RB-Box with the rotated angle of 60, which is used as the ground truth to allocate sam-
ples. We fix the width of the RB-Box and stretch its length to obtain ground truths with 
different aspect ratios. The IoU thresholds calculated by the state-of-the-art ATSS and our 
proposed AIoU are used to allocate samples. Figure 10 shows the statistics of the positive 
samples. It can be seen that the number of positive samples obtained by the AIoU is more 
than the number of positive samples obtained by the ATSS. Especially for the large aspect 
ratios, the difference in quantity between positive samples obtained by ATSS and AIoU 
increases obviously. 

Figure 9. Illustration of the factor F and the normalized angle with α = 1. The horizontal axis repre-
sents the aspect ratio. The vertical axis represents the value of the factor F and the normalized angle.



Remote Sens. 2023, 15, 1324 11 of 27

Moreover, the AIoU can be obtained by Equation (7):

TAIoU = TATSS · F (7)

where the TATSS is the IoU threshold calculated by ATSS. As shown in Figure 9, F decreases
with the increase of the aspect ratio, which reasonably adjusts the IoU threshold to raise
the positive samples.

To evaluate the effectiveness of our AIoU, we test the number of positive samples for a
RB-Box with the rotated angle of 60, which is used as the ground truth to allocate samples.
We fix the width of the RB-Box and stretch its length to obtain ground truths with different
aspect ratios. The IoU thresholds calculated by the state-of-the-art ATSS and our proposed
AIoU are used to allocate samples. Figure 10 shows the statistics of the positive samples. It
can be seen that the number of positive samples obtained by the AIoU is more than the
number of positive samples obtained by the ATSS. Especially for the large aspect ratios,
the difference in quantity between positive samples obtained by ATSS and AIoU increases
obviously.
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3.4.2. Loss Function

Our network SRNet is trained with a multi-task loss function, L, which consists of a
classification loss, a regression loss, and a segmentation loss. Besides the RB-Boxes output
from the DetHead, the CK output from the R-Anchor branch in the DAM is also optimized
in the regression loss. The multi-task loss function, L, can be described by Equation (8):

L = Lcls + Lreg + Lseg (8)

where the classification loss, Lcls, is the focal loss [10] to optimize the classification scores
to improve the performance of the classification. The regression loss Lreg consists of two
smooth L1 losses [37] and is represented by Equation (9).

Lreg = LR−Anchor + LRB−Box (9)

where LR−Anchor is used to optimize the CK to improve the inputs of the DetHead, and
LRB−Box is used to optimize the final RB-Boxes predicted by DetHead to improve the
location precision.

The Lseg is the binary cross-entropy loss [4], which optimizes the instance masks, MI ,
predicted by MaskHead to improve the performance of mask value prediction at each
location in MI .

4. Experiments

In experiments, the SAR Ship Detection Dataset (SSDD) [38,39] and the Rotated Ship
Detection Dataset in SAR images (RSDD) [40] were used to evaluate the performance of our
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SRNet. Because the precision of RB-Box is the key factor for the instance segmentation in
our network, the ship-detection results are also provided to demonstrate the accuracy of the
RB-Boxes output from the DetHead. Moreover, we labeled 3555 SAR images from RSDD
manually at the pixel level to produce a new dataset, Instance-RSDD, for experiments of
ship instance segmentation. Eight rotated-object networks and five instance-segmentation
networks were used as comparison networks. The ablation studies were conducted to
verify the effectiveness of the components proposed in our network.

4.1. Dataset and Evaluation Metrics
4.1.1. SSDD [38,39]

The SAR Ship Detection Dataset (SSDD) is the first objects-detection dataset for ships
in ocean SAR images. Since it was developed, the SSDD dataset has been expanded with the
instance-segmentation labels and the RB-Box labels [39], so it is now widely used in rotated
object detection and instance segmentation for ocean SAR images. The SSDD contains 1160
SAR images, with resolutions ranging from 1 m to 15 m, which are collected by RadatSat-2,
TerraSAR-X, and Sentinel-1 sensors. These SAR images contain 2456 ship instances in total,
and their contents involve a large number of water regions and dock regions, in which
various scenes and densely packed ships are the challenges for rotated object detection and
instance segmentation. In experiments, we divided the SSDD according to [39]: 928 images
were used for network training and 232 images for evaluating the rotated-object-detection
and instance-segmentation performance.

4.1.2. RSDD [40] and Instance-RSDD

The Rotated Ship Detection Dataset (RSDD) is the latest rotated-objects-detection
dataset for ships in ocean SAR images. RSDD contains 7000 SAR images with resolutions
ranging from 2 m to 20 m, which are collected by TerraSAR-X and Gaofen-3 sensors. These
SAR images contain 10,263 ship instances in total and involve abundant scenes. Due to the
various imaging styles and polarization modes, the visual difference between the images
is obvious, making it hard to extract representation feature maps, which is a challenge
for rotated object detection and instance segmentation. In experiments, we devided the
RSDD according to [40]: 5000 images were used for training, and 2000 were used images
for evaluating the rotated object detection performance.

Due to there being no instance-segmentation labels in RSDD, we expanded it to pro-
duce a new dataset Instance-RSDD for instance-segmentation experiments. In the dataset,
3555 clear SAR images are picked up and manually labeled at the pixel level to ensure
that each ship has an accuracy instance mask. The Instance-RSDD can be downloaded at
GitHub [41]. In experiments, 2840 images in the dataset are used for network training, and
715 images are used for evaluating the instance-segmentation performance.

4.1.3. Evaluation Metrics

In rotated-object-detection experiments, we use two metrics to evaluate the RB-Boxes
output from the rotated-object-detection networks. One metric is Recall, which is the
proportion of the true predicted positive samples in all ground truth boxes. Besides
considering the proportion of the true predicted positive samples in all ground truth boxes,
the metric mean average precision (mAP) also takes the proportion of the true predicted
positive samples in all predicted samples into account. Compared with Recall, mAP is able
to evaluate the networks more comprehensively [42].

In instance-segmentation experiments, we use several metrics to evaluate the instance
masks output from the instance-segmentation networks. These metrics are the APs under
the conditions of different instance mask IoUs [43], which are in MS COCO format [43] and
can evaluate instance-segmentation performance comprehensively [19]. To evaluate the
performance of instance segmentation under different overlap ratios, three APs are used
in this paper. AP is the most important metric which is under the condition of the IoU
thresholds in the range of 0.5 to 0.95. AP50 and AP75 are under the conditions of the IoU
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thresholds of 0.5 and 0.75, respectively. It is worth noting that the higher the IoU threshold
is, the more strictly the predicted instance mask is required to match the ground truth
mask. To evaluate the performance of instance masks for the objects with different scales,
respectively, APS, APM, and APL are used, which are calculated under the condition of IoU
threshold equal to 0.5. APS calculates the AP value for the object with a small scale (area of
object < 322 pixels), APM calculates the AP value for the object with a medium scale (322

pixels < area of object < 962 pixels), and APS calculates the AP value for the object with a
large scale (962 pixels < area of object) [43]. In experiments, these evaluation metrics can
comprehensively evaluate the instance-segmentation performance of networks.

4.2. Implementation Details

We implement our network and all comparison networks by using the mmrotate [44]
and mmdetection [45] toolkits based on the PyTorch deep-learning framework. The
resnet50 [46] is taken as the backbone for all networks. In our SRNet, the α is set to
1/16. During network training and testing, the image size is set up to 608 × 608 for the
SSDD dataset, and the image size is set up to 512 × 512 for the RSDD dataset. The SGD
optimization algorithm with a momentum of 0.9 and decay weight of 0.0001 is used to
update the parameters of the networks, and the initial learning rate is 0.0025. We train the
networks for 36 epochs and adjust the learning rate to 0.00025 and 0.000025 at the 24th
epoch and 33rd epoch, respectively. For both training and testing, a PC with an Ubuntu
operating system and an NVIDIA 3090GPU is used.

4.3. Rotated-Object-Detection Results for Ships in SAR Images

To verify the rotated-object-detection performance of our SRNet, eight rotated-object-
detection networks designed for remote-sensing images are used for comparison, namely
Rotated Faster RCNN [9], Rotated RetinaNet [10], Rotated Reppoint [11], ROI Trans [12],
R3Det [13], ReDet [14], Oriented RCNN [15], and S2ANet [16]. Tables 1 and 2 report
the rotated-object-detection performance of the different networks. In Table 1, the SRNet
achieves the best performance compared with all the networks on the SSDD dataset.
Specifically, it obtains an 0.8% higher in Recall and 0.1% higher in mAP than the best in
the comparison networks. In Table 2, on the RSDD dataset, although the SRNet achieves
a 0.2% lower Recall than the best in the comparison networks, the SRNet achieves the
best mAP and a 0.1% higher than the best in the comparison networks. These two tables
illustrate that most of the ships can be detected by the SRNet and that the RB-Boxes output
from SRNet can correctly and tightly surround the ships in SAR images. Moreover, from
the instance-segmentation results of our SRNet mentioned later, it can be concluded that
the performance of the RB-Boxes output from the Dethead is good enough to meet the
foundation of the following segmentation.

Table 1. Rotated object detection performance of different networks on the SSDD dataset.

Networks Recall mAP

Rotated Faster RCNN 92.7 89.6
Rotated RetinaNet 93.0 88.6
Rotated Reppoint 91.0 87.5

ROI Trans 92.9 90.1
R3Det 93.4 90.0
ReDet 94.5 90.3

Oriented RCNN 94.5 90.2
S2ANet 93.8 90.0
SRNet 95.3 90.4
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Table 2. Rotated object detection performance of different networks on the RSDD dataset.

Networks Recall mAP

Rotated Faster RCNN 88.2 79.2
Rotated RetinaNet 88.3 78.8
Rotated Reppoint 88.5 78.5

ROI Trans 90.4 88.1
R3Det 89.4 80.8
ReDet 92.5 89.3

Oriented RCNN 90.8 88.0
S2ANet 91.8 89.0
SRNet 92.3 89.4

Figures 11 and 12 show four visualization examples of all the comparison networks
on the SSDD dataset and RSDD dataset, respectively. In Figure 11, (a) is the scene of a
single ship berthing in a dock, (b) is the scene of parallel ships berthing in a dock, (c) is the
scene of multiple parallel ships berthing in a dock, and (d) is the scene of multiple ships
sailing in the water region. In Figure 12, (a) is the scene of the ships berthing on one side of
a dock, (b) is the scene of the ships berthing on both sides of a dock, and (c) and (d) are
the scene of ships sailing on the water region. From the two figures, we can see that the
parallel berthing arrangement and the non-ship objects in the dock have a bad influence
on the output RB-Boxes. For example, in Figure 11a–c and in Figure 12a,b, there are a
large number of missing alarms and false alarms in the results of comparison networks.
How to distinguish the different parallel ships is especially a hard barrier to all comparison
networks, which predict the parallel ships to one single ship. Because of the interference
of textures and shapes of isles or other ship-like objects, it is difficult for comparison
networks to detect ships in the water region. In Figures 11d and 12c,d, there are also a
large number of missing alarms and false alarms in the results of comparison networks.
However, in the results of our SRNet, for the scene of multiple parallel ships berthing in a
dock, almost all the parallel ships can be distinguished by the SRNet, and the RB-Boxes
almost have the accurate shapes and location, that can be seen in Figures 11a–c and 12a,b.
This is mainly because the DAM provides the representative features for regression so that
the RB-Boxes can grasp the shapes and locations of ships. Moreover, allocating samples by
the AIoU threshold makes the features at the bow and stern trained effectively, which helps
distinguish the parallel ships. For the scene of multiple ships sailing in the water region,
there are fewer missing alarms or false alarms in the results of the SRNet, and almost all
RB-Boxes have the rational classification scores, which can be seen in Figures 11d and 12c,d.
This is mainly because the DAM in the SRNet can provide the representative features to
produce accurate classification scores so that the ships can be accurately detected, and the
docks can be distinguished.
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Figure 11. Four visualization illustration images of different comparison networks for rotated object
detection on the SSDD dataset. (a) The scene of a single ship berthing in a dock. (b) The scene of
parallel ships berthing in a dock. (c) The scene of multiple parallel ships berthing in a dock. (d) The
scene of multiple ships sailing in the water region.
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Figure 12. Four visualization illustration images of different comparison networks for rotated object
detection on the RSDD dataset. (a) The scene of the ships berthing on one side of a dock. (b) The
scene of the ships berthing on both sides of a dock. (c,d) The scene of ships sailing in the water region.
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4.4. Ship Instance Segmentation in SAR Image

To verify the instance-segmentation performance of our SRNet, five instance-segmentation
networks were used for comparison, namely Mask RCNN [4], Mask Scoring RCNN [5],
Cascade Mask RCNN [6], Hybrid Task Cascade [7], and FL CSE ROIE [8]. The first four
networks were originally designed for optical images, which are frequently used for SAR
images. The last network was designed for SAR images. Tables 3 and 4 report the instance-
segmentation performance of the different networks on the SSDD and Instance-RSDD,
respectively. Our network SRNet achieved the highest AP on the two datasets and outper-
formed all other state-of-the-art networks in almost all metrics. To enhance the visualization
of the two tables, their corresponding histograms are shown in Figure 13. The AP75 is hard
to improve, which requires a higher overlap ratio with the instance mask ground truth.
Meanwhile, the AP75 columns of SRNet in the two histograms are both higher than the
others. This illustrates that the instance-segmentation results of SRNet are closer to the
instance mask ground truth. In addition, it can be seen that the APM and APL columns of
SRNet in the two histograms are much higher than others. This illustrates that the ships
with middle scale and large scale can be segmented better by our network. This is mainly
because the AIoU threshold provides enough positive samples for the network training,
and it is obvious for ships with middle scales and large scales.

Table 3. Instance-segmentation performance of different networks on the SSDD dataset.

Networks AP AP50 AP75 APS APM APL

Mask RCNN 63.5 92.6 80.0 61.8 68.7 63.4

Mask Scoring RCNN 62.6 90.7 78.8 60.8 67.8 60.1

Cascade Mask RCNN 64.8 93.8 79.9 63.2 69.2 53.5

Hybrid Task Cascade 62.4 92.8 78.4 60.9 67.3 56.8

FL CSE ROIE 63.5 92.9 80.1 62.5 66.8 45.2

SRNet 67.1 94.9 85.4 65.8 70.8 75.0

Table 4. Instance-segmentation performance of different networks on the Instance-RSDD dataset.

Networks AP AP50 AP75 APS APM APL

Mask RCNN 67.5 95.8 85.7 69.8 63.1 80.0

Mask Scoring RCNN 68.0 95.6 86.1 70.6 63.9 70.0

Cascade Mask RCNN 67.9 95.8 85.9 69.8 64.4 70.0

Hybrid Task Cascade 67.9 95.8 86.4 69.6 64.8 80.0

FL CSE ROIE 67.7 95.9 85.7 69.2 64.8 80.0

SRNet 68.7 96.9 87.3 70.1 66.5 90.0
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Figures 14 and 15 show four visualization instance-segmentation examples of all the
comparison networks on the SSDD dataset and RSDD dataset, respectively. In Figure 14,
(a) is the scene of parallel ships berthing at a dock, (b) and (c) are the scenes of multiple
parallel ships berthing on both sides of a dock, and (d) is the scene of the ships sailing
in the water region. In Figure 15, all the images show scenes of the ships berthing in the
docks, and there are some non-ship objects with similar visual appearance to ships in the
images. In the several segmented images, besides the final instance masks, the HB-Boxes of
the comparison networks and the RB-Boxes of our SRNet are marked on the segmented
images. From these figures, we can see that there are inherent shortcomings in the results of
HB-Box-based instance-segmentation networks. For example, in Figures 14c,d and 15a,b,d,
there are a large number of repeated HB-Boxes which are predicted for the same ship, and
there are a large number of missing alarms and false alarms in the results of comparison
networks. There are two situations of missing alarms, the first one is that the multiple
ships are predicted to be one ship by one HB-Box, and the second one is that the ships with
low classification scores are wrongly filtered. In Figures 14a–c and 15a–c, there are many
phenomena that the instance masks of the parallel ships are connected in one HB-Box,
and non-ship objects are predicted to be part of ships in the results of the comparison
networks. This illustrates that the multiple ships or non-ship objects being easily contained
in one HB-Box is another barrier for the HB-Box-based instance-segmentation networks.
However, in the results of our SRNet, for the scenes of multiple parallel ships berthing
in a dock, in Figures 14a–c and 15a–c, one RB-Box always contain one ship, the instance
masks of ships are separated from each other, and there are almost no phenomena in which
the instance masks of the parallel ships are connected. In addition, the docks are almost
excluded from the RB-Boxes and not segmented into part of instance masks of ships. This
is mainly because the RB-Boxes have the advantage that can distinguish parallel ships
and non-ship objects. With lower amounts of other information, instance segmentation
based on the RB-Boxes, which is the core idea of our SRNet, can almost avoid the inherent
shortcomings in HB-Box-based instance-segmentation networks; thus, the SRNet achieves
a high instance-segmentation performance. For the scenes of a single ship berthing in a
dock or multiple ships sailing on the water region, in Figures 14d and 15d, there are almost
no missing alarms or false alarms, thus illustrating that instance segmentation based on the
RB-Boxes, our SRNet, is suitable for most of the complex scenes. Another important point
is that, in all scenes, the instance masks are clear and complete; this is mainly because the
MaskHead in SRNet can accurately predict the instance masks in the RB-Boxes, causing the
ships to be correctly segmented.
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Figure 14. Four visualization illustration images of different comparison networks for instance
segmentation on the SSDD dataset. (a) The scene of parallel ships berthing at a dock. (b,c) The scenes
of multiple parallel ships berthing on both sides of a dock. (d) The scene of multiple ships sailing in
the water region.
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Figure 15. Four visualization illustration images of different comparison networks for instance
segmentation on the Instance-RSDD dataset. (a–d) The scenes of the ships berthing in the docks.

4.5. Ablation Experiments
4.5.1. Ablation for the Components Proposed in SRNet

In order to verify the performance of the proposed DAM and the AIoU calculation
method for network training, three ablation studies with different settings were conducted
on the SSDD dataset and Instance-RSDD dataset, respectively. To verify the effectiveness of
the DAM, based on the instance-segmentation framework based on the RB-Boxes which is
proposed in this paper, the single feature map was taken as the input of the DetHead to
compare with two feature maps with different properties output from the DAM. Moreover,
the single feature map was extracted by a standard convolution and a deformable convo-
lution. To verify the effectiveness of the AIoU, the ATSS was used for network training
for comparison. Thus, in Tables 5 and 6, Conv and DeformConv denote that the standard
convolution and the deformable convolution are used to provide a single feature map as
the input of the DetHead, and DAM denotes that the DAM is used to provide two feature
maps as inputs of the DetHead. ATSS denotes using the ATSS to calculate the IoU threshold
for network training.
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Table 5. Ablation experiment results of our network framework on the SSDD dataset.

Networks AP AP50 AP75 APS APM APL

Conv+ATSS 64.8 94.9 81.5 64.5 66.3 72.5

DeformConv+ATSS 65.6 94.9 81.9 64.4 69.9 67.6

DAM+ATSS 66.9 94.9 84.2 65.7 71.1 65.0

SRNet 67.1 94.9 85.4 65.8 70.8 75.0

Table 6. Ablation experiment results of our network framework on the Instance-RSDD dataset.

Networks AP AP50 AP75 APS APM APL

Conv+ATSS 66.2 95.8 84.5 68.2 63.3 80.0

DeformConv+ATSS 66.6 95.8 85.0 68.3 64.1 80.0

DAM+ATSS 67.8 95.9 86.0 69.6 65.2 90.0

SRNet 68.7 96.9 87.3 70.1 66.5 90.0

Tables 5 and 6 show the results of the ablation studies. From the whole two tables,
we can see that the SRNet, which is equipped with the DAM and trained with the AIoU
calculation method, achieves the best performance of almost all metrics on the two generic
datasets. To enhance the visualization of the two tables, their corresponding histograms
are shown in Figure 16.
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From the two histograms in Figure 16, we can see that almost all the metrics of
SRNet are higher than those metrics of DAM+ATSS, thus illustrating that by training the
network with the AIoU calculation method, more rational positive samples are used to
effectively train the network so that the performance can be improved. From the metrics of
Conv+ATSS, DeformConv+ATSS, and DAM+ATSS, we can see that almost all the metrics
of DAM+ATSS are higher than others. It indicates that, without training the network
with the AIoU calculation method, the DAM+ATSS still achieves a higher performance
than other networks with standard convolution and deformable convolution, respectively.
However, the APL of DAM+ATSS on the SSDD dataset is lower than others, which means
that the DAM cannot be trained effectively with the positive samples of large ships obtained
by ATSS. In addition, the high metrics of DAM+ATSS illustrate that by considering the
difference between the regression task and classification task, the DAM can improve the
performance a lot.
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4.5.2. Ablation for Different α in the AIoU

To verify the rationality of the value of factor α, the ablation experiments with different
values of α were conducted on the SSDD dataset and Instance-RSDD dataset. As shown
in Tables 7 and 8, the value of α is set to 1/4, 1/8, and 1/16. Take the network with α of
1/4 as the baseline, and with the α decreasing, the performance of the network raise. To
enhance the visualization of the two tables, their corresponding histograms are shown in
Figure 17. From the two histograms, we can see that almost all the metrics columns of
α = 1/16 are higher than those columns of other α settings. The metrics APL especially
increase obviously. Thus, our parameter setting, α = 1/16, is reasonable.

Table 7. Ablation experiment results of factor α on the SSDD dataset.

α AP AP50 AP75 APS APM APL

1/4 66.5 93.9 85.2 65.4 70.3 65.0

1/8 67.1 94.8 84.7 66.2 70.7 67.6

1/16 67.1 94.9 85.4 65.8 70.8 75.0

Table 8. Ablation experiment results of factor α on the Instance-RSDD dataset.

α AP AP50 AP75 APS APM APL

1/4 68.2 95.9 86.2 69.8 65.7 40.0

1/8 68.3 95.8 86.0 70.1 65.4 90.0

1/16 68.7 96.9 87.3 70.1 66.5 90.0
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5. Conclusions

In this paper, we proposed a novel ship instance-segmentation network based on RB-
Boxes called SRNet for ocean SAR images. To extract features aligned with the directions
and shapes of ships, the DAM in the detection procedure was designed with two different
alignment convolutions for the regression task and classification task. In the two alignment
convolutions, the two sampling strategies of their kernels were proposed to enable the
sampling locations of the kernels distributed on the area that needs to focus. By taking
the regression feature maps and classification feature maps from the DAM as inputs, the
DetHead achieves accurate rotated object detection. Then, with the RB-Boxes output from
DetHead after the rotated NMS, the MaskHead in the segmentation procedure obtains
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instance masks by two sampling processes and a convolution, and then it transfers them
onto the original images. In the training process, the aspect ratio of each ship is taken into
account to calculate the AIoU for the corresponding ground-truth box so that the training
effect is improved. In experiments, the accuracies of RB-Boxes and instance masks are
evaluated, respectively. The results of these comparison experiments demonstrate that
not only does the RB-Boxes from the DetHead outperform the results of the eight rotated
object detection networks, but also the instance masks from the MaskHead outperform the
results of the five instance-segmentation networks. Moreover, ablation experiments were
conducted to verify the effectiveness of the DAM and the AIoU and the rationality of the
factor α setting, thus demonstrating that the DAM in feature extraction and the AIoU in
network training can produce a positive effect on the network performance. Moreover, the
factor α setting in AIoU is rational.
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