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Abstract: Although many state-of-the-art object detectors have been developed, detecting small
and densely packed objects with complicated orientations in remote sensing aerial images remains
challenging. For object detection in remote sensing aerial images, different scales, sizes, appearances,
and orientations of objects from different categories could most likely enlarge the variance in the
detection error. Undoubtedly, the variance in the detection error should have a non-negligible
impact on the detection performance. Motivated by the above consideration, in this paper, we
tackled this issue, so that we could improve the detection performance and reduce the impact of this
variance on the detection performance as much as possible. By proposing a scaled smooth L1 loss
function, we developed a new two-stage object detector for remote sensing aerial images, named
Faster R-CNN-NeXt with RoI-Transformer. The proposed scaled smooth L1 loss function is used
for bounding box regression and makes regression invariant to scale. This property ensures that
the bounding box regression is more reliable in detecting small and densely packed objects with
complicated orientations and backgrounds, leading to improved detection performance. To learn
rotated bounding boxes and produce more accurate object locations, a RoI-Transformer module is
employed. This is necessary because horizontal bounding boxes are inadequate for aerial image
detection. The ResNeXt backbone is also adopted for the proposed object detector. Experimental
results on two popular datasets, DOTA and HRSC2016, show that the variance in the detection error
significantly affects detection performance. The proposed object detector is effective and robust,
with the optimal scale factor for the scaled smooth L1 loss function being around 2.0. Compared to
other promising two-stage oriented methods, our method achieves a mAP of 70.82 on DOTA, with an
improvement of at least 1.26 and up to 16.49. On HRSC2016, our method achieves an mAP of 87.1, with
an improvement of at least 0.9 and up to 1.4.

Keywords: object detection; convolution network; loss function; remote sensing image; aerial image

1. Introduction

Object detection is a crucial task in remote sensing image processing with numerous
practical applications. Its purpose [1] is to locate each object within an image and identify
its category. As more aerial images become available, researchers are increasingly focusing
on object detection in aerial images [2–6]. Aerial images are typically acquired from a
bird’s-eye view, resulting in complicated object orientations, as seen in Figure 1. Therefore,
it is challenging to accurately locate and identify the objects of interest in an aerial image.

For object detection, there are many fast object detection networks, including Over-
Feat [7], You Only Look Once (YOLO) [8], YOLOv2 [9], YOLOv3 [10], YOLOv4 [11], and
the single shot detector (SSD) [12]. Moreover, by detecting an object bounding box as a pair
of key points, CornerNet [13] employs the hourglass network as its backbone for better
detection performance of corners. RetinaNet [14] introduced the focal loss to classifica-
tion to improve performance. These algorithms, also known as one-stage algorithms, can
achieve real-time state-of-the-art detection accuracy due to their simple network structures
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and picture gridding. As a result, they are widely used in scenarios that require real-time
detection, such as monitoring video analysis, visual odometry, target tracking initialization,
and more. Given their success, researchers are increasingly applying one-stage algorithms
to various tasks, including object detection in remote sensing images.

(a)(a) (b)(b) (c)(c)(a) (b) (c)

Figure 1. Instances from a bird′s-eye view. The images are from the DOTA dataset. There are
challenges and difficulties in detecting remote sensing images. (a) Small and densely packed objects.
(b) Objects with complicated backgrounds. (c) Objects with arbitrary orientation.

Regarding object detection for remote sensing images, Chen et al. [15] improved
SSD by augmenting semantic information in remote sensing images. This method can
improve the speed but not the performance of detecting small objects. Wen et al. [16]
proposed MS-SSD based on SSD by introducing a more high-level context and more
appropriate supervision, and achieved better performance, especially for small objects.
YOLT (You Only Look Twice) [17] optimizes YOLOv2 for detecting small and densely
oriented objects in remote sensing images. Cheng et al. [18] integrated an upsampling
features enhancement module and an attention mechanism into YOLOv5 to address the
complex dense distribution of tiny objects in remote sensing images. Dong et al. [19]
improved FPN (Feature Pyramid Network) [20] and integrated attention-based multi-level
Feature Fusion Modules to achieve state-of-the-art performance. Han et al. [21] proposed
a new one-stage architecture called S2A-Net with FAM and ODM modules, where the
ODM can alleviate the inconsistency between the classification and localization accuracy
by providing orientation-invariant features. Based on FPN [20], Liu et al. [22] proposed
ABNet to address the imbalanced scale and sparsity distribution of objects in remote
sensing images. Liu et al. [23] proposed NRT-YOLO to address the problems of tiny objects
and high resolution of object detection in remote sensing. Zakria et al. [24] improved
the performance of the anchor scheme based on YOLOv4. Zhou et al. [25] introduced
the contextual transformer cot module to optimize the YOLOv5-s, and achieved better
performance. Sharma et al. [26] proposed a new detector YOLOrs by fusing data from
multiple remote sensing modalities. Zhang et al. [27] proposed the HSSC module, and
introduced it into YOLOSO so that the resulting model outperformed YOLOv3. Moreover,
YOLOv6 [28] and YOLOv7 [29] were proposed, which outperformed YOLOv5 (by Meituan
and Womkinyin, respectively). In summary, it is likely that one-stage detectors, especially
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YOLO and similar algorithms, will make significant contributions to object detection in
remote sensing images.

While one-stage detectors are blooming, two-stage approaches are receiving more
attention from researchers [30–34]. A two-stage detector could achieve better accuracy
compared to a state-of-the-art one-stage detector. Two-stage frameworks are usually framed
in the first stage, which generates a sparse set of candidate proposals (i.e., bounding boxes),
and the second stage, which is used for classifying the proposals into the foreground or
background. The first stage of a two-stage approach typically uses bounding box regression
to generate a candidate bounding box to locate an object. In other words, bounding box
regression is designed to complete the task of generating the candidate proposals. A
bounding box represents a region of interest (RoI). Horizontal bounding boxes (HBBs)
are used as regions of interest (RoIs) and category identification is conducted via region
features. The earliest two-stage approach can be traced back to the selective search (SS) [30].
Soon after, R-CNN [31] improved the second-stage classification algorithm, resulting in
much higher accuracy, and it further improved throughout the years; see Fast R-CNN [32]
and Faster R-CNN [33], for instance, and [34] for a survey.

As more aerial images become available, there is a growing interest in object detection
in these images. Several methods have been proposed to address this challenge, such as
RICNN [35], which uses horizontal RoIs with SS, USB-BBR [6] with NMS [36] to handle
horizontal RoIs, and AVPN [5] for more accurate horizontal RoIs. However, the use of
horizontal RoIs has some drawbacks, as one RoI may contain multiple targets in images
with densely packed objects, leading to uncertainty in subsequent location and classification,
as illustrated in Figure 2. Liu et al. [37] and Xia et al. [38] pointed out that using horizontal
RoIs may result in misalignments between bounding boxes and targets, making them
unsuitable for oriented and densely packed objects in aerial images, as shown in Figure 2.
To address this issue, Liu and Mattyus [39] proposed using rotated bounding boxes (RBBs)
to locate vehicles in aerial images, achieving satisfactory accuracy. In a similar approach,
other researchers [40–43] have proposed using a large number of anchors with different
scales, aspect ratios, and angles to generate rotated RoIs for classification. Yu et al. [44] used
the self-attention module to generate candidate bounding boxes instead of anchor-based
proposal boxes; they used deformable convolution to avoid the impacts of complex and
changeable backgrounds. Hou et al. [45] found that the aspect ratios of objects within the
same category obey a Gaussian distribution, and designed the novel self-adaptive ratio
anchors to handle the variation of aspect ratios, resulting in a better performance. While
the algorithms mentioned above can perform well, generating a large number of anchors in
RPN [33] can be time-consuming. Liu et al. [46] proposed ArIoU to relax the match between
RBBs, but this may result in misaligned true positive samples. To improve the efficiency of
feature extraction, Liu et al. [47] and Ma et al. [40] proposed rotated RoI pooling layers,
which can be applied to RoIs. Furthermore, rotated RoIs have also been studied from
a vertex-based perspective. Yang et al. [48] proposed an algorithm that transforms the
regression problem of the axis-aligned angle into the classification problem with circle
labels. Xu et al. [49] proposed Gliding Vertex, which regresses the ratios of the four vertices
relative to four points of a horizontal box, along with an obliquity factor to distinguish
horizontal from other rotated objects. The method in [49] was further improved by Huang
et al. [50]. Ding et al. [51] proposed a RoI-Transformer module to address mismatches
between horizontal RoIs and objects. The RoI-Transformer uses an internal supervised
rotated RoI learner to transform horizontal RoIs into rotated RoIs, producing qualified
rotated RoIs. This method uses Light-Head R-CNN [52] as the baseline network, with
ResNet [53] as the backbone.
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Figure 2. Horizontal bounding boxes versus oriented bounding boxes.

On the other hand, loss functions play important roles in one- and two-stage object
detection architectures, especially in two-stage approaches. One-stage approaches, such as
YOLO [8], use mean-square losses in their loss functions, while SSD [12] adopts smooth L1
loss as localization loss. RetinaNet [14] proposes the focal loss for dense object detection.
For two-stage approaches, R-CNN [31] uses L2 loss for bounding box regression. Fast
R-CNN [32] and Faster R-CNN [33] update the L2 loss to smooth L1 loss for bounding
box regression. SCRDet [54] introduces the IoU-smooth L1 loss function for bounding box
regression, which is derived from the robust Huber function [55].

In addition, an effective backbone is another basic ingredient in an object detector.
Notice that ResNeXt [56] developed the ResNet [53] network with fewer hyperparameters
and a simpler structure via group convolution with the same guaranteed parameters. So,
using the ResNeXt network could help to improve the object detector’s robustness and
reliability and, hence, improve the detection performance. ResNet is usually used as the
backbone in the standard Faster R-CNN [33], standard RetinaNet [14], standard R-FCN [57],
and standard Cascade R-CNN [58].

In multi-object detection for remote sensing aerial images, objects of different cate-
gories with varying scales, sizes, appearances, and orientations may increase the variance
in the detection error, as illustrated in Figure 3. It is denoted by σ2. Therefore, the question
arises—how and to what extent does the variance in the detection error σ2 influence the
performance of the detector? Furthermore, if this influence is confirmed, it raises the
question of determining the optimal value of σ2 that can achieve the highest mAP overall.
In other words, how can we reduce, as greatly as possible, the impact of σ2 on the perfor-
mance of the detector? Motivated by the above consideration, in this paper, we aim to
address the above questions. Namely, in doing so, we choose the two-stage approach as our
objective to explore, because on one hand, the algorithm of a two-stage approach is more
complicated than that of a one-stage approach in general, and on the other hand, two-stage
approaches have achieved promising state-of-the-art performances [59–61]. Meanwhile, as
an effective baseline, Faster R-CNN [33] is promising for two-stage approaches, as it has
been widely used and studied by researchers [62–64]. Hence, in this paper, we will adopt
it as our baseline. At the same time, as pointed out previously, we chose ResNeXt [56] as
the backbone for our detector, building on its development of ResNet [53]. To address the
impact of σ2 on detection performance, we propose a new scaled smooth L1 loss function
for bounding box regression that can provide consistent and robust results across differ-
ent object categories. Additionally, we use the RoI-Transformer module [51] to handle
complex object orientations in aerial images and achieve superior detection performance.
Our detector is called Faster R-CNN-NeXt with RoI-Transformer. Our experiments on
popular datasets (DOTA and HRSC2016) demonstrate that the variance in the detection
error significantly affects detection performance. The optimal scale factor for the scaled
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smooth L1 loss function was found to be around 2.0; the proposed detector is effective and
robust, outperforming other promising two-stage oriented methods.
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Figure 3. Visualization of the detection error.

The rest of this paper is organized as follows. Section 2 describes the proposed method
in detail. In Section 3, we introduce experimental settings, as well as implementation
details. Section 4 is devoted to the experimental results, analysis, and discussions. Finally,
our conclusions are summarized in Section 5.

2. The Proposed Method

In this section, we introduce the architecture of our network. As shown in Figure 4,
the overall structure is based on a two-stage approach. In the first stage, we use ResNeXt
backbone to extract features from the input images and FPN [20] to fuse the extracted
features. Making use of RPN, we generate the candidate HBBs by bounding box regression.
In the second stage, the RoI-Transformer module [51] is embedded to learn RBBs from
the HBBs. Based on the RBBs, the location and classification of objects are completed.
Our new ideas mainly appear in ResNeXt+FPN, RPN, RoI-Transformer, and Location
prediction stages.

2.1. Feature Extraction Network

Since ResNet [53] adopts a shortcut connection structure, it has an advantage that the
accuracy cannot degrade when the depth of the network increases. Hence, as a backbone,
ResNet is popular in object detection architecture. Xie et al. [56] proposed a novel backbone
named ResNeXt, which is more efficient than ResNet since it employs the split–transform–
merge structure involved in the family of inception models [65,66]. For detailed units of
ResNet and ResNeXt, see Figure 5.
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Figure 4. Architecture of Faster R-CNN-NeXt with RoI-Transformer.

ResNeXt shares the same basic topology as that of ResNet, and extracts features
from bottom–up with multiple convolution modules. As one more hyperparameter, the
cardinality, which is used to control the number of splitting convolution modules, can be
considered as a new dimension in the channel. Figure 5 shows that the input features of
256 channels can be divided into 32 groups of low-dimension features with 4 channels (i.e.,
cardinality = 32, width = 4) using 1 × 1 convolution. The output features can then merge
the low-dimension features into high-dimension features using 1 × 1 convolution.

Compared with ResNet [53], ResNeXt [56] performs better. In [56], there are many
experiments showing the effectiveness of ResNeXt. Nevertheless, compared with ResNet,
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few theoretical analyses about the effectiveness of ResNeXt have been studied in the
literature. From the perspective of the algorithm, we provide here a theoretical analysis
that shows that the ResNeXt should be more effective than ResNet.
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Figure 5. (Left) a unit of ResNet. (Right) a unit of ResNeXt.

In general, if an object detection model has more parameters to optimize, then the
complexity is higher. Obviously, it contains two factors of the spatial space and channel
space. The schematic principle of complexity can be seen from Figure 6. For example, we
assume that the number of channels of input features is 16, the output is 16, the middle is
8 for ResNet as in Figure 6a, for ResNeXt (4 × 2) as in Figure 6b, and ResNeXt (2 × 4), as
in Figure 6c, respectively. For simplicity, we define the 0th layer, 1th layer, 2th layer, and
3th layer. Then for Figure 6a, Flops can be computed, i.e., 16 × 8 in (0th → 1th), 8 × 8 in
(1th → 2th), 8 × 16 in (2th → 3th), and sum to (16× 8 + 8× 8 + 8× 16) flops. For Figure 6b,
denoting ResNeXt (4 groups with width 2), Flops in 0th → 1th is (8× 16), in 1th → 2th is
(2× 2× 4), and in (2th → 3th) is 8× 16. For Figure 6c, representing ResNeXt (2 groups with
a width of 4), the total Flops is (8× 16 + 4× 4× 2 + 8× 16). Let Cin denote the number
of input feature channels, Cmid the number of middle features, Cout the output features,
Ccar the cardinality, and B the width, respectively. Then, the complexities of ResNet and
ResNeXt on channel can be computed, respectively, as follows:

FLOPsresnet = Cin × Cmid + Cmid × Cmid + Cmid × Cout

FLOPsresnext = Cin × (Ccar × B) + (B× B× Ccar) + Cout × Ccar × B
(1)

From (1), the computational complexity of ResNet and ResNeXt can be computed
explicitly. As reported in [53,56], the complexity of ResNet is slightly lower than that of
ResNeXt in the conv2 and conv3 stages due to the smaller number of input features. How-
ever, in the conv4 and conv5 stages, the complexity of ResNet becomes significantly higher
than that of ResNeXt when the number of input feature channels increases. Therefore, the
computational complexity of ResNeXt is generally lower than that of ResNet, which is why
we choose ResNeXt as the backbone of our proposed method.
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Figure 6. The schematic map of complexity on channels. (a) stands for ResNet. (b) stands for ResNeXt
(4×2). (c) stands for ResNeXt (2×4). The green circles represent the input features whose number
represents the number of channels about features. The yellow circles represent the output features.
The purple circles represent the middle features.

2.2. Feature Fusion Network

In object detection in remote sensing images, the performance of a detector is usually
sensitive to the scale variant of the images. To deal with this issue, Lin et al. [20] proposed
the feature pyramid net (FPN) to extract multi-scale features. Since then, the FPN has been
widely applied to many networks to improve performance. Many experiments show the
effectiveness of FPN, especially in small objects, which are important for object detection
in remote sensing. Combining ResNeXt and FPN, the structure of extracting and fusing
features is shown in Figure 7. By fusing multi-scale semantic formation, this architecture not
only extracts rich features but also suppresses the vanish of the formation of small objects.

Figure 7 illustrates the bottom-up feature extraction and top-down feature fusion
structure of FPN. FPN combines features of different spatial sizes through upsampling
and fusion. The backbone generates feature maps C1, C2, C3, C4, and C5. The features
from C2 to C5 are fused to create feature maps P2, P3, P4, and P5. P6 is obtained by
applying a 3 × 3 convolution with a stride of 2 to P5. The features from high levels have
larger receptive fields, making them more suitable for detecting larger objects. The features
from lower levels, such as P3 and P4, are more efficient in detecting smaller objects with
lower resolution. Under such a structure, we usually achieve good detection performance,
especially in remote sensing image detection.

2.3. The Structure of the RoI-Transformer

Since the orientations of objects in remote sensing images are usually arbitrary, and
most objects are often densely packed, as Figure 1 shows, the methods relying on horizontal
proposals may struggle to achieve high location accuracy. At the head of the RoIs in the
second stage, we employ the RoI-Transformer, proposed by Ding et al. [51], which is a
powerful mechanism to obtain oriented bounding boxes.

The RoI-Transformer is a learnable module, which can transform HRoIs into RRoIs
and avoid a large number of anchors designed for oriented object detection. Its structure is
shown in Figure 8.



Remote Sens. 2023, 15, 1350 9 of 23

CT

2×up

+ 

2×up

+ 

CT

MP

+ 

2×up
CT

CT

+ 
2×up

input output

P6,P5,P4,P3,P2
C1,C2,C3,C4,C5

CT

2×up

+ 

CT

MP

+ 

2×up
CT

CT

+ 
2×up

input output

P6,P5,P4,P3,P2
C1,C2,C3,C4,C5

Figure 7. The architecture of combining ResNeXt and FPN. The CT denotes the channel transformer
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multiple of 2.
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Figure 8. The structure of the RoI-Transformer. The input features (i.e., green cubes) with the HRoI
(i.e., the area features of black bounding box) pass into RoI-Transformer to obtain RRoIs (i.e., the red
cube). The RoI-Transformer consists of two parts, RRoI learner and RoI Align, where the RRoI learner
is completed through the fully connected layer to learn the 5 parameters of the RGT (i.e., rotated
ground truth) relative to HRoIs.

2.4. Rotated Bounding Box Regression and Classification

In this section, we will first introduce the scaled smooth L1 loss function in detail.
Then, we describe the rotated bounding box regression and classification.

2.4.1. The Scaled Smooth L1 Loss Function

In this subsection, we will review the common smooth L1 loss function briefly, in-
troduce the definition of the scale factor, and give the scaled smooth L1 loss function
in detail.

The smooth L1 loss function is defined as

Lloss(x) =

{
0.5x2, |x| < 1,
|x| − 0.5, |x| ≥ 1.

(2)
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In the bounding box regression, the smooth L1 loss function operates on the detection
error, i.e., the variable x of Lloss(x) represents the detection error. As mentioned previously,
this smooth L1 loss function plays an important role in a two-stage detector because it is
used to undertake the bounding box regression task. As pointed out in the introduction,
the variance in the detection error σ2 could affect the performance of a detector. On the
other hand, we observe that the smooth L1 loss function Lloss(x) as in (2) has nothing to do
with the variance σ2. Taking into account the important role that a regression loss function
takes in a two-stage approach, we manage to update the smooth L1 loss function to a new
one, which should have something to do with the variance σ2. We suggest the use of the
scaled smooth L1 loss function Lsloss(x), which is defined as

Lsloss(x) =

{
0.5( x

σ )
2, |x| < 1,

| xσ | − 0.5, |x| ≥ 1,
(3)

where σ > 0 is now a pre-specified constant, and is referred to as the scale factor. Notice
that when σ is set to 1, then the scaled smooth L1 loss function becomes the common
smooth L1 loss function. Under this scaled smooth L1 loss function, the corresponding
variance in the detection error becomes 1; it appears that we scale any variance in the
detection error to 1. This is also why we call the constant σ the scale factor.

Now, we can provide an alternative explanation for the role that the scale factor σ
takes in Lsloss. Notice that when the scaled smooth L1 loss function is used to undertake
the bounding box regression, the variable x of Lsloss(x) will represent the detection error. If
we regard 1

σ2 and 1
σ as two weights, then Lsloss can be considered as such a loss function

that endows weight 1
σ2 and 1

σ to the L2 loss term (i.e., term x2) and L1 loss term (i.e., term
|x|), respectively. By (3), we can obtain the gradient formula for Lsloss as follows:

∂Lsloss(x)
∂x

=

{
± 1

σ2 |x|, |x| < 1,
± 1

σ , |x| ≥ 1.
(4)

Compared with that of Lloss, Lsloss raises the ratio of gradients, σ/|x|, between parts
of |x| ≥ 1 and |x| < 1, when σ > 1. In other words, the scaled smooth L1 loss function
Lsloss focuses more on suppressing the large detection error and, thus, improve the object
location accuracy.

By controlling the value of the scale factor σ, we should be able to improve the
performance (say, overall mAP) of the detectors. Experimental results will support our
viewpoint, and indicate that the optimal scale factor is about 2.0, rather than the commonly
used 1.0 corresponding to the common smooth L1 loss function.

2.4.2. Rotated Bounding Box Regression

As pointed out previously, in a two-stage object detection architecture, the horizontal
bounding boxes are most likely not suitable for detecting oriented and densely packed
objects, especially in aerial image object detection. Hence, in this study, instead of using hor-
izontal bounding boxes to generate candidate object locations, we used rotated bounding
boxes, see Figure 9. Next, we describe in detail the rotated bounding box regression, which
has some similarities to work by Ding et al. [51]. First, we acquire horizontal bounding
boxes (i.e., horizontal proposals) from the RPN. Denote by HG and HP the horizontal
ground-truth bounding box and horizontal proposal, respectively. By the RoI-Transformer,
we learn from HP to obtain the rotated proposal (RP, i.e., rotated bounding box). Denote
by RG the rotated ground-truth bounding box. The input to our training algorithm is a
set of N training samples {RPi, RGi}i=1,··· ,N , where RPi = (xRPi , yRPi , wRPi , hRPi , θRPi )T,
where the superscript T means the transpose of a vector, among which (xRPi , yRPi ) specifies
the coordinates of the center of rotated proposal RPi, wRPi and hRPi represent the width
and height of RPi, respectively, and θRPi specifies the orientation of RPi. From now on,
we drop the superscript i unless it is necessarily stated. The task of the rotated bounding
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box regression is to learn a transformation that assigns a rotated proposal RP to a rotated
ground–truth bounding box RG.

RRoI learner

ĜR

HG
RG

HP

RP

HP

RP

(b)

RRoI learner

ĜR
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RG

HP
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HP
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ĜĜ

(a)

G
P

Ĝ
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RRoI learner

ĜR
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RG

HP
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(b)

G
P

Ĝ

(a)

Figure 9. Change from HBB regression (a) to RBB regression (b).

To facilitate the learning transformation, the transformation is parameterized by means
of five functions t̂x(RP), t̂y(RP), t̂w(RP), t̂h(RP), and t̂θ(RP). The first two functions
represent the transformation of the center of RP. t̂w(RP) and t̂h(RP) represent log-space
transformations of the width and height of RP, respectively, while t̂θ(RP) stands for the
normalized 2π-space transformation of the orientation of RP. Once we learn these functions,
with an input RP, we can predict a candidate RĜ = (xRĜ, yRĜ, wRĜ, hRĜ, θRĜ) for a rotated
ground-truth RG, which can be obtained by the following formulas:

xRĜ = cos θRP · t̂x(RP) · wRP − sin θRP · t̂y(RP) · hRP + xRP,

yRĜ = sin θRP · t̂x(RP) · wRP + cos θRP · t̂y(RP) · hRP + yRP,

wRĜ = exp(t̂w(RP)) · wRP, hRĜ = exp(t̂h(RP)) · hRP,

θRĜ = (2π t̂θ((RP) + θRP, mod 2π).

(5)

Next, we address how to learn those five functions t̂∗(RP) from RP, where ∗ can
be one of x, y, w, h, θ. To ensure that the rotated bounding box regression is effective and
efficient, t̂∗(RP) we use a linear function of features of RP, i.e., t̂∗(RP) = ŵT

∗ (RP), where
ŵ∗ is a column vector of learnable model parameters. We learn ŵ∗ by optimizing the
following optimal model:

ŵ∗ = arg min
w∗

N

∑
i=1

Lreg(ti
∗, wT

∗ (RPi)), (6)

where Lreg is a loss function, and t∗ is defined as:

tx = ((xRG − xRP) · cos θRP + (yRG − yRP) · sin θRP)/wRP,

ty = ((yRG − yRP) · cos θRP − (xRG − xRP) · sin θRP)/hRP,

tw = log(
wRG
wRP

), th = log(
hRG
hRP

),

tθ =
1

2π
· ((θRG − θRP), mod 2π).

(7)

As pointed out previously, in order to ensure the regression (i.e., the optimal model (6))
efficient, the loss function Lreg operates on the vector ∆ = t∗ − wT

∗ (RP), i.e.,
Lreg(t∗, wT

∗ (RP)) = Lsloss(∆), where Lsloss(·) is the scaled smooth L1 loss function as in
Formula (3).
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2.4.3. Classification

The total loss of the model consists of two parts. One is the location loss computed
above, the other is the classification one. The classifier is a function θ(RP) of RP, which
assigns each RP (rotated proposal) a label among the M + 1 classes. Class 0 is background,
the other M classes correspond to objects to detect. θ(RP) is an (M + 1)-dimensional
estimate of the posterior distribution over classes, i.e., for a RP, θk(RP) := P(y = k|RP),
where y is the class label, k = 0, 1, ..., M. Given N training samples (yi, RPi)i=1,...,N , we
minimize the classification loss to learn the classifier θ, i,e.,

θ̂ = arg min
θ

N

∑
i

Lcls(yi, θ(RPi)), (8)

where the classification loss function Lcls is the cross-entropy, as follows:

Lcls(y, p) = − log p, (9)

where p is the estimated probability for the class with label y.

3. Experimental Settings and Implementation Details

In this section, we briefly introduce the experimental settings, including experimental
settings, experiment platforms, datasets, evaluation metrics, and implementations.

• Experimental Platform: In order to evaluate the performance of the proposed method
comprehensively and provide baseline, a normal experimental platform is used. The
environments are Intel i7-9750, memory 20 GB, a single NVIDIA Tesla V100 GPU with
16 GB of memory, along with the PyTorch 1.1.0 and Python 3.7.

• Datasets: The DOTA [38] dataset is a public open-access dataset for object detection
in aerial images at large scales. It provides two kinds of annotations for oriented
and horizontal bounding boxes, respectively. The aerial images of DOTA are col-
lected from Google Earth and satellites, including Julang-1(JL-1) and GF-2. DOTA
contains 2806 aerial images. It consists of a training set (1411 images), validation
set (458 images), and testing set (937 images). The sizes of the images change from
800 × 800 pixels to 4000 × 4000 pixels. There are 188,282 instances including plane
(PL), basketball diamond (BD), bridge (BR), ground field track (GFT), small vehicle
(SV), large vehicle (LV), ship (SH), tennis court (TC), basketball court (BC), storage
tank (ST), soccer ball field (SBF), roundabout (RA), harbor (HA), swimming pool (SP),
and helicopter (HC), 15 categories in total.

DOTA is now one of the largest and most widely used high-resolution aerial remote
sensing datasets. The instances in DOTA change greatly in scale, orientation, and aspect
ratio; small objects are usually oriented and densely packed. Hence, the DOTA has the
characteristics of diverse categories, scales, and sensor sources. Therefore, it is a very
difficult and challenging task to detect objects in this dataset.

We used the training set and validation set with annotations for training and the online
testing set for testing (since the annotations of testing set were undisclosed).

The HRSC2016 dataset is a publicly available dataset for object detection in aerial
images, proposed by [67]. It contains 1070 images collected from Google Earth, featur-
ing over 20 types of ships with various scales, positions, rotations, and appearances.
The dataset also provides labels of rotated bounding boxes. The image sizes in the
dataset range from 300 × 300 to 1500 × 900. The training, validation, and testing sets
contain 443 images with 1207 samples, 183 images with 544 samples, and 444 images with
1071 samples, respectively.

Compared with DOTA dataset, the HRSC2016 dataset consists of a single object
category—the ship. Nevertheless, since the instances of HRSC2016 in the rotation, scale,
location, shape, and appearance have change a lot, it is also difficult and challenging to
detect the objects in this dataset.
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During the training, we only adopted horizontal flipping (as with a DOTA dataset) for
data augmentation. The images were cropped into sub-images of 800 × 800 pixels.

• Evaluation Metrics: In object detection, precision and recall are commonly used to
evaluate the effectiveness of a method in addition to mean average precision (mAP).
We also adopted precision and recall to comprehensively evaluate the effectiveness
of the proposed method. Precision is an indicator that represents the percentage of
detected objects that are ’ground-truth’. The recall reflects the ratio with which all true
samples can be rightly detected. More precisely, the precision and recall are calculated
as follows:

precision =
TP

TP + FP
, (10)

recall =
TP

TP + FN
, (11)

where TP is the number of targets the model predicts correctly, FP denotes the number
of targets predicted incorrectly, FN is the number of targets predicted incorrectly with
the true label. With precision and recall, the AP can be defined by

AP(u) =
∫ 1

0
p(ru)dru, (12)

where u represents class u, ru is the recall for class u, p(ru) denotes the precision
corresponding to the recall ru ∈ [0, 1]. mAP is the average of classes ′ AP, which is
an indicator reflecting the comprehensive performance. The calculation for mAP is
as follows:

mAP =
1
N

N

∑
u=1

AP(u), (13)

where N represents the number of the total categories.
• Implementation: To better evaluate the performance of our method, the hyperpa-

rameters in our experiments are set to be the same. The batch size is set at 2. The
initial learning rate is 0.01. The momentum is 0.9. The weight decay is 0.0001 and
the optimization strategy is the SGD (stochastic gradient decent) algorithm [68]. The
normalization strategy is batch normalization [69]. The initial weight of the backbone
is pre-trained on the ImageNet [70] dataset.

4. Experimental Results and Analysis

On two datasets DOTA [38] and HRSC2016 [37], experiments are implemented to
demonstrate the effectiveness of the proposed method. First, we introduce the experiment
conditions. Second, on the DOTA dataset [38], we evaluate the influence of the backbone
on the performance of the proposed architecture. Third, we analyze the optimal scale
factor by experimenting on DOTA [38], and the optimal scale factor is also justified on
HRSC2016 [37]. Finally, comparisons of the proposed algorithm with other frameworks
are discussed.

4.1. Effective Experiments

We used ResNeXt as the backbone and FPN as the neck in the Faster R-CNN frame-
work, replacing the ResNet backbone used in previous methods. The ResNeXt backbone
was pre-trained on ImageNet, and the FPN allowed for information extraction from multi-
spatial features. In the RPN stage, we designed anchors with 3 different aspect ratios (0.5,
1.0, 2.0) and a single scale ratio of 12. To reduce memory requirements, we cropped the
high-resolution DOTA dataset images into a series of 1024 × 1024 patches.
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Figure 10 shows the variation of losses in the training process, which includes three
stages: the RPN stage, the RoI-Transformer stage, and the final stage.

(a) (b)

(c) (d)

Figure 10. Training losses with iterations, where loc and cls losses represent the regression loss
(i.e., location loss) and the classification loss respectively. (a) Training losses in the RPN stage.
(b) Training losses in the RoI-Transformer stage. (c) Training losses in the final predict stage. (d) The
overall total loss in training.

Figure 10d shows the blue curve, representing the overall total loss, which aggregates
all losses including both loc and cls losses of all three RPN, RoI-Transformer, and final
predict stages during training. As the iterations increase, the overall total loss rapidly
decreases and becomes almost flat with little fluctuation. This indicates that the minimizing
the overall total loss procedure is successfully completed, and the corresponding optimal
model parameters are acquired by training, making our method trainable and stable. A
similar description applies to Figure 10a–c, where the loc and cls losses correspond to RPN,
RoI-Transformer, and final predict stages, respectively, instead of the overall sense as in
Figure 10d.

Some object detection results of our method on the DOTA dataset [38] are demon-
strated in Figure 11.

As shown in Figure 11, our method can correctly detect a majority of the instances.
The recognized objects are marked by colorful and oriented rectangular boxes, and their
categories are predicted. In the test dataset, various objects are featured from various
aspects. The objects vary in size and visibility depending the distance between the objects
and the sensors. Therefore, more detailed RBBs rather than HBBs are needed to correctly
detect those targets which are small, oriented and densely packed. The proposed algorithm
can decrease the detection error caused by external environmental factors. In summary,
our method is effective in object detection, i.e., in multi-scale remote sensing imaging and
crowd-arbitrary environments.
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Figure 11. Visualization of results on the DOTA test dataset.

4.2. Comparisons and Analysis of Different Backbones

The performances with various backbones ResNet50, ResNet101, ResNeXt50, and
ResNeXt101 were evaluated by using our detector—Faster R-CNN with RoI-Transformer—
to experiment on the DOTA dataset. Table 1 shows the results of different backbones
including the AP values of 15 categories and an mAP measurement online officially. During
the experiment, we used the training and validation datasets for training, and the test
dataset for testing. The loss function for regression is set to the common smooth L1 loss
function, i.e., σ = 1.0 as in Formula (2).

Table 1. Comparison of different backbones.

Backbone PL BD BR GTF SV LV SH TC BC ST SBF RA HA SP HC mAP

ResNet50 80.66 73.15 42.70 65.44 71.73 71.23 76.18 90.31 83.25 73.41 51.02 56.97 63.78 61.93 49.37 67.41
ResNet101 80.60 77.74 44.82 67.51 72.24 71.93 75.29 90.54 84.36 74.55 50.61 61.33 65.16 66.20 55.46 69.22
ResNet101 * 80.47 75.18 42.07 67.30 72.08 71.74 67.86 90.01 78.84 68.98 48.56 61.35 63.76 68.18 55.32 67.45
ResNeXt50 87.13 74.61 45.56 70.73 72.60 72.22 75.37 90.05 84.31 75.80 49.94 61.85 66.33 65.67 54.85 69.80
ResNeXt101 80.72 76.95 44.58 70.35 72.55 73.23 75.66 90.54 80.83 75.67 49.53 59.38 65.86 66.59 51.64 68.94
ResNeXt101 * 80.27 76.19 44.37 67.18 72.56 72.68 67.99 90.39 81.21 75.59 45.27 59.75 64.81 66.91 51.79 67.81

* stands for being trained by 24 epochs.
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Compared with ResNet50 and ResNeXt50, ResNet101 and ResNeXt101 go deeper.
Thus, ResNet101 and ResNeXt101 are separately trained by 12 and 24 epochs, respectively.
Note that the performances of training 24 epochs are marked by the star sign. The others are
trained by 12 epochs. From Table 1, we can find that the performance of our method with
backbone ResNeXt50 is the best with a mAP of 69.8, which is consecutively higher than
others by gaps of mAPs of 2.39, 0.58, 2.35, 0.86, and 1.99, respectively. The experimental
results also suggest that a backbone with more layers does not necessarily result in a better
performance. This phenomenon is most likely due to over-fitting in training, which results
in an insufficient generalization ability in testing. At the same time, the network with
ResNeXt50 also achieves the highest APs of about half of the 15 categories, for example,
PL, BR, and so on. In the following experiments, the backbone in our detector is set
as ResNeXt50.

4.3. Analysis of Performance under Different Scale Factors

As pointed out in Section 2.4.2, we suggest using the scaled smooth L1 loss function
in regression instead of the common smooth L1 loss function. We now focus on the
investigation of the impact of the scale factor σ on the performance of our algorithm, and,
consequently, look for the optimal scale factor on the DOTA [38] dataset. Table 2 shows
the performances under different values of the scale factor σ, where we take our detector
Faster R-CNN-ReXt with RoI-Transformer as the baseline and ResNeXt50 as the backbone,
and set IoU = 0.5 in testing. Meanwhile, we use the training and validation datasets for
training, and the testing dataset for testing.

Table 2. Performances under different scale factors σ.

σ PL BD BR GTF SV LV SH TC BC ST SBF RA HA SP HC mAP

0.5 81.34 74.69 43.78 63.78 71.95 72.08 75.29 89.70 85.30 74.21 49.39 59.21 65.53 58.58 52.07 67.79
1.0 87.13 74.61 45.56 70.73 72.60 72.22 75.37 90.05 84.31 75.80 49.94 61.85 66.33 65.67 54.85 69.80
1.5 86.47 78.73 45.19 70.01 72.12 72.46 68.62 90.37 84.77 76.03 54.76 60.28 66.09 68.66 58.57 70.21
2.0 87.32 80.15 45.93 68.98 72.46 72.68 76.02 90.60 84.61 75.82 53.34 62.24 65.84 68.82 57.52 70.82
2.5 86.81 76.10 46.35 70.18 72.76 72.60 75.61 90.71 84.58 74.38 49.03 61.22 65.94 68.65 58.46 70.23
3.0 87.26 76.32 45.53 69.90 71.95 73.21 69.01 90.74 82.77 76.21 49.29 62.20 66.11 68.84 57.35 69.78

From Table 2, we can see that under the case of IoU = 0.5, the optimal value of the
scale factor σ is 2 in the sense of best effectiveness. When σ is set to be 2, we achieve a mAP
of 70.82, which outperforms the other cases of σ = 0.5, 1.0, 1.5, 2.5, and 3, respectively, by
gaps of 3.03, 1.02, 0.61, 0.59, and 1.04, respectively.

Figure 12 shows the visualization of object detection with different scale factors σ. The
left, middle, and right columns correspond to σ values of 1.0, 2.0, and 3.0, respectively. The
detection results in the middle and right columns are more effective than those in the left
column. For instance, in Figure 12a (σ = 1.0), the rotated bounding boxes do not fit the
objects very well. In contrast, in Figure 12a (σ = 2.0) and (σ = 3.0), the rotated bounding
boxes fit the objects better. Similar observations are applicable to the detection results
displayed in Figure 12c. For the detection results shown in the middle row (i.e., Figure 12b),
we can see that more small objects are successfully detected with σ = 2.0 and 3.0, while
some small objects cannot be detected with σ = 1.0.

In summary, from the visualization of detection results, we can also demonstrate that
the optimal scale factor for the best effectiveness should be 2.0, which is in accordance with
the quantitative evaluation of the performance shown in Table 2. These visualizations also
indicate that the effect of the scale factor σ is large for aerial image object detection, and
that a larger scale factor than 1.0 can result in better detection performance. The reason
leading to the above phenomenon is mainly due to the fact that small, oriented, and densely
packed objects usually appear in aerial images, which could cause a large variance in the
regression error during the bounding box regression stage.
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(a) σ = 1.0 (a) σ = 2.0 (a) σ = 3.0

(b) σ = 1.0 (b) σ = 2.0 (b) σ = 3.0

(c) σ = 1.0 (c) σ = 2.0 (c) σ = 3.0

Figure 12. Visualization of the results under different scale factors.

4.4. Comparisons and Analysis of Different Frameworks

In order to show the effectiveness of our model, we also compare the performances of
our algorithm with other popular networks. The networks we chose were Faster R-CNN
trained with OBBs [38], RRPN [40], R2CNN [71], and the RoI-Transformer [51]. The results
on the DOTA dataset are shown in Table 3.

Table 3. Comparisons of different detection methods.

Method PL BD BR GIF SV LV SH TC BC ST SBF RA HA SP HC mAP

FR-O [38] 79.42 77.13 17.7 64.05 35.3 38.02 37.16 89.41 69.64 59.28 50.30 52.91 47.89 47.40 46.30 54.33
RRPN [40] 80.94 65.75 35.34 67.44 59.92 50.91 55.81 90.67 66.92 72.39 55.06 52.23 55.14 53.35 48.22 61.01
R2CNN [71] 88.52 71.20 31.66 59.30 51.85 56.19 57.25 90.81 72.84 67.38 56.69 52.84 53.08 51.94 53.58 60.67
RoI-Trans * [51] 88.64 78.52 43.44 75.92 68.81 73.68 83.59 90.74 77.27 81.46 58.39 53.54 62.83 58.93 47.67 69.56
Ours 87.32 80.15 45.93 68.98 72.46 72.68 76.02 90.60 84.61 75.82 53.34 62.24 65.84 68.82 57.52 70.82

* means multi-scale testing.

Table 3 compares the performance of our proposed method with other state-of-the-art
methods on DOTA dataset. FR-O [38] is a classic two-stage framework, while RRPN [40]
and R2CNN [71] were originally designed for text scene detection. The results in Table 3 are
the versions re-implemented by a third-party [51]. RoI-Transformer is a method specifically
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designed for remote sensing object detection. Our proposed method achieves an mAP of
70.82, which outperforms FR-O, RRPN, R2CNN, and RoI-Transformer by an average of
16.49, 9.81, 10.15, and 1.26, respectively. Note that RoI-Trains * uses multi-scale testing,
whereas our model does not adopt a multi-scale strategy because the emphasis of this paper
is to study the effect of the scale factor σ on the performance, and to look for the optimal
scale factor σ. Our proposed method achieves a higher mAP than RoI-Trans, demonstrating
its comprehensive effectiveness.

4.5. The Validation Experiments on Other Datasets

In order to further verify the effectiveness of our method, we also implement experi-
ments on the HRSC2016 dataset. The results are shown in Table 4 including recall, precision,
and mAP of the ship.

Table 4. Results of the HRSC2016 dataset.

Scale Factor σ mAP Precision Recall

1.0 85.3 55.75 90.48
2.0 87.1 65.17 91.66
3.0 86.5 65.03 90.48

From Table 4, we can see that the effect of the scale factor σ on the performance of our
method experimented on the HRSC2016 dataset is in line with that experimented on the
DOTA dataset. Precisely, the precision increases in general when the scale factor σ becomes
larger, while the recall varies slowly. As a result, when the scale factor σ is equal to 2.0, we
achieve the highest mAP of 87.1.

Table 5 shows the comparisons of our method with some classical methods on the
HRSC2016 dataset.

Table 5. Comparisons with other classical methods on HRSC2016.

method RC2 [47] R2PN [41] RRD [72] RoI-Trans
[51] Ours

mAP 75.7 79.6 84.3 86.2 87.1

As shown in Table 5, our method with scale factor σ 2.0 has the highest mAP of 87.1,
which has improvements of 11.4, 7.5, 2.8, and 0.9 compared with RC2, R2PN, RRD, and
RoI-Transformer, respectively. Some visualizations of the results of our algorithm on the
HRSC2016 test dataset are displayed in Figure 13.

Figure 13. Visualization of results on the HRSC2016 test dataset.
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4.6. Discussion

While our experiments and analysis demonstrate the effectiveness of our model, there
are still limitations that are worth discussing, as follows:

(I) As described in Section 2.4.1, the scale factor σ is pre-specified, and it corresponds
to the whole collection of images from the source dataset. The experimental results
on the DOTA show that the best value for the scale factor σ is about 2.0 from the
perspective of the overall indicator mAP. However, there are still two issues worth
mentioning. First, from the experimental results, when the scale factor σ takes the
value between 2.0 and 3.0, our method performs better than the others in comparison.
This suggests that the best value for the scale factor could be an interval [2.0, 3.0]. In
return, our model is robust with respect to the scale factor, which ensures our model
has a good generalization ability to other datasets. Second, the present scale factor
is pre-specified (i.e., experimentally set). Hence, from both theoretical and practical
viewpoints, a self-adaptive (i.e., automatic) way of the scale factor setting is expected.

(II) Although the proposed method performs better overall (i.e., according to the indicator
mAP), it did not perform better in all of these object categories on DOTA, see Table 3.
About this issue, we suppose that it is most likely related to what scope the scale
factor σ corresponds to. As pointed in the above item (I), the present σ corresponds
to the whole collection of all images, regardless of the differences between different
categories of objects. At this point, it is also worth exploring a category-based self-
adaptive approach to determine σ.

(III) As we can see from Tables 3 and 5, the improvement of the mAP in our method is
at least 0.9 and at most 1.4 on HRSC2016, which is lower than that of at least 1.26
and at most 16.49 on DOTA. Notice that the object in the HRSC2016 dataset belongs
to the single category (ship), although the objects have different sizes, aspect ratios,
and orientations. Therefore, we suppose that this issue is most likely related to the
uniformity of the categories of objects to some extent.

(IV) Since the main focus of this paper is to explore the potential impact of the variance
in the detection error on the performance of detection, we temporarily chose Faster
R-CNN as our baseline, which is a classic detector in two-stage detectors. The results
show that the scale factor has a significant impact on the detection performance, and
the best scale factor is experimentally about 2.0 rather than 1.0, as in the common
smooth L1 loss function. However, we have not yet explored a similar investigation
under other baselines adopted in two-stage approaches. Moreover, one might consider
similar explorations in one-stage approaches, e.g., YOLO.

5. Conclusions

In this paper, we propose a new two-stage detector for aerial image detection, called
Faster R-CNN-NeXt with RoI-Transformer, which is based on the proposed scaled smooth
L1 loss function. In our method, by introducing the notion of scale factor, we proposed a
new scaled smooth L1 loss function, which was employed in the bounding box regression.
In order to improve the performance, we also paid attention to the issue of searching for
the optimal scale factor. Moreover, to deal with the complicated orientations of objects,
we incorporated the RoI-Transformer module into our network in order to acquire well-
oriented object detection. In addition, we used ResNeXt50(32 × 4) as our backbone instead
of ResNet50 as in the standard Faster R-CNN.

To test the effectiveness of the proposed model, we first tested our model with different
backbones on DOTA. The overall indicator mAP shows the advantage of ResNeXt. Then,
we tested the performance for different values of the scale factor in the scaled smooth L1 loss
function. We tested the effectiveness on two datasets, DOTA and HRSC2016. The results
specifically show that the scale factor in the scaled smooth L1 loss function can affect the
performance; the optimal scale factor is about 2.0 for our method, rather than the commonly
used 1.0 as in the common smooth L1 loss function. Regarding DOTA, our method achieves
70.82 mAP with an improvement of at least 1.26 and at most 16.49 compared with FR-O,
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RPN, R2CNN, and RoI-Transformer methods. Meanwhile, with HRSC2016, our method
achieves 87.1 mAP with an improvement of at least 0.9, and at most 1.4 compared with
RC2, R2PN, RRD, and RoI-Transformer methods.

The values of the scale factor were experimentally set in our study. Further research
could focus on developing a self-adaptive way to search for the optimal scale factor. In
addition, another interesting and meaningful topic for further study could be to investigate
the impact of the scale factor on the detection performance for one-stage detectors, such
as YOLO.
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