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Abstract: Erosion-induced soil organic carbon (SOC) loss substantially affects the redistribution of
global organic carbon. The Chinese Loess Plateau, the most severely eroded region on Earth, has
experienced notable soil erosion mitigation over the last few decades, making it a hotspot for soil
erosion studies. However, the overall rate of SOC loss and spatiotemporal evolution under changing
environments remain unclear. In this study, we investigated SOC loss from 1982 to 2015 in the severely
eroded Hetong region of the Chinese Loess Plateau by combining the Revised Universal Soil Loss
Equation (RUSLE) model and the localized enrichment ratio function derived from field observations
and attributed the changes in SOC loss to climate- and human-induced vegetation changes. The
results showed that SOC loss in the Hetong region was 64.73 t·km−2·yr−1, 16.79 times higher than
the global average. Over the past 34 years, SOC loss decreased by 23.84%, with a total reduction
of more than 105.64 Tg C since the change-point year. Moreover, our study found that vegetation
changes dominated the changes in SOC loss in the Hetong region, contributing 89.67% of the total
reduction in SOC loss in the Hetong region. This study can inform carbon accounting and sustainable
catchment management in regions that have experienced large-scale ecological restoration.

Keywords: climate change; Chinese Loess Plateau; remote sensing; soil organic carbon loss; vegetation
restoration

1. Introduction

Soil is the largest organic carbon pool in terrestrial ecosystems [1–3], stored over
1550 Pg of carbon, more than twice that of the atmosphere [4]. Soil erosion is one of the most
common environmental problems worldwide [5,6], whereby soil particles, soil aggregates,
and the attached SOC are removed from their primary locations [7]. Approximately
30–100 Pg of soil is eroded globally each year [8], and the effects of SOC loss on global
carbon cycling are well recognized [9,10]. Soil erosion dominates the exports of organic
carbon from the terrestrial biosphere [11], and the limited information on soil erosion could
lead to the overestimation of regional SOC accumulation [12]. However, SOC loss induced
by soil erosion has not been adequately accounted for when estimating terrestrial carbon
sources and sinks [13].

Lateral loss of SOC is a result of changes in several environmental factors, including
climate, geomorphology, soil, and land use, which result in the lateral movement of
carbon [14,15]. For example, it was reported that lateral movement of organic carbon from
land to water in northern Europe increased annually by 1.4% 1990 to 2013 [16]. Because of
anthropogenic activity, the lateral transport of organic carbon has increased by 1.0 ± 0.5 Gt
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annually since pre-industrial times [17]. Hilton [18] reported that climate regulated the
SOC exported from the terrestrial ecosystem to the hydrosphere by controlling the runoff-
driven soil erosion processes, and that particle carbon discharge increased by 4% with a
1% increase in annual runoff. Therefore, understanding how environmental factors affect
lateral carbon movement is important for regional carbon accounting and management.

Study of spatiotemporal variations of lateral carbon movement and their responses to
environment changes were still very challenging, mainly due to the shortage of ground-
based observational data [19]. In recent decades, remote sensing has been proven to be
an excellent tool to monitor carbon processes, but lateral carbon movement could not be
directly monitored by remote sensing. However, remote sensing can provide extensive
data for a number of variables at regional scale and support ecological models [20]. Thus,
the integration of remote sensing and modelling could be a promising way to address the
challenge in investigating the lateral carbon movement at the regional scale [20].

Chinese Loess Plateau is one of the most severely eroded regions worldwide, making
the Yellow River the most sediment-laden river globally, with more than 1.6 Pg of sediment
having been delivered each year from 1919–1959 [21], contributing approximately 6% of the
global land-to-ocean sediment flux [22]. The Hetong region of the Chinese Loess Plateau is
the predominant sediment source, providing nearly 90% for the Yellow River [23]. Severe
soil erosion in the Hetong region has made it popular for global SOC loss studies because
the associated eroded soil particles contain SOC. In recent decades, the environment in
the Hetong region has changed considerably, primarily because of land surface changes
dominated by large-scale ecological restoration and global climate change [24,25]. The
notable environmental changes that have led to the alleviation of soil erosion in the Hetong
region have been recognized by many researchers [26]. However, the magnitude of SOC
loss in the Hetong region is still unclear, and temporal changes in SOC loss under notable
ecological restoration has rarely been reported. To address this deficit, the objectives of
this study were to: (1) estimate the amount of SOC eroded from the Hetong region and
investigate its spatiotemporal changes over the last three decades; and (2) quantify the
effects of vegetation and climate change to the temporal changes in SOC loss.

2. Materials and Methods
2.1. Study Area

The Hetong region, is located between the two controlling gaging stations on the Yel-
low River mainstream, Toudaoguai and Tongguan station, covering an area of 282,530 km2

in five provinces in northwestern China, Ningxia, Inner Mongolia, Shanxi, Gansu, and
Shaanxi (Figure 1). Annual precipitation in the Hetong region ranges from 300 mm in the
northwest to approximately 800 mm in the southeast, and more than half of the annual
precipitation falls with high intensity during the wet season [27,28]. The high-erosivity
rainfalls, and the low vegetation coverage had made the Hetong region one of the most
eroded regions in the world, contributing nearly 90% of the total sediment load in the
Yellow River mainstream. During the past decades, a large number of ecological restoration
programs had been implemented in the Hetong region, making it the most successful
ecological restoration area in China. In this study, we divided the whole Hetong region
into six sub-regions referring to the ecological regionalization study by Yang et al. [29],
including the sand sub-region (SD), two loess hilly gully sub-regions (HG1 and HG1), two
loess tableland sub-regions (TL1 and TL2), and the floodplain sub-region (FP) (Figure 1).
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2.2. Method
2.2.1. Soil Erosion Estimation

In this study, the Revised Universal Soil Loss Equation (RUSLE), having been previ-
ously validated and widely used on the Chinese Loess Plateau [30], has been adopted for
estimating soil erosion over the past 34 years. Rainfall erosivity was estimated using the
rainfall erosivity model proposed by Xie [31], and the gridded daily precipitation dataset
(CRU TS v4.02) was used to generate the spatially distributed rainfall erosivity factor (R).
However, the gridded dataset should be adjusted when estimating annual rainfall erosivity
due to the differences between gridded data and gauge data [32]. Thus, the correction
method for calculating the R-factor proposed by Wang et al. [33] was used in this study. Soil
erodibility factor (K), was calculated by the erosion/productivity impact calculator (EPIC)
model based on the soil texture provided by the global gridded soil information dataset
World Soil Information Service (WoSIS) [34]. Slope length and steepness factor, LS, was
calculated using the elevation data extracted from the Global Land One km Base Elevation
Project. Land use map extracted from the China’s multi-period land use and land cover
remote sensing monitoring data set (CNLUCC) [35] was used to calculate the conservation
support practice factor, P [36]. The most sensitive factor influencing soil erosion, vegetation
cover factor (C), was calculated using the fraction of vegetation coverage (FVC) derived
from satellite-based NDVI [36].

2.2.2. SOC Loss Estimation

The SOC loss (ESOC) can be estimated as follows:

ESOC =
Esoil × Concsed

1000
(1)

where ESOC is the estimated SOC loss intensity, t·km−2·yr−1, Esoil is the estimated soil
erosion per unit area, t·km−2·yr−1, and Concsed is the concentration of SOC in the sediment,
g·kg−1.
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The SOC concentration in the sediment is higher than that in the topsoil because of
the preferential transport of SOC during the selective process of soil particles [37,38]. Thus,
the concentration of SOC in the eroded soil is the combined result of the SOC concentration
of the topsoil and the enrichment processes during soil erosion, which can be calculated as
follows:

Concsed = ER× Concsoil (2)

where Concsoil is the concentration of SOC in the topsoil, g·kg−1, and ER is the dimen-
sionless enrichment ratio. In this study, the Concsoil was derived from the global gridded
soil information dataset World Soil Information Service (WoSIS) SOC [34], which has been
widely adopted. We assessed the gridded SOC dataset by comparing WoSIS SOC with 805
in situ observations derived from an open access database [39] (Figure 2). The estimated
SOC generally matched well with the observations, and most of the estimation–observation
points were around the 1:1 line, with |P-bias| ≤ 18.7% and R2 ≥ 0.58, indicating that SOC
derived from the WoSIS dataset can be used for further study.
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dataset and in situ observations.

The ratio of SOC concentration in the eroded soil to that in the topsoil is ER, reflecting
the fact that SOC in the topsoil is preferentially eroded. Many studies have reported that
the ER is closely related to the soil erosion intensity (Esoil) [40,41], and the power function
between the soil erosion intensity and the ER value is the most widely used formula, which
can be expressed as:

ER = a× Esoil
b (3)

where a and b are the dimensionless parameters. The two parameters in the ER calculation
are usually considered constant because of the limited observations, such as the default
values of ER calculation methods in the SWAT and CREAMS models. In this study, we
collected SOC loss and corresponding SOC quantity observations in the Hetong region
under different land surface conditions ascribed by Jia [42], Deng [43], and Li [44], covering
three different land use types, namely, cropland, grassland, and forest, and nine slope
ranges between 4◦ and 30◦. Thus, ER in this study was estimated as follows:

ER = 14.68× Esoil
−0.267 (4)

2.3. Attributing the Change in SOC Loss and Statistical Analysis

Because it is relatively simple, highly visual, and practical, the widely used double-
mass curve (DMC) method was applied to separate the influence of climate change and
human activities on changes in SOC loss [45]. In this study, the DMC method was applied
to each grid to determine the influence of both climate- and human-induced vegetation
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changes (Appendix A.1). The nonparametric median-cased linear model proposed by
Sen [46] was adopted to estimate the change trend (Appendix A.2), and the nonparametric
method developed by Pettitt [47] was used to detect the change-point (Appendix A.3).

3. Results
3.1. The Spatial Patterns of SOC Loss

As shown in Figure 3a, mean annual SOC loss ranged from 0.68 to 344.34 t·km−2·yr−1,
with an average value of 64.73 t·km−2·yr−1 for the entire region. On average, approximately
18.29 Tg C is eroded from the Hetong region annually, but there is high inter-annual
variation, which ranges from 10.16 to 28.33 Tg C·yr−1. Figure 3b shows a comparison of
the intensity of SOC loss in different sub-regions. Statistical analysis showed that there
were significant differences in SOC loss intensity between the six sub-regions (i.e., TL1,
TL2, HG1, HG2, SD, and FP). The mean annual SOC loss intensity for the six sub-regions
was 116.60, 55.93, 66.26, 67.35, 16.85, and 57.44 t·km−2·yr−1, respectively, with the most
severe SOC loss taking place in the TL1 region.
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3.2. Temporal Changes in the SOC Loss

Temporal trends of SOC loss in the Hetong region and the six sub-regions are presented
in Figure 4a. The Sen’s slope test showed that SOC loss in the entire Hetong region and the
six sub-regions decreased significantly, with the most notable decrease observed in the TL1
sub-region (Table 1). The Pettit test showed that in the Hetong region there was at least one
sudden decrease in SOC loss between 1982 and 2015, and the observed change-point year
for the entire Hetong region was 1996, but different change-point years were observed for
all the sub-regions (Table 1). Figure 4b shows the mean annual SOC loss before and after
the change-point years for the Hetong and six sub-regions, respectively. Statistical analysis
showed that SOC loss in the entire Hetong region decreased by 23.84% before and after
the change-point year (1996), with the change percentages ranging from 19.96% to 31.25%
between the sub-regions (Table 1).
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SOC loss before and after the change-point year. HT, TL1, TL2, HG1, HG2, SD, and FP represent
the Hetong region, and the six sub-regions, namely, two loess tableland sub-regions (TL1 and TL2),
two loess hilly gully sub-regions (HG1 and HG1), sand sub-region (SD), and floodplain sub-region
(FP), respectively. Black points in sub-figure (a) with different outline colors denotes the change-point
year for the Hetong region and each sub-regions, respectively, and the ‘Pre’ and ‘Post’ in sub-figure
(b) denotes the period before and after the change-point year.

Table 1. Temporal changes in SOC loss intensity in the Hetong region and the six sub-regions.

Regions
Pettit Test Sen’s Test

Change-Point Year p-Value Change Percentage (%) Sen Slope p-Value

Hetong 1996 <0.01 −23.85 −0.94 <0.01
TL1 2003 0.03 −19.97 −1.38 <0.01
TL2 2003 0.02 −22.76 −0.68 <0.01
HG1 1996 0.02 −26.87 −0.82 <0.01
HG2 1996 <0.01 −26.20 −1.09 <0.01
SD 1995 0.13 −21.28 −0.21 0.02
FP 1996 <0.01 −31.26 −0.99 <0.01

We further investigated the temporal changes in SOC loss at the grid scale. As shown
in Figure 5a, a decreased trend of SOC loss intensity was observed in 84.85% of the entire
Hetong region. Statistical analysis showed that SOC loss intensity decreased significantly
(p < 0.05) in 50.70% of the entire region, with an additional 4.63% decrease at a significance
level of 0.1. At the same time, SOC loss increased in 14.61% of the entire Hetong region,
but only 8.22% increased at a significance level of 0.05. The spatial variations in the change
rate of SOC loss are shown in Figure 5a. It was found that regions experiencing increased
SOC loss were mainly concentrated in the Fen-wei flood plain (sub-region FP) and the
northwestern part of sub-region TL2, which is the source region of the Jing River. Change-
point analysis showed that there was at least one change-point of SOC loss for 55.80% of
the entire Hetong region; meanwhile, 9.7% of the region experienced an abrupt decrease at
a significance level of 0.1. As shown in Figure 5c, the change-point years of SOC loss in
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the Hetong region also showed large spatial variation, and the change-point years in HG1,
HG2, and SD were approximately six to eight years earlier than in other sub-regions.
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Changes in SOC loss before and after the change-point year were quantitatively
estimated. As shown in Figure 6a, more than 84.86% of the Hetong region has experienced
a reduction in SOC loss since the observed change-point year, with the mean annual SOC
loss reduced by 24.45 t·km−2·yr−1. At the same time, an increase in SOC loss was detected
for the remaining 14.62% of the Hetong region, with a mean annual SOC loss increase
of 16.64 t·km−2·yr−1. The relative change in the intensity of SOC loss before and after
the change-point year is shown in Figure 6b. Statistical analysis showed that the relative
change in SOC loss ranged from −98.74% to 169.75%, with a mean value of −18.44%
and a median value of −25.73%. Overall, 84.86% of the Hetong region had experienced
a reduction in SOC loss, resulting in a total reduction of 118.34 Tg C. At the same time,
SOC loss increased in the remaining 14.62% of the Hetong region, with a total amount
of 12.70 Tg C. In summary, the SOC loss for the majority of the Hetong region decreased
markedly, with a net reduction of 105.64 Tg C.
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3.3. Impacts of Precipitation and Vegetation Changes on SOC Loss

Using the DMC method, we quantified the effects of climate and anthropogenic
vegetation changes on SOC loss at the grid scale. As shown in Figure 7a,b, the effects
of vegetation changes on reduction in SOC loss were higher than those of precipitation.
Vegetation changes were the main contributor for 78.01% of reduced SOC loss regions (with
a contribution exceeding 50%); meanwhile, vegetation changes dominated the reduction in
SOC loss in 63.98% of SOC loss-reduced regions (contributing more than 75% of the total
reduction). In addition, it is worth noting that climate change caused an increase in SOC
loss in 48.40% of SOC loss-reduced regions, primarily in the south and east of the Hetong
region (i.e., sub-regions TL2, FP, and southern HG2), indicating that vegetation changes
had offset the negative effects of precipitation on SOC loss, and resulted in a net reduction
in SOC loss.
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in regions experienced decreasing SOC loss.

As shown in Figure 8a,b, SOC loss increased in 14.62% of the Hetong region, and
regions experiencing increased SOC loss were distributed almost uniformly throughout the
entire region. Statistical analysis showed that vegetation changes contributed positively to
84.79% of the SOC loss increased regions, with a mean and median contribution of 84.82%
and 97.19%, respectively. Meanwhile, precipitation contributed positively to 55.90% of
the SOC loss increased regions. The contributions of vegetation changes were also much
higher than those of precipitation for regions experiencing increased SOC loss, particularly
in sub-regions HG1 and northern HG2, where precipitation resulted in a reduction in SOC
loss.
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Over the 34-year period, vegetation changes reduced the SOC loss by 106.12 Tg,
comprising 89.67% of the total SOC loss reduction in the Hetong region. At the same time,
vegetation changes had also increased the SOC loss by 11.31 Tg, comprising 89.04% of the
total SOC loss increase in the Hetong region. Thus, it can be concluded that vegetation
changes dominate change in SOC loss in the Hetong region for regions experiencing
increased or decreased SOC loss.

4. Discussion
4.1. Role of Lateral SOC Loss in Carbon Cycle in the Hetong Region

The potential impacts of the lateral moved carbon on regional carbon cycling has been
well recognized. This study estimated SOC loss in the Hetong region over the past 34 years,
and the results highlighted the effects of the lateral moved carbon on carbon balance in this
most seriously eroded region. Our estimation showed that soil erosion had an induced
SOC loss of 18.29 Tg carbon annually, taking almost 4.20% of the total carbon storage in
the top 5 cm soil. The Hetong region was also one of the hotspots for global lateral carbon
movement study because of its high SOC loss intensity. Mean annual eroded SOC for the
whole Hetong region was 64.73 t·km−2·yr−1, almost 3.45 times higher than that of the
whole China [48], and 16.79 times higher than the global average value [49]. The estimation
results were also comparable to previous studies. Yue et al. [48] simulated the SOC loss in
the whole of China, and reported that the annual SOC removal rate on the Loess Plateau
was about 75 t·km−2. Zeng et al. [50] estimated the SOC loss intensity using the sediment
deposited before the check dam in a small watershed with a controlling area of 187 km2, and
their observation showed that the SOC loss intensity was about 77 t·km−2·yr−1. Therefore,
serious soil erosion made the Hetong region the hotspot for later SOC loss study. Eroded
organic carbon migrates horizontally across landscapes, deposited along slopes [51,52],
and transported through terrestrial water bodies [53,54]. However, the fate of eroded
carbon is more complicated and more debatable in the Hetong region than other regions
globally, because this region had experience both serious soil erosion and remarkable soil
conservation simultaneously. On the one hand, eroded carbon induced by serious soil
erosion was the dominant carbon sources for aquatic ecosystems, determining greenhouse
gas emissions from water bodies [19,55]. On the other hand, the eroded soil, as well as the
attached carbon, were deposited and stored in the large number of engineering structures
(e.g., terraces and check dams) constructed along slopes and gullies [56]. The modelling
framework proposed in this study provided a valuable tool to estimate lateral SOC loss,
and it can be further extended to investigate the fate of eroded carbon at multi-scales in the
Hetong region.
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4.2. Implications and Uncertainties

The assessments showed that results in this study were reasonable; however, the
estimation processes were still incomplete, and there were considerable uncertainties that
should be further reduced in future studies. Accurate estimation of soil erosion is necessary,
but it is impossible to validate the RUSLE model directly because observation of soil
erosion at the regional scale was not available. In this study, estimated soil erosion was
validated using observed sediment load in five independent watersheds (the Wei, Jing,
Beiluo, Yan, and Qingjian) and the whole Hetong region. Validation results showed that
estimated soil erosion matched the observed sediment load well (Figure 9), with the R2

higher than 0.70 and the Nash Coefficient higher than 0.59, indicating a reliable estimation
of soil erosion. In this study, the SOC loss in the Hetong region was estimated dynamically,
implying the needs of dynamic inputs of soil erosion, SOC content, and ER. Soil erosion
was estimated annually using the dynamic cover management factor derived from derived
from satellite observations, and the improved and regionalized calculation method also
provided dynamic ER for the modelling of SOC loss. However, gridded dataset of SOC
content used in this study could only reflect the spatially variations. Errors associated
with ER estimation also represent a significant uncertainty in SOC loss simulation [57]. In
this study, the ER function was localized by calibrating the two parameters using field
observations from different land use types and different slope gradients on the dominant
loess soil, which could improve the accuracy of the results. However, it is worth noting that
soil types greatly influenced the enrichment and transport of carbon during soil erosion,
indicating different parameters for the ER function [58]. Moreover, it was well recognized
that ecological restoration measures, especially the reforestation and grass-planting, greatly
changed SOC content [59,60] as well as the enrichment processes of SOC [61]. Therefore,
the ignorance of human-dominant ecological restoration on ER would bring considerable
uncertainties to the estimation results. Thus, the ER function could be further calibrated to
improve the modelling accuracy.
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watersheds and the Hetong Region.

5. Conclusions

In this study, we investigated SOC loss and its spatiotemporal variations in the severely
eroded Hetong region between 1982 and 2015 and quantified the contributions of climate
and anthropogenic vegetation changes on the temporal changes in loss of SOC. The Hetong
region has experienced a severe loss of SOC as a result of soil erosion, with an erosion
intensity of 64.73 t·km−2·yr−1, and with approximately 18.29 Tg SOC being removed.
Temporal analysis showed that the loss of SOC decreased by 23.84% over the last 34 years,
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with a net reduction of 105.64 Tg C since the observed change-point year. Approximately
84.86% of the Hetong region experienced a reduction in SOC loss, with a total reduction of
118.34 Tg C, meanwhile, SOC loss increased in the remaining 14.62%, with a total amount
of 12.70 Tg C. Attribute analysis demonstrated that vegetation changes were the primary
contributor to the changes in SOC loss, contributing to 89.67% of the total reduction in
loss of SOC and 89.04% to the increase in loss of SOC in the Hetong region. Our results
suggest that anthropogenic vegetation changes changed SOC loss in the Hetong region
considerably, which is informative and valuable for carbon management in regions that
have experienced substantial ecological restoration.
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Appendix A

Appendix A.1. Double-Mass Curve (DMC) Method

The relation between the cumulative SOC loss and cumulative precipitation in the
reference period is calculated by:

∑ ESOC(t) = k∑ P(t) + b (A1)

where k and b are two coefficients. Equation (A1) is used to predict the SOC loss in the
modified period. Precipitation, the climate factor, is the same for both the predicted and
observed SOC loss.

We assume that SOC loss variation in each grid is caused by revegetation and precipi-
tation changes. Once accumulated annual SOC loss deviation attributed to precipitation
changes (∆∑ ESOC,v(t)) was estimated, the deviation resulting from revegetation can then
be computed by the following equation:

∆∑ ESOC,v(t) = ∆∑ ESOC(t)− ∆∑ ESOC,p(t) (A2)

where ∆∑ ESOC,p(t) and ∆∑ ESOC(t) represent accumulated annual SOC loss deviation
attributed to revegetation and total accumulated annual SOC loss deviation for the t-th
year, respectively.

Appendix A.2. Sen’s Slope Method

Sen’s slope computes both the slope and confidence levels according to Sen’s method.
First, a set of linear slopes is calculated as follows:

dk =
xj − xi

j− i
(A3)
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for (1 ≤ i < j ≤ n), where d is the slope, x denotes the variable, n is the number of data, and
i, j are indices. Sen’s slope is then calculated as the median from all slopes.

Appendix A.3. Pettitt’s Test

The test is implemented as given by Verstraeten et al. (2006), where the ranks r1, r2, . . . ,
rn of the X1, X2, . . . , Xn are used for the statistic:

Uk = 2∑k
i=1 ri − k(n + 1) k = 1, 2, . . . , n (A4)

The test statistic is the maximum of the absolute value of the vector:

Û = max|Uk| (A5)
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