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Abstract: The accurate estimation of urban extreme precipitation is essential for urban design and
risk management, which is hard for developing countries, due to the fast urbanization and sparse
rain gauges. Satellite precipitation products (SPPs) have emerged as a promising solution. Not
only near real-time SPPs can provide critical information for decision making, but post-processed
SPPs can also offer essential information for climate change adaption, risk management strategy
development, and related fields. However, their ability in urban extreme precipitation estimation
has not been examined in detail. This study presents a comprehensive evaluation of four recent
SPPs that are post-processed, including IMERG, GSMaP_Gauge, MSWEP, and CMFD, for their
ability to capture urban extreme precipitation in mainland China at the national, city, and inner-city
scales. The performance of the four SPPs was assessed using daily observations from the 821 urban
gauges from 2001 to 2018. The assessment includes: (1) the extreme precipitation estimates from the
four SPPs in the total urbanized areas of mainland China were evaluated using correlation coeffi-
cients (CC), absolute deviation (AD), relative deviation (RB), and five extreme precipitation indices;
(2) The extreme precipitation estimates over 21 Chinese major cities were assessed with the two most
important extreme indices, namely the 99th percentile of daily precipitation on wet days (R99) and
total precipitation when daily precipitation exceeding R99 (R99TOT); and (3) Bivariate Moran’s I
(BMI) was adopted to assess the inner-city spatial correlation of R99 and R99TOT between SPPs
and gauge observations in four major cities with most gauges. The results indicate that MSWEP
has the highest CC of 0.79 and the lowest AD of 1.61 mm at the national scale. However, it tends to
underestimate urban precipitation, with an RB of −8.5%. GSMaP_Gauge and IMERG performed
better in estimating extreme values, with close extreme indices with gauge observations. According
to the 21 major cities, GSMaP_Gauge also shows high accuracy in estimating R99 and R99TOT values,
with the best RB and AD in these cities, while CMFD and MSWEP exhibit the highest CC values
for R99 and R99TOT, respectively, indicating a strong correlation between their estimates and those
obtained from gauge observations. At the inner-city scale, MSWEP shows advantages in monitoring
the spatial distribution of urban extreme precipitation in most of cities. The study firstly provided the
multiscale assessment of urban extreme precipitation by SPPs over mainland China, which is useful
for their applications.

Keywords: satellite precipitation products; The Bivariate Moran’s I; LISA cluster map; GSMaP;
IMERG; MSWEP

1. Introduction

Due to the concentration of population and wealth, urban areas are highly vulnerable
to extreme precipitation and its related disasters [1]. Some evidence also proved that the
environment of urban areas, such as the urban heat island, will exacerbate the density of
extreme precipitation [2,3]. With the climate change and fast urbanization, more and more
cities are threatened by extreme precipitation. Extreme precipitation has been one of the
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most important things threatening urban security [4,5]. Therefore, the observation of urban
extreme precipitation is critical for most of cities.

Extreme precipitation observation methods include rain gauge, weather radars, and
satellite precipitation products (SPPs) [6]. The rain gauge is the most accurate and reliable
method [7]. Rain gauges are often sparse for cities of developing countries, and the data
lengths are often limited due to the fast urbanization [8]. Weather radar has been one
important approach for urban extreme precipitation observations [9]. However, the limited
spatial coverage and uncertainty, due to the complex terrain, signal attenuation, etc., restrict
the application of weather radar datasets [10]. With their broad coverage and continuous
data availability, SPPs have been an important option for urban extreme precipitation
observation [11].

In recent years, many high spatial and temporal resolution SPPs have been developed
through the fusion of remote sensing products, reanalysis datasets, and gauge observa-
tions. Examples of these products include the Integrated Multi-Satellite Retrievals for
GPM (IMERG) [12], Global Precipitation Satellite Mapping Products (GSMaP) [13], China
Meteorological Forcing Dataset (CMFD) [14], and Multi-Source Weighted-Ensemble Precip-
itation (MSWEP) [15]. These made the applications of SPPs in urban extreme precipitation
possible, and they have been applied in cities worldwide.

Efforts have been made to evaluate the ability of SPPs on extreme rainfall estimation at
various scales, including the continental, national, and basin scales [16–23]. However, the
evaluation of urban extreme precipitation is still limited, with only a few studies conducted
on individual cities, such as Guangdong, Louisiana, and Rio de Janeiro [24–27]. Therefore,
a comprehensive evaluation of the urban extreme precipitation estimate capabilities of
each SPP is crucial for their application in urban areas and for further improvement [28].
In addition, the high spatial variability of urban underlying surfaces and the uneven
distribution of population and wealth make it crucial to accurately capture the spatial
distribution of extreme precipitation for disaster prevention and risk management [29,30].

Several studies have evaluated the performance of various SPPs in individual Chinese
cities. Ren et al. [31] assessed CMFD, CMORPH, TRMM 3B42, and TRMM 3B42-RT in
Beijing and found that CMFD had a higher correlation coefficient and lower root mean
squared difference. Li et al. [32] compared GSMaP_Gauge, TRMM 3B42, and GPCP in
Shanghai and found that GSMaP_Gauge had the highest correlation coefficient, TRMM
3B42 had the lowest RMSE, and GPCP had the highest probability of detection. Li et al. [33]
evaluated IMERG and radar QPE products in the Guangdong-Hong Kong-Macao Greater
Bay Area and found that the IMERG early run (ER) has the advantages of a short lag time
and high accuracy among the three IMERG products. Li et al. [34] compared IMERG,
MSWEP, and CMFD in Beijing and found that MSWEP had the highest correlation coeffi-
cient and lowest absolute deviation with rainfall station observations. CMFD demonstrated
the best ability to correctly detect daily precipitation events, while MSWEP and CMFD had
a higher ability to capture the spatial distribution of two extreme storm events. Previous
studies have identified IMERG, GSMaP_Gauge, CMFD, and MSWEP as SPPs with strong
capabilities to capture precipitation in individual Chinese cities. Nonetheless, a comprehen-
sive evaluation of these SPPs in Chinese urban areas, particularly for extreme precipitation,
remains insufficient.

The objective of this study is to perform a comprehensive assessment of the extreme
precipitation monitoring capabilities of four recent satellite precipitation products (SPPs),
namely IMERG, GSMaP_Gauge, MSWEP, and CMFD, in the urbanized regions of mainland
China. The daily precipitation observations from the 821 urban gauges over 18 years
(2001–2018) are used for comparison. The specific objectives can be summarized as follows:
(1) Evaluate the performance of the four SPPs on urban extreme precipitation estimation
at the total urbanized areas in mainland China; (2) Assess the ability of the four SPPs in
estimating extreme precipitation in the 21 major cities whose population exceed 5 million
using the selected extreme precipitation indicators; (3) Analyze the spatial correlation
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between extreme precipitation indices of the four SPPs and gauge observations in the four
cities with the most rain gauges using BMI.

2. Materials and Methods
2.1. Study Area

China exhibits fast urbanization process in the past 30 years. According to the National
Bureau of Statistics of China, the total urban land area in the country increased from
8000 square kilometers in 1952 to over 230,000 square kilometers in 2020. During the same
period, the number of cities with a population over 1 million grew from 68 to 235. The
urban resident population has also increased dramatically, reaching 1.39 billion in 2020,
accounting for 59.58% of the total population. Li et al. developed an automatic delineation
framework to generate a multi-temporal dataset of global urban boundaries (GUB) using
30 m global artificial impervious area (GAIA) data [35,36]. Considering the study period
(2008–2018), the GUB in 2015 is adopted to define the urban areas of the research. The
21 major cities in China whose population exceed 5 million are then analyzed in detail. The
urban areas and 21 major cities are marked in Figure 1.
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2.2. Datasets
2.2.1. Four Satellite Precipitation Products

IMERG (Integrated Multi-satellite Retrievals for GPM) is a level 3 product of the Global
Precipitation Measurement (GPM) mission. It leverages the data from multiple satellite
sensors onboard the GPM platform and these of previous missions [37]. The IMERG
algorithms take into account factors such as cloud cover, surface type, and atmospheric
conditions to ensure its accuracy. The IMERG product suite includes the near-real-time
early run and late run products, as well as the delayed final run products. In this study, the
IMERG-V06 early run precipitation dataset, with a spatial resolution of 0.1◦ and temporal
resolution of 1 day, was used.
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GSMaP (Global Satellite Mapping of Precipitation) is a precipitation product developed
by the Japan Precipitation Measurement Mission (PMM). It uses a joint passive microwave
and infrared inversion algorithm based on the Kalman filter moving vector method to
retrieve precipitation estimates [38]. The near-real-time GSMaP_NRT product, with a
latency of about 3 h after observation, has gained popularity among data users. The
GSMaP_Gauge product, obtained by correcting the GSMaP_MVK product using CPC
rainfall station data, was also used in this study, with a resolution of 0.1◦ and 1 day.

MSWEP (Multi-Source Weighted Ensemble Precipitation) is a global precipitation
dataset that incorporates global site data, multiple satellite observations, and reanalysis data.
The dataset is revised with runoff and potential evapotranspiration data and improved with
cloud top infrared temperature estimates from the pre-TRMM period. MSWEP V2, with a
relatively high spatial resolution of 0.1◦ and strong data integrity, has gained international
attention [39]. In this study, the daily precipitation dataset of MSWEP was obtained by
aggregating the precipitation observations for 3 h.

China Meteorological Forcing Dataset (CMFD) is a gridded near-surface meteorologi-
cal dataset, which are specifically for studies of land surface processes in China [14]. By
incorporating remote sensing products, reanalysis dataset, and in-situ observation data,
CMFD exhibits a period from 1979 to 2018, with a temporal resolution of 3 h and a spatial
resolution of 0.1◦. The daily CMFD is accumulated from 3 h.

2.2.2. Rain Gauge Data

We utilized daily precipitation data from 821 meteorological stations covering the
period from 2001 to 2018 as reference data to assess the accuracy of SPPs. The data was
from the China Meteorological Administration (CMA). The 821 stations are in urban areas,
as derived by the GUB. The spatial distribution of the rain gauges is shown in Figure 2.
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2.3. Methods
2.3.1. Conventional Indices

To assess the performance of four SPPs in the urban area of mainland China, we used
the point-to-pixel method to calculate the absolute deviation (AD), correlation coefficient
(CC), and relative deviation (RB) between each SPPs and rain gauges. Their calculation
methods are as follows [40,41]:

AD =
1
N ∑N

i=1|Si − Ri|, (1)

CC =
∑N

i=1
(
Si − S

)(
Ri − R

)√
∑N

i=1
(
Si − S

)2
√

∑N
i=1
(
Ri − R

)2
, (2)

RB =
∑n

i=1(Si − Ri)

∑n
i=1(Ri)

∗ 100%, (3)

where S and R are the SPPs data and the gauges data, respectively; S is the average of the
SPPs data; and R is the average of the gauge observations.

2.3.2. Extreme Precipitation Indices

Considering the characteristics of urban extreme precipitations, six widely used precip-
itation indicators, defined by the Expert Group on Climate Change Detection and Indices
(ETCCDI) [42,43], were selected in this study, including annual total precipitation (ATP),
maximum number of consecutive wet days (CWD), maximum daily precipitation amount
of the year (R1Xday), precipitation of the wettest consecutive five days of the year (R5Xday),
the 95th percentile of daily precipitation on wet days (R99), and total precipitation in wet
days (R99TOT). The six indicators and their definitions are shown in Table 1.

Table 1. Detailed information on precipitation indices.

Index Definition Units

ATP Annual total precipitation mm
CWD Maximum number of consecutive wet days days

R1Xday Maximum daily precipitation amount of the year mm
R5Xday Precipitation of the wettest consecutive five days of the year mm

R99 The 95th percentile of daily precipitation on wet days mm
R99TOT Total precipitation when daily precipitation exceeded R99 mm

2.3.3. Bivariate Moran’s I (BMI)

The Bivariate Moran’s I (BMI) [44], a widely used spatial correlation index, has high
potential for evaluating the spatial distribution characteristics [45–47]. It is an extension of
the concept of Moran’s I, which measures spatial autocorrelation in a univariate dataset.
The Bivariate Moran’s I test evaluates the relationship between two variables by identifying
their special correlations. The calculation of global BMI and local BMI can be expressed
as follows:

IB =
N ∑N

i ∑N
j 6=i WijZG

i ZS
j

(N − 1)∑N
i ∑N

j 6=i Wij
, (4)

IB
i = ZG

i ∑N
j=1 WijZS

j , (5)

where IB, IB
i refer to the global and local BMI, respectively; ZG

i and ZS
j refer to the stan-

dardized value of gauge data for the i spatial unit and the standardized value of SPPs data
for the j spatial unit, respectively; and Wij is the spatial weight between units i and j, which
was generated from the Euclidean distance weight. The values of IB, IB

i range from −1 to 1.
A positive value indicates a positive spatial correlation between the rainfall station data
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and the SPPs data, while a negative value indicates a negative spatial correlation [48]. In
this study, the statistical significance of the BMI is assessed by permutation test [49], and
the significance value of spatial correlation was set to 0.05.

The Local Moran’s I Statistic (LISA) cluster map, derived from local BMI, is a useful
tool in identifying four types of spatial correlations at the gauge-level, including high-high
(H-H), low-low (L-L), high-low (H-L), and low-high (L-H). H-H and L-L clusters indicate a
positive correlation between the rain gauge observations and SPPs in a given region, while
H-L and L-H clusters indicate a negative correlation between them.

3. Results
3.1. Performance of SPPs on Total Urban Area of Mainland China

Table 2 show the conventional indices of four SPPs in urban area of China. The
results show that MSWEP has the best performance in four SPPs, with the highest CC
of 0.79 and the lowest AD of 1.61 mm. CMFD also exhibits strong performance, with
a CC of 0.77 and an AD of 1.73 mm. GSMaP_Gauge has the lowest CC of 0.62 and the
highest AD of 2.28 mm. However, MSWEP tends to underestimate urban precipitation,
showing an RB of −8.5%. IMERG over-estimates urban precipitation, with an RB of 9%.
GSMaP_Gauge and CMFD demonstrate better performance in RB, with values of 2.3%
and 3.2%, respectively.

Table 2. The conventional indices of the SPPs in urban area of China.

Index IMERG GSMaP_Gauge MSWEP CMFD

AD (mm) 2.12 2.28 1.61 1.73
CC 0.72 0.62 0.79 0.77
RB 9.0% 2.3% −8.5% 3.2%

Figure 3 show the boxplots of the conventional indices between urban gauge observa-
tion and four SPPs. As shown in Figure 3, MSWEP also show the best performance in AD
and CC, which has not only the lowest AD median value and highest CC median value,
but also low spatial variance of two indices. In comparison, CMFD and GSMaP_Gauge
demonstrate better performance in RB, with median values close to 0. Notably, the RB
variance of CMFD is significantly lower than that of GSMaP_Gauge.

To further assess the ability of SPPs to estimate extreme urban precipitation events,
we calculated six extreme indices with gauge observations and four SPPs, as shown in
Table 3. The results indicate that MSWEP underestimates all six indices, compared to
urban gauge observations. IMERG and GSMaP_Gauge exhibit similar performances,
while GSMaP_Gauge underestimates R99TOT and performs best in CWD. In contrast,
CMFD underestimates R1Xday, R5Xday, and R99 and significantly overestimates CWD.
Overall, IMERG and GSMaP_Gauge show better performance than the other SPPs,
especially for R1Xday, R5Xday, and R99, which are significantly underestimated by
MSWEP and CMFD.

Table 3. The extreme precipitation indices of the SPPs data in urban area of China.

SPP ATP CWD R1Xday R5Xday R99 R99TOT

Gauge 941.3 8 83.6 137.3 68.3 99.7
IMERG 1002.8 12 75.9 128.5 57.4 106.2

GSMaP_Gauge 897.7 9 74.2 125.5 60.0 84.5
MSWEP 857.4 11 63.4 113.0 51.8 76.9
CMFD 961.4 17 67.6 123.3 48.2 106.5
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Figure 4 presents box plots of the extreme precipitation indices for urban gauge data
and the four SPPs. The results show that all four SPPs perform well in estimating ATP,
but underestimate R1Xday, R5Xday, R99, and overestimate CWD. They also exhibit high
variance in estimating R99TOT. Among the four SPPs, IMERG, and GSMaP_Gauge show
better performance than MSWEP and CMFD. GSMaP_Gauge shows lower variance with
higher spatial stability than IMERG.

3.2. Performance of SPPs on 21 Major Cities

The abilities of four SPPs in estimating the urban extreme precipitation of 21 major
cities are examined. Two most important indices for urban risk management, R99 and
R99TOT, are selected from the six extreme precipitation indices. Because R99 is one of the
most important criteria for extreme precipitation and R99TOT can reveal the precipitation
volume that exceed R99. AD, CC, and RB of the two indices are calculated and compared.
It is worth noting that the interpretation of AD, RB, and CC in this context differs from
that in Section 3.1, where they denote the absolute deviation, relative bias, and correlation
coefficient of R99 or R99TOT between the gauge and SPP estimations. In the case of
Shenzhen and Dongguan, where only a single rain gauge is available, it is not possible to
calculate the CC value, as there exists only one R99 or R99TOT estimate from the respective
rain gauge in each city.
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Table 4 shows the difference of R99 between the SPPs and gauge observations in
21 major cities. The results indicate that all four SPPs underestimate R99 in the selected
cities generally. GSMaP_Gauge exhibits the best performance in estimating R99 values,
with an average AD of 14.5 mm and an average RB of −13%. The highest CC value is
observed for CMFD, suggesting a high degree of correlation between its R99 estimates and
those obtained from gauge observations. Notably, the four SPPs all underestimate R99 in
these cities with a negative RB, especially for MSWEP and CMFD. It is crucial to correct
these biases before application.

Figure 5 shows AD of R99 values between SPPs data and urban gauges observations
in 21 major cities. The results show that the absolute errors in R99 for the four SPPs are
primarily concentrated in the North China Plain and the Pearl River Delta (PRD) region.
Overall, GSMaP_Gauge shows the best performance in the selected cities and particularly
outperforms the other three SPPs in the PRD region. However, it is important to note that
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GSMaP_Gauge exhibits significant absolute error in the North China Plain, which is higher
than that of MSWEP.
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Beijing 28.7 0.22 −39% 29.1 0.66 −40% 24.0 0.72 −33% 30.0 0.54 −41%
Shanghai 13.3 0.18 −17% 9.6 0.37 −12% 27.7 0.87 −35% 20.3 0.14 −26%

Guangzhou 8.6 0.43 −6% 8.0 0.88 7% 28.6 −0.20 −27% 24.6 0.87 −23%
Shenzhen 15.8 – −13% 16.2 – 13% 25.4 – −21% 29.3 – −24%
Chengdu 5.9 −0.21 −2% 10.9 0.15 −16% 10.6 −0.10 −16% 22.0 0.13 −33%

Dalian 31.5 0.92 −40% 21.8 −0.13 −27% 24.1 0.72 −30% 19.2 0.74 −24%
Harbin 6.7 −0.13 −15% 5.5 0.35 10% 13.2 0.07 −30% 12.1 −0.35 −27%

Chongqing 6.2 0.05 −2% 5.6 0.36 −1% 5.9 0.20 −7% 16.7 0.49 −27%
Dongguan 17.5 – −16% 12.1 – 11% 34.6 – −31% 43.3 – −39%

Foshan 17.0 −0.99 −17% 6.2 0.98 6% 23.6 1.00 −24% 32.5 0.88 −33%
Nanjing 23.4 0.61 −27% 26.3 0.46 −30% 27.6 0.83 −32% 27.4 0.17 −32%

Hangzhou 7.9 −0.37 −11% 1.9 0.20 1% 16.9 0.31 −24% 17.6 0.35 −25%
Jinan 19.8 0.39 −25% 30.5 −0.35 −38% 23.5 0.13 −29% 28.1 −0.03 −35%

Shenyang 16.6 0.44 −25% 14.3 −0.16 −22% 21.9 0.16 −34% 21.3 0.07 −33%
Kunming 5.9 0.24 −9% 7.6 0.31 −10% 13.4 −0.12 −25% 19.0 0.23 −35%
Qingdao 23.1 0.85 −26% 28.0 0.37 −32% 22.1 0.41 −25% 32.9 0.32 −38%
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Table 4. Cont.

City
IMERG GSMaP_Gauge MSWEP CMFD

AD CC RB AD CC RB AD CC RB AD CC RB

Wuhan 23.5 −0.22 −26% 18.2 0.11 −21% 17.8 0.13 −20% 23.3 0.52 −26%
Xian 9.4 0.52 −18% 9.5 0.86 −19% 10.8 −0.80 −21% 17.3 0.54 −34%

Tianjin 28.9 0.29 −36% 18.6 −0.39 −23% 20.8 0.05 −26% 28.5 0.06 −36%
Changsha 4.4 0.35 −6% 5.1 −0.38 7% 9.8 0.43 −14% 16.8 0.28 −23%

Zhengzhou 19.3 0.35 −29% 18.5 0.44 −28% 16.6 0.76 −25% 24.2 0.66 −37%
Average 15.9 0.19 −19% 14.5 0.24 −13% 19.9 0.27 −25% 24.1 0.32 −31%

Figure 6 presents the correlation coefficients of R99 values between SPP estimates and
those obtained from rain gauges in 21 major cities. Among the four SPPs, CMFD exhibits
the best performance, with positive correlations observed in most cities. However, there
are still several cities exhibiting a strong negative correlation in the IMERG, GSMap_Gauge,
and MSWEP. Notably, IMERG performs best in northern cities, which exhibit a significant
positive correlation. However, IMERG does not perform well in southern cities, particularly
in some coastal cities, which show a strong negative correlation.
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Figure 7 shows relative bias of R99 values between SPPs data and urban gauges
observations in 21 major cities. Overall, the relative errors of the four SPPs are more
substantial in the northern cities than in the southern cities. This difference can be partly
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attributed to the greater precipitation in the southern cities. GSMaP_Gauge shows better
performance in relative error, particularly in the southern cities, where it significantly
outperforms the other SPPs. IMERG and GSMaP_Gauge show similar spatial patterns
and perform slightly worse than GSMaP_Gauge. In contrast, MSWEP and CMFD exhibit
consistently underestimation, particularly in the northern cities, where the underestimation
is more pronounced.
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(a) IMERG, (b) GSMaP_Gauge, (c) MSWEP, and (d) CMFD.

Table 5 shows the difference of R99TOT between the SPPs data and gauge observations
in 21 major cities. The results show that GSMaP_Gauge also exhibits the best performance
in estimating R99TOT value, with an AD of 17.3 mm and RB of −13%. MSWEP exhibits
the highest CC of 0.29, indicating a strong correlation between its R99TOT estimates and
those obtained from gauge observations. IMERG and CMFD tend to overestimate R99TOT,
whereas GSMaP_Gauge and MSWEP tend to underestimate it in these cities. Analysis of
the AD and RB of R99TOT for these cities shows that MSWEP consistently underestimates
R99TOT, but the error is relatively smooth. On the other hand, CMFD and IMERG have a
higher tendency to overestimate R99TOT in some cities, with RB even exceeding 50%.

Figure 8 shows AD of R99TOT values between SPPs data and urban gauges observa-
tions in 21 major cities. The results indicate that the spatial distribution of absolute errors in
R99TOT estimation varies significantly among the four SPPs. Specifically, errors in IMERG
and CMFD are primarily concentrated in southern China, particularly in the Yangtze River
Delta (YRD) and PRD regions. In contrast, the errors in GSMaP_Gauge are mainly located
in the northern part of the country, particularly in the North China Plain. The performance
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of MSWEP is relatively smoother, with no significant spatial differences among these cities.
However, MSWEP also show a consistent underestimation across all areas.
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Table 5. Cont.

City
IMERG GSMaP_Gauge MSWEP CMFD

AD CC RB AD CC RB AD CC RB AD CC RB

Kunming 15.6 −0.82 1% 15.5 −0.22 −5% 13.2 −0.19 −11% 25.3 0.02 34%
Qingdao 7.8 0.92 −8% 29.0 0.27 −30% 23.2 0.48 −24% 12.1 −0.22 −2%
Wuhan 53.6 −0.30 48% 24.3 −0.19 −22% 10.0 0.54 −9% 54.6 −0.10 49%

Xian 9.6 0.83 17% 4.0 0.70 4% 7.9 0.19 −13% 10.7 0.84 18%
Tianjin 11.7 −0.34 −10% 15.2 −0.47 −18% 19.7 −0.03 −24% 15.6 0.28 −19%

Changsha 25.6 −0.62 19% 14.6 0.67 −11% 28.7 −0.60 −21% 6.4 −0.38 2%
Zhengzhou 8.0 0.51 4% 17.3 0.28 −24% 11.7 0.55 −15% 11.0 0.16 12%

Average 28.1 0.05 16% 17.3 0.10 −13% 21.5 0.29 −20% 24.3 0.14 14%

Figure 9 shows CC of R99TOT values between SPPs data and urban gauges observa-
tions in 21 major cities. The results indicate that the MSWEP outperforms the other three
SPPs. While the majority of cities demonstrate a positive correlation, a few cities still exhibit
a significant negative correlation. The CC values for the IMERG and CMFD generally
decrease from north to south, implying a stronger correlation between their R99TOT esti-
mates and those obtained from gauge observations in northern cities. In contrast, the
dis-tribution of negatively correlated cities in the GSMaP_Gauge is concentrated in the
eastern regions.
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Figure 10 shows the RB of the R99TOT values between SPPs data and urban gauges
observations in 21 major cities. The spatial distribution of the RB from four SPPs shows
a substantial disparity. Overall, GSMaP_Gauge shows the best performance among the
four SPPs, but it still exhibits high RB of R99TOT in some cities, such as Beijing and Jinan.
IMERG and CMFD show high spatial variability and exhibit high RB in several cities.
Specifically, in IMERG, RB is higher than 50% in Shanghai and Harbin, and in CMFD, it
exceeds 50% in Shenzhen, indicating a high risk of error in these areas. In contrast, MSWEP
exhibits a consistently underestimation of R99TOT, similar to these of R99.
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3.3. Performance of SPPs on Spatial Correlation

Four cities with most precipitation gauges, including Beijing, Shanghai, Chengdu, and
Chongqing, are selected to compare the consistency of extreme precipitation distributions
between the SPPs and gauge observations, which is important for risk management. The
global BMI of R99 and R99TOT between the SPPs and gauge observations are calculated to
explore their spatial correlation. The p-values of global BMI are also calculated to identify
if the relationships are significant. The results are listed in Table 6.



Remote Sens. 2023, 15, 1805 15 of 20

The results indicates that R99 and R99TOT obtained from MSWEP and CMFD exhibit
the best spatial correlation with gauge observations in the four cities. For R99, MSWEP
shows the best spatial correlation in Beijing and Shanghai, with BMI values of 0.33 and
0.66 and p-values of 0.003 and 0.002, respectively. CMFD performs better in Chongqing
and Chengdu, with BMI values of 0.33 and 0.1 and p-values of 0.001 and 0.13, respectively.
Notably, the R99 values from all four SPPs exhibit poor spatial correlation with gauge
observations in Chengdu. For R99TOT, MSWEP demonstrates the best spatial correlation
in all four cities, with BMI values of 0.32, 0.33, 0.44, and 0.29 and p-values of 0.003, 0.001,
0.001, and 0.001, respectively.

It was found that, while MSWEP consistently underestimated R99 and R99TOT, it
showed a strong spatial correlation with the gauge observations in the four selected cities.

The LISA cluster maps of R99 between the best SPP and gauge observations are
presented in Figure 11. The results show that the R99 estimates from MSWEP and CMFD
exhibit a significant positive spatial correlation with the gauge observations in Beijing,
Chongqing, and Shanghai. Specifically, MSWEP effectively identifies the high R99 zones,
such as central Beijing and east Shanghai, with H-H clusters, while CMFD identifies the
high R99 zones in northeast Chongqing. However, the high R99 zone in east Chengdu is
misidentified as a low R99 zone by CMFD. Although both MSWEP and CMFD accurately
identify most of the low R99 zones with L-L clusters, MSWEP falsely identifies the east
Beijing as a high R99 zone with L-H clusters.
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Table 6. BMI of R99 and R99TOT in four cities.

Index Cities
IMERG GSMaP_Gauge MSWEP CMFD

BMI p-Values BMI p-Values BMI p-Values BMI p-Values

R99

Beijing 0.03 0.28 0.32 0.006 0.33 0.003 0.18 0.02
Chongqing −0.06 0.17 0.21 0.007 0.13 0.03 0.33 0.001
Chengdu 0.09 0.23 −0.12 0.13 −0.11 0.10 0.10 0.13
Shanghai −0.07 0.29 0.16 0.02 0.26 0.002 0.08 0.14

R99TOT

Beijing 0.08 0.14 0.29 0.005 0.32 0.003 0.14 0.04
Chongqing 0.25 0.006 −0.09 0.09 0.33 0.001 −0.16 0.02
Chengdu 0.08 0.15 0.39 0.001 0.44 0.001 0.40 0.002
Shanghai 0.08 0.11 0.10 0.06 0.29 0.001 0.21 0.02

The LISA cluster maps of R99TOT between MSWEP and gauge observations are
presented in Figure 12. The results demonstrate that the R99TOT estimates from MSWEP
exhibit a significant positive spatial correlation with the gauge observations in four cities.
MSWEP effectively identifies most of the high R99TOT zones and low R99TOT zones,
which are shown as H-H and L-L clusters in Figure 12. However, east Beijing still falsely
identified as a high R99TOT zone with L-H clusters. Two rain gauges in Chongqing are
also false identified.
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4. Discussion

In this research, we evaluated the performance of four SPPs in estimating urban ex-
treme precipitation at the national, city, and inner-city scales. Among these SPPs, MSWEP
exhibited strong performance with the highest CC and the lowest AD at the national
scale, while also showing advantages in describing extreme precipitation distributions
at the inner-city scale. This can be attributed to its incorporation of a large number of
gauge observations [39]. However, it should be noted that MSWEP tends to underes-
timate urban precipitation, including extreme indices, which can be found in similar
studies [50,51]. Thus, correction should be made before using MSWEP for applications.
GSMaP_Gauge demonstrated advantages in estimating urban extreme precipitation in-
dices not only at the national scale, but also at the city scale. The combination of multi-
satellite sensors and gauge observations enhances its ability to detect extreme precipitation
events [52]. Although previous studies have shown its effectiveness in capturing heavy
precipitation [53,54], our research further proves its ability to capture extreme precipitation
in complex urban environments.

The performance of these SPPs in estimating urban extreme precipitation varies across
regions. We found that the SPPs’ performance was weak in the cities of northern China
in general. The finding is similar with relevant studies [55]. One reason may be the
sparse precipitation gauge networks in the region, which limits the improvement of SPPs.
Moreover, extreme precipitation events in northern China typically occur in short durations
with high intensity, which may also contribute to the weak performance of the SPPs in
the region. It is worth noting that IMERG demonstrated better performance in the area,
particularly in estimating R99TOT. This may be due to its origin from high temporal
resolution products, thus allowing it to capture short-duration precipitation events in
the region.

5. Conclusions

Accurately estimating extreme precipitation is crucial for urban flood prevention and
climate change adaptation, and SPPs offer a feasible solution to this challenge. This study
presents a comprehensive evaluation of four recent SPPs, including IMERG, GSMaP_Gauge,
MSWEP, and CMFD, by comparing their results with daily observations from the
821 urban gauges. Our analysis focuses on the ability of these SPPs to capture urban
extreme precipitation in mainland China at the national, city, and inner-city scales. The
main conclusions are as follows:

1. The extreme precipitation estimates from the four SPPs in total urbanized areas in
mainland China were evaluated. As for conventional indices, MSWEP has the highest
CC of 0.79 and the lowest AD of 1.61 mm. However, it tends to underestimate urban
precipitation, with RB of −8.5%. GSMaP_Gauge and IMERG performed better in
six extreme indices, with close values to the gauge observations.

2. The extreme precipitation estimates over 21 Chinese major cities were assessed with
R99 and R99TOT. GSMaP_Gauge demonstrates high accuracy in estimating R99 and
R99TOT values, exhibiting the best RB and AD in these cities. On the other hand,
CMFD and MSWEP exhibit the highest CC values for R99 and R99TOT, respectively,
indicating a robust correlation between their estimates and gauge observations. It is
found that MSWEP consistently underestimates R99 and R99TOT, but its RB of the
two indices is relatively smooth. CMFD and IMERG tend to overestimate R99 and
R99TOT in some cities significantly, which bring a risk in their application.

3. BMI is adopted to assess the inner-city spatial correlation of R99 and R99TOT between
the SPPs and gauge observations in four major cities, including Beijing, Chongqing,
Chengdu, and Shanghai. The R99 and R99TOT from MSWEP show the best spatial
correlation with gauge observations in most of cities. CMFD also show an advantage
in estimating the R99 distribution in Chongqing and Chengdu.

In conclusion, MSWEP show high accuracy in estimating the precipitation in urban
areas according to conventional indices. Despite the consistently underestimated extreme
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values, such as R99 and R99TOT, MSWEP can estimate the spatial distribution of R99 and
R99TOT with high accuracy in four selected cities. GSMaP_Gauge shows an advantage in
estimating the urban extreme precipitation indices, while poor in describing their spatial
distribution. The performance of IMERG and CMFD are generally lower than them in urban
extreme precipitation estimation. The study provides a reference for SPPs application in
urban areas. Although daily SPPs can also provide essential information for urban planning,
climate change adaption, risk management strategies design, etc., their evaluation at sub-
daily scales remains crucial for accurately assessing extreme precipitation events in urban
areas. With the fast development of remote sensing technology, more high-precision SPPs
with fine resolution are developed, such as CHIPRS and CHELSA. Further evaluations of
their capabilities in finer scales will be conducted in our future work.
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