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Abstract: Poplar plantations in high-density and short-rotation coppices (SRC) are a suitable way
for the fast production of wood that can be transformed into bioproducts or bioenergy. Optimal
management of these coppices requires accurate assessment of the total standing biomass. However,
traditional field inventory is a challenging task, given the existence of multiple shoots, the difficulty
of identifying terminal shoots, and the extreme high density. As an alternative, in this work, we
propose to develop individual stool and plot biomass models using metrics derived from terrestrial
laser scanning (TLS) as predictors. To this aim, we used data from a SRC poplar plantation, including
nine plots and 154 individual stools. Every plot was scanned from different positions, and individual
stools were felled, weighed, and dried to compute aboveground biomass (AGB). Individual stools
were segmented from the cloud point, and different TLS metrics at stool and plot level were derived
following processes of bounding box, slicing, and voxelization. These metrics were then used, either
alone or combined with field-measured metrics, to fit biomass models. Our results indicate that at
individual-stool level, the biomass models combining TLS metrics and easy to measure in field metrics
(stool diameter) perform similarly to the traditional allometric models based on field inventories,
while at plot scales, TLS-derived models show superiority over traditional models. Our proposed
methodology permits accurate and non-destructive estimates of the biomass fixed in SRC plantations.

Keywords: Populus sp.; voxelization; box bounding; tree slicing; mitigation; TLS

1. Introduction

Poplar plantations in high-density and short-rotation coppice (SRC) provide a viable
option for short-term wood production. This important raw material for the bioeconomy
can be transformed into bioproducts or bioenergy within the context of biorefineries [1]. In
addition, these plantations play a role in carbon capture and, therefore, in the mitigation of
climate change [2,3]. Hence, the implementation of such plantations is widespread in many
parts of Europe [2] and worldwide [4–6].

Both of the abovementioned aspects, wood production, and carbon sequestration,
are closely linked to biomass productivity, so rapid, reliable biomass predictions are key
to appropriate decision-making. Biomass quantification using non-destructive methods
necessarily requires the use of predictive calculations based on the direct non-destructive
collection of growth-related data. In this regard, there have been many advances in
modeling across all fields of forest science, including SRC plantations [4,7]. Allometric
models, which relate diameter at breast height (or other easily measurable variables) to
biomass, are those most commonly used in forest inventories and have also been employed
in the case of SRC plantations to estimate available biomass [8,9]. There are several examples
in which the power function (W = aDb) has been applied in poplar SRC plantations [10,11].
The accuracy of such allometric equations is generally sufficient [12]. However, other
predictive variables have also been included, such as height, the number of shoots per stool,
or age, among others, which can improve the accuracy of the estimations [13–15].
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One of the main problems when predicting biomass in SRC plantations is the large
variability present due to the genotype-environment interaction [16,17]. Most of the biomass
models for these plantations are site and genotype-specific models [18,19], and therefore
their applicability is limited [20]. However, there are also examples of models developed for
higher hierarchical levels [21–23]. In fact, the use of statistical models based on a wide range
of empirical data has become more frequent due to the difficulty involved in extrapolating
specific values to greater scales, given the wide variability in production [24–26].

Despite the high predictive capacity of the existing biomass models based on field
measurements, the practical application of these models has certain limitations. The coppice
system stimulates the production of multiple shoots from the same stool, the individual
diameter of which should be measured to obtain accurate information. This is a highly
time-consuming task, which adds considerable difficulty not only to the data collection but
also to model fitting and even the further application of the models. In addition, due to
the extremely high density of SRC systems, measuring the individual height of each stool
can be a challenging task, given the occlusion between the crowns of the stools and the
difficulty in identifying the terminal apex of each stool, thus leading to imprecise estimates.
Finally, the short spacing between individual stools and the profusion of shoots prevents
accurate assessment of individual crown attributes, such as crown diameter or maximum
projection. As an alternative, the direct collection of individual tree-size attributes by means
of a traditional field inventory is increasingly replaced by the use of new technologies
capable of estimating these parameters.

Aboveground biomass has traditionally been estimated through allometric equations
using tree attributes recorded in the field as predictors [27–31]. Development of these equa-
tions, based on destructive sampling, is both highly time-consuming and very expensive.
Plantations with fast-growing species require frequent evaluations over time in order to
adopt the best felling strategy without having to resort to destructive methods [32]. Many
recent studies have focused on biomass estimation techniques that are not based on de-
structive sampling, using new technologies such as terrestrial (TLS) or aerial laser scanning
data (Airborne LiDAR) [33–36]. These alternatives to destructive allometric approaches
open possibilities for a wide array of purposes [37].

Terrestrial laser scanning (TLS) is an active remote sensing technique that allows
accurate measurement of distances by transmitting laser pulses and analyzing the returned
energy as a function of time. TLS, therefore, can provide detailed three-dimensional infor-
mation to precisely describe forest structure [38,39], allowing unprecedented forest-attribute
measurement capability at both stand and tree scale [40]. TLS allows the characterization
of the vertical distribution of vegetation structure [41] and the reconstruction of individual
tree structure [42,43] or vegetation profiles [44]. In addition, thanks to the precise measure-
ment potential of TLS, it is possible to obtain crown variables such as height, width, crown
projection area, and volume [45–47]. It is also possible to estimate tree volume or biomass
(e.g., [38,40,48–50]), to reconstruct the stem and branching system using quantitative struc-
tural models (QSM) in order to study the whole-tree topology [51–53] or to estimate leaf
indices such as leaf area index (LAI) and leaf area density (LAD) [47,54]. While the QSM
method has shown its potentiality for large, well-individualized trees, its application to
small trees, coppices, or shrubs may be problematic, given the difficulty of defining a
dominant stem and the problems of shadowing and occlusion [55,56].

To the best of our knowledge, TLS has not been widely used in studies aimed at
estimating biomass from short-rotation crops such as the poplar plantations on which our
work is focused. For example, [48] estimated merchantable volume in a 20–24-year-old
hybrid poplar (Populus x Canadensis Moench cv. ‘I-72/58’) plantation in China, while [49]
and [39,43] studied three neighboring stands of hybrid poplar (Populus x euramericana)
plantations of differing ages, developing non-destructive tree stem and crown allometry,
evaluating of eccentricities of stem profiles and studying the influence of voxel size and
point cloud density on crown cover estimation, respectively. The study [49] was carried
out in a plantation with ages ranging from four to ten years. Another study [39] focused
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their study on plots with three different ages: six, eight, and ten years old. The study
carried out by [43] dealt with a ten-year-old plantation along with a row of other valuable
(although slower growth rate) species and different distances depending on the part of the
plantation. All the previous works are focused on timber-oriented low-dense plantations.
The main exception is the work by [57], where TLS was used for defining the basal area
in a high-dense poplar plantation, though no estimates on individual stool or plot-level
biomass were provided.

The main aim of this study is to evaluate the potential of TLS to facilitate biomass
estimation in short-rotation poplar crops. This main objective is broken down into the
following more specific objectives: (1) to identify TLS metrics and their possible correlation
to traditional field-inventory metrics at tree and plot level, including biomass; and (2) to
evaluate the efficiency of using TLS metrics as predictors in biomass models at tree and
plot level.

We hypothesized that: (i) TLS metrics can provide an initial accurate approach for
estimating the amount of biomass at plot level; (ii) TLS metrics combined with variables
easily measured in the field can be used to predict biomass as accurately as traditional
allometric models.

2. Materials and Methods
2.1. Experimental Sites

In 2014, a multi-clonal poplar short-rotation coppice (SRC) plantation was established
at a density of 4000 trees ha−1 (spacing 1 m × 2.5 m), applying two rotations of four years
each. The experimental site is located in the center of the Iberian Peninsula (40◦28′N,
3◦22′W) at an elevation of 595 m with an average mean temperature of 15.3 ◦C. The soil at
the site has a silty loam texture with a pH of 8.1 and 0.80 organic matter content.

The plantation was established manually using unrooted cuttings (30 cm long) of
seventeen different genotypes of Populus x Canadensis (Dode) Guinier and P. x generosa
Henry. The main aim of the plantation was to evaluate the different clones with regard to
site adaptation. Different cultural management techniques were applied in order to enhance
establishment and growth, including drip irrigation, which is necessary for Mediterranean
conditions (for more details, see [5]). The experimental design consisted of three blocks with
the genotypes randomized in each of them. The number of stems per genotype included in
each of the blocks was 40, although only the central 16 stems were measured to exclude
edge effects. These 16 central stools from a given genotype and block form an experimental
40 m2 rectangular subplot (Figure 1).

For the purposes of this research, subplots of three of the most productive clones
under Mediterranean conditions were considered. These were ‘AF2’ and ‘AF34’ (both from
P. x canadensis) and ‘AF8’ (P. x generosa x P. trichocarpa). Therefore, nine subplots in the
plantation, one for each selected genotype and block (144 trees in total), were evaluated. The
age of the plantation (root and shoots) at that moment was R8S4 (Root eight years—Shoots
four years).

2.2. Laser Scanning

In each of the nine analyzed plots, several scans were performed from different sides
in order to perform a complete digitalization. The scans were carried out in November 2021
using a phase-based FARO Focus3D M70 scanner. The scanner uses phase-shift technology
to measure the distance to objects intercepted by the laser beam. We used the following
settings when scanning the plots: 360◦ horizontal angle, 120◦ vertical angle, color pictures,
Resolution: 1

4 , and Quality: 2x. These settings resulted in a resolution of about 6.1 mm at a
distance of 10 m and a scanning time of about five minutes per scan. Previous studies in
solid wood volume [40] or biomass [34,58] tested the use of TLS with similar resolutions in
the scanning process of their trees.
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represented by red triangles. 
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Figure 1. Diagram of TLS data acquired from the FARO Focus3D M70 scanner in one of the study
plots. Stools represented by green circles; scan positions represented by blue asterisks; spheres
represented by red triangles.

Given the size of the plots, four or five positions per plot were needed to provide
complete coverage for the plot. Scan positions were chosen such that there was sufficient
distance from stools and good tree-crown visibility in all directions. After marking the scan
positions with plastic pegs, six spheres were set up on wooden poles at different heights
in the plot so that at least four spheres were visible from all four or five scan positions.
These spheres would serve as target points to merge the different point clouds taken from
the different stations. Visibility of spheres was checked from all the scan positions, and
the positions were moved where necessary to ensure full visibility. Understory vegetation
obstructing the visibility of the spheres was removed. Figure 1 shows the diagram of one
of the scanned plots to clarify the location of all the necessary equipment for the scanning
process. The laser scanner was mounted on a leveled tripod at a height of 1.5 m and
positioned so that there was a clear line between the scanner and the target stools. All data
was obtained under calm conditions to limit movement errors caused by the wind moving
the leaves and branches of the sample trees. Figure 2 shows one of the study plots (left)
and some of the target spheres during the scanning process (right).

2.3. Field Measurements, Destructive Measurements, and Biomass Estimation

Once the TLS scans had been performed in the plot, the following data were recorded
for each of the 16 stools within the plot: number of shoots per stool (n), breast height
diameter of the dominant shoot (d_st, mm) using a digital caliper, and the total height of
the dominant shoot (h_st, cm) to the nearest 0.1 cm using a digital hypsometer.
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Figure 2. Detail of one of the study plots (left), and the target spheres and the FARO Focus3D M70
scanner during the scanning process (right).

Immediately after recording field measurements, the stools were destructively felled,
and the fresh weight of each individual stool was measured in the field using a digital
scale (kg). The moisture content was determined from a subsample of the tree with the
most common diameter class in each plot, drying it in an oven in the lab at 105 ◦C to
constant weight. Individual aboveground dry biomass of the stool (w_st, kg dry matter)
was then computed for each stool. Total aboveground dry biomass per hectare (W_tot, t
dry matter) was computed by summing the total biomass of all the individual trees and
expanding such value based on plot size.

2.4. Point Cloud Processing

The main steps in this study comprise initial point cloud processing, stool segmenta-
tion, volume estimation, and statistical analysis at both stool and plot levels.

The FARO Scene 2021 5.0 software was used for the processing of raw data and
registration of individual scans into plot point clouds, resulting in a single file per plot to
facilitate processing operations. Sphere targets were automatically detected by the software
in individual scans, but the information had to be manually corrected to include missing
spheres or remove false detections. The number of visible spheres was four for most of the
scans. Manual co-registration of the four or five scans into a plot point cloud was target-
based. The registration accuracy was described by a target error range of 7.9–16.7 mm
(median 12.8 mm) for all nine plots, which is within the range of tolerance commonly
accepted for this type of work [34,58]. In order to accurately clip and individualize the
stools from each plot and favor the further process of stool individualization, we manually
removed points clearly corresponding to the ground, stones, and shrubs, as well as those
points clearly belonging to stools located beyond the plot. Through this scanning protocol,
it was possible to obtain an accurate 3D representation of each plot and of the individual
stools (Figure 3).
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Figure 3. Example of TLS data acquired from the FARO Focus3D M70 scanner in one of the study
plots: overhead view (left) and side view (right) showing detail from the studied stools.

2.5. Analysis at Stool Level
2.5.1. Stool Segmentation

Once the scans were registered, the resulting point cloud for the plot was imported
to CloudCompare (CloudCompare v2.1) (an open-source point cloud editing software)
for further analysis. Each plot was clipped using the cloud subsampling tool, cleaned
using the interactive segmentation tool, and identified for future analysis. The aim of the
segmentation steps was to extract an individual point cloud for each target stool from the
global point cloud for the plot. Each stool was manually clipped from the plot point cloud
using the interactive segmentation tool, which resulted in as many standard boxes as stools
in the plot.

2.5.2. Stool Volume Computation

Different approaches to calculating stool volume were used. Three processing al-
gorithms were tested using CloudCompare (CloudCompare v2.1), CompuTree software
(Version 5.0, Computree Group, 2017), and R statistical software (4.1.3): bounding box
assignment, calculation by slicing and rasterization in voxels (Figure 4).
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Figure 4. Representation of the three algorithms used to derive stool volume from TLS data. From
left to right and top to bottom: picture of the scanned stool; bounding vox; slices; and voxels (2 cm,
5 cm, 10 cm, and 25 cm).
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• Bounding box assignment. Bounding box volume was estimated as the volume of
the smallest box that encompassed the entire tree point cloud. The dimensions of the
bounding box can be found by calculating the difference between the maximum and
minimum coordinates on each axis. This is performed automatically in CloudCompare
(CloudCompare v2.1), so we used the box dimensions reported for the individual stool
point cloud. This is an application of the study by [59], who developed methods to
use bounding box volume as a predictor for peatland shrub aboveground biomass.

• Individual stool slicing. The stool was divided into slices of 10 cm in height using
CompuTree software (Version 5.0, Computree Group, 2017). In a first step, we defined
a horizontal plane with this algorithm by selecting the lowest point of the stool. From
this value, all points within a slice of 2 cm in height were selected and considered to
be in the same plane by ignoring their Z coordinate. The Delaunay triangulation was
then applied to the points considered in the same horizontal plane, and the area of the
section was calculated. This step was repeated for every 10 cm of stool height. The
volume of each slice from consecutive sections was calculated by:

V =
S1 + S2

2
·h (1)

where S1 and S2 are the areas of the consecutive sections, and h is the separation
between sections (10 cm). The total volume of the stool is the sum of all the single
volumes between two sections. Stool height is computed as the difference between the
height of the upper slice and the height of the stool slice. We also considered the area
of the maximum section generated, the areas of both the stump (0.10 cm) and breast
height (1.30 m) sections, the volume of these sections, and combinations among them
as relevant variables.

• Rasterization in voxels (voxelization). According to [60], a volumetric pixel, also
known as a voxel, is the minimum discrete volume that can be processed in a
tridimensional object. The basis of this method is the organization of the point
cloud on a tridimensional regular grid where each cell with at least one point in-
side is a voxel. We tested four different grids depending on the size of the voxels
(2 cm, 5 cm, 10 cm, and 25 cm) using the R package “lidR” (Version 4.0.1, available
online at: https://cran.r-project.org/web/packages/lidR/index.html, accessed on
13 January 2023). Once the stool had been voxelized, we needed to approximate the
occupancy of the space by classifying each voxel as empty/not empty based on the
number of returns within each voxel. In order to consider the potential impact of the
distance from the stool to the TLS, or the different number of return points within
each voxel due to occlusions or shadowing [61–64], we proposed two alternatives. In
the first, we estimated the median number of returns per voxel for each stool, and
for occupations equal to or greater than that value, the voxel was considered full,
otherwise it was considered empty. This approach was compared with an alternative
that considers as full those voxels including at least one return. For either approach, if
the voxel was considered full, then its volume was also considered in the quantifica-
tion. The total volume was obtained by multiplying the number of full voxels by the
volume of a voxel (8 cm3, 125 cm3, 1000 cm3, or 15,625 cm3).

These three methods enable the estimation of 20 different metrics for each individual
stool (Table 1). In addition, 18 plot-level metrics were obtained by either summing or
averaging the different individual metrics from the 16 stools within each plot (Table 2).
Plot-level metrics obtained by summing were subsequently upscaled to the hectare.

https://cran.r-project.org/web/packages/lidR/index.html
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Table 1. Definition of the individual stool metrics derived from the different TLS methods.

Variable Definition Method

Vol_bound Volume of the smallest box that encompasses the entire stool

Bounding box
X_bound Length of the bounding box over X axis

Y_bound Length of the bounding box over Y axis

Z_bound Height computed as the length of the bounding box over Z axis

H_slice Height computed as the difference between upper and stool slices

Stool slicing

Max_sec Area of the maximum slice section generated

BH_sec Area of the breast height slice (H_slice = 1.30 m)

Stool_sec Maximum area of the slices included in the stool (H_slice < 30 cm)

Stool_vol Volume of the slices included in the stool

Vol_slice Stool volume obtained by aggregating the volumes of each slice

Box_stool Obtained after multiplying Stool_sec per H_slice

Box_BH Obtained after multiplying BH_sec per H_slice

Vox2_med Volume of the 2 cm side voxels with number or returns > median

Voxelization

Vox2_tot Volume of the 2 cm side voxels with number or returns ≥ 1

Vox5_med Volume of the 5 cm side voxels with number or returns > median

Vox5_tot Volume of the 5 cm side voxels with number or returns ≥ 1

Vox10_med Volume of the 10 cm side voxels with number or returns > median

Vox10_tot Volume of the 10 cm side voxels with number or returns ≥ 1

Vox25_med Volume of the 25 cm side voxels with number or returns > median

Vox25_tot Volume of the 25 cm side voxels with number or returns ≥ 1

Table 2. Definition of the plot-level metrics derived from the different TLS methods.

Variable Definition

Plot_vol_bound Sum of Vol_bound from all the stools in the plot

Plot_Z_bound Mean value of individual Z_bound from all the stools in the plot

Hm_slices Mean value of individual H_slice from all the stools in the plot

Max_coverture Sum of Max_sec from all the stools in the plot

BH_coverture Sum of BH_sec from all the stools in the plot

Stool_coverture Sum of Stool_sec from all the stools in the plot

Plot_stool_vol Sum of Stool_vol from all the stools in the plot

Plot_vol_slice Sum of Vol_slice from all the stools in the plot

Plot_box_stool Sum of Box_stool from all the stools in the plot

Plot_box_BH Sum of BH_stool from all the stools in the plot

Plot_Vox2_med Sum of Vox2_med from all the stools in the plot

Plot_Vox2_tot Sum of Vox2_tot from all the stools in the plot

Plot_Vox5_med Sum of Vox5_med from all the stools in the plot

Plot_Vox5_tot Sum of Vox5_tot from all the stools in the plot

Plot_Vox10_med Sum of Vox10_med from all the stools in the plot

Plot_Vox10_tot Sum of Vox10_tot from all the stools in the plot
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Table 2. Cont.

Variable Definition

Plot_Vox25_med Sum of Vox25_med from all the stools in the plot

Plot_Vox25_tot Sum of Vox25_tot from all the stools in the plot

Note: all the plot-level metrics (except Hm-slices and Hm_vox) obtained summing values from individual stools
were upscaled to the hectare.

Mean values and standard deviations for each of the variables evaluated are presented
in Table 3.

Table 3. Mean values and standard deviations for the different dendrometric and TLS covariables.

Individual Stool Scale Plot Scale

Variable Units Mean STD Median Variable Units Mean STD Median

w_st kg D.M. 18.985 10.100 16.790 W_tot t D.M. ha−1 77.8 14.1 70.2

h_st m 11.48 2.37 11.70 hm m 11.5 1.8 11.1

d_st cm 8.52 2.62 8.60 BA m2 ha−1 25.3 5.8 25.2

N_shoot - 3.41 1.17 3 N_shoot_tot - 13,722.5 1492.5 13,500

Vol_bound m3 72.968 25.793 67.483 Plot_vol_bound m3 ha−1 293,141.8 53,496.5 283,062

X_bound m 2.33 0.37 2.30 Plot_Z_bound m 12.0 1.1 11.9

Y_bound m 2.57 0.40 2.51 Hm_slices m 11.7 1.0 11.6

Z_bound m 11.96 1.37 11.86 Max_coverture m2 ha−1 7755.0 1265.0 8035

H_slice m 11.69 1.33 11.60 BH_coverture m2 ha−1 4110.0 672.5 4261

Max_sec m2 1.93 0.63 1.88 Stool_coverture m2 ha−1 1255.0 327.5 1376

BH_sec m2 1.02 0.38 0.95 Plot_stool_vol m3 ha−1 147.8 36.3 160.9

Stool_sec m2 0.31 0.19 0.28 Plot_vol_slice m3 ha−1 42,694.8 9273.0 45,185

Stool_vol m3 0.037 0.019 0.034 Plot_box_proj m3 ha−1 91,182.8 16,367.8 92,398

Vol_slice m3 10.64 4.31 10.43 Plot_box_BH m3 ha−1 47,941.8 8522.3 47,261

Box_proj m3 22.709 8.431 21.401 Plot_Vox2_med m3 ha−1 497.8 142.8 487

Box_BH m3 11.922 4.525 11.400 Plot_Vox2_tot m3 ha−1 926.0 258.5 923

Vox2_med m3 0.124 0.053 0.111 Plot_Vox5_med m3 ha−1 2581.8 688.3 2595

Vox2_tot m3 0.231 0.097 0.206 Plot_Vox5_tot m3 ha−1 4980.3 1334.5 4590

Vox5_med m3 0.645 0.245 0.598 Plot_Vox10_med m3 ha−1 8314.3 1940.8 8458

Vox5_tot m3 1.245 0.503 1.145 Plot_Vox10_tot m3 ha−1 16,300.0 3764.0 16,030

Vox10_med m3 2.079 0.701 2.011 Plot_Vox25_med m3 ha−1 31,139.0 5498.5 31,348

Vox10_tot m3 4.075 1.411 3.892 Plot_Vox25_tot m3 ha−1 62,019.5 10,427.0 62,430

Vox25_med m3 7.790 2.053 7.844

Vox25_tot m3 15.514 4.033 15.672

2.6. Exploratory Analysis

The TLS-derived metrics at stool and plot scales allow us to establish relationships
with the real dendrometric and biomass values obtained from standing inventory and
destructive measurements carried out in the field. To this aim, in the first step, we checked
for statistically significant relationships between stool-scale variables of interest measured
in the field and stool TLS-derived metrics (Table 1) by means of a Pearson’s correlation.
The field-measured variables selected were:

• Individual stool dry biomass (w_st);
• Stool_height (h_st);
• Diameter at breast height of the largest shoot within the stool (d_st);
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• Number of shoots in the stool with breast height diameter > 2 cm (N_shoot).

In a similar process, we analyzed the correlation between the plot-level TLS-derived
metrics and four plot-level variables derived from field measurements:

• Total plot dry biomass (W_tot)—computed as the sum of the biomass of each individ-
ual stool;

• Mean height (hm)—the mean height of the different stools in the plot;
• Basal area (BA)—defined as the sum of the sections measured at breast height diameter

in the largest shoot of the stool;
• Total number of shoots in the plot (N_shoot_tot)—the sum of N_shoot for all the stools

in the plot.

W_tot, BA, and N_shoot_tot were upscaled from the plot to the hectare. Mean values
and standard deviations for each of the field-inventory variables are presented in Table 3.

2.7. Modeling Approach

The second main objective of this study was to evaluate the suitability of constructing
models based on TLS-derived metrics (Table 1) at individual-stool level in order to forecast
individual stool dry biomass (w_st). To achieve this, we fitted three different basic linear
models. In this sense, we want to stress that our main objective was not to construct new,
improved allometric biomass models using TLS metrics but to explore the potential of
incorporating these metrics (either alone or combined with traditional inventory metrics)
into future models. Due to this, we have only evaluated linear mixed models and have
skipped out the comparison of the results with other modeling approaches, as could be
fitting random forests or generalized additive models. In the first step, we fitted a model
for w_st only, using TLS variables (from now TLS model) as predictors. The second model
(field-inventory model) was constructed using only field-observed metrics (h_st, d_st, and
N_shoot, and the products [d_st]2.h_st and [d_st]2. N_shoot. Finally, we developed a third
model (combined model), in which we evaluated the inclusion of both individual TLS shoot
metrics along with that most easily measured in the field, which is the diameter at breast
of the largest shoot in the stool (d_st). In addition, in this third model, we evaluated the
inclusion of the products [d_st]2.h_slice, [d_st]2.h_vox, and [d_st]2. z_bound.

The three models were fitted following a similar procedure. In order to identify the
variables entering each model, we first fitted a multiple linear regression by means of OLS
techniques using the stepwise selection method. Multicollinearity among the potential
covariates entering the model was controlled by avoiding Variance Inflation Factor (VIF)
values over 10. Given the hierarchical structure of the data (individual stools from different
plots and clones), we evaluated the inclusion of random effects acting at plot and clone
level in the model by fitting a multilevel linear mixed model. The final expression for the
model is given in Equation (2):

w_st = β0 + β1X1 + β2X2 + · · ·+ u + v + e (2)

where Xi represents the potential explanatory covariates; βi unknown but estimable param-
eters; u and v are plot and clone random effects, with mean zero and variances σ2

u and σ2
v ; e

is a random error term.
The three models were compared in terms of different goodness-of-fit statistics, such

as adjusted coefficient of determination (R2
adj), root mean square error (RMSE), relative

root mean square error (RRMSE), and Akaike’s Information Criterion (AIC).
For the total dry biomass at plot level (W_tot), we carried out a similar procedure,

fitting three different models and evaluating the inclusion as predictors of only plot-scale
TLS-derived metrics (Table 2), only field-inventory plot-level metrics (BA, hm, N_shoots:plot,
BA.hm), or a combination of both TLS and field-inventory. For this third model, we only
kept the most easily recorded traits in the analysis, which are basal area (BA), together with
the product BA.Hm_slice and BA.Plot_Z_bound. Inclusion of clone random effects was also
considered when fitting the model.
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3. Results
3.1. Correlation Analysis

The analysis of the correlation between individual stool attributes measured using
field and TLS-derived metrics (Table 4) revealed the existence of some significant, though
not very high, relationships. The TLS-derived covariate showing the highest correlation
(r: 0.4829) with the individual stool biomass (w_st) was H-slice, which is stool height
computed as the difference between the height of the upper section and the stool sections
after the slicing process (H_slice). Z_bound, defined as the length of the bounding box over
the Z axis, was the covariate that had the second highest correlation (r: 0.4150). Other TLS-
derived covariates displaying significant correlation with the individual stool biomass were
those metrics representing volumes, either of the bounding box (Vol_bound) or following
slicing (Vol_slice, Box_proj, and Box_BH). Voxelization-derived covariates did not reach the
levels of correlation with w_st obtained from the metrics obtained by bounding or slicing.
Among these voxelization metrics, the highest correlation with stool biomass was obtained
using a voxel side of 25 cm. There was little difference between the criteria for considering
a voxel as full, using either the median value as the threshold or the approach using all the
voxels with a minimum of one return point.

Table 4. Correlation analysis between the main dendrometric attributes and TLS-derived metrics.

Individual Stool Scale Plot Scale

Variable w_st h_st d_st N_shoot Variable W_tot hm BA N_sh_tot

Vol_bound 0.3602 *** 0.3526 *** 0.3030 *** 0.1398 a Plot_vol_bound 0.8277 ** 0.5732 0.5142 0.4231

X_bound 0.2737 *** 0.2117 * 0.2238 ** 0.2285 ** Plot_Z_bound 0.9624 *** 0.9345 *** 0.8115 ** 0.4793

Y_bound 0.1479 a 0.0748 0.1083 0.0054 Hm_slices 0.9327 *** 0.9613 *** 0.8345 ** 0.4596

Z_bound 0.4150 *** 0.5903 *** 0.3726 *** 0.1234 Max_coverture 0.1017 −0.2663 −0.2674 0.2127

H_slice 0.4829 *** 0.6325 *** 0.4467 *** 0.1980 * BH_coverture 0.0880 −0.2839 0.0012 0.1914

Max_sec 0.1775 * 0.0233 0.1124 0.1791 * Stool_coverture 0.0713 −0.3418 0.0424 0.2384

BH_sec 0.1055 −0.0389 0.0828 0.2860 *** Plot_stool_vol 0.0896 −0.305 0.0409 0.1530

Stool_sec 0.1704 * 0.0122 0.1241 0.2777 *** Plot_vol_slice 0.4416 0.0750 0.0743 0.3777

Stool_vol 0.1841 * 0.0178 0.1398 a 0.2914 *** Plot_box_proj 0.5561 0.2227 0.1627 0.4450

Vol_slice 0.3069 *** 0.1821 0.2026 0.2386 ** Plot_box_BH 0.6021 a 0.2595 0.4782 0.4408

Box_proj 0.3234 *** 0.2321 ** 0.2500 ** 0.2205 ** Plot_Vox2_med −0.0771 −0.2943 −0.3429 0.1523

Box_BH 0.2725 ** 0.1755 * 0.2373 ** 0.3275 *** Plot_Vox2_tot −0.1281 −0.3491 −0.3956 0.1249

Vox2_med 0.1648 * −0.0220 0.0373 0.1842 * Plot_Vox5_med −0.0619 −0.2963 −0.3450 0.1858

Vox2_tot 0.1278 −0.0444 0.0199 0.1643 * Plot_Vox5_tot −0.1242 −0.3361 −0.3510 0.1905

Vox5_med 0.1545 a −0.0555 0.0091 0.1971 * Plot_Vox10_med −0.0005 −0.2641 −0.3076 0.2080

Vox5_tot 0.1427 −0.0552 0.0266 0.1938 * Plot_Vox10_tot −0.0386 −0.2876 −0.3068 0.2372

Vox10_med 0.1742 * −0.0369 0.0269 0.2259 ** Plot_Vox25_med 0.1970 −0.1253 −0.1581 0.2493

Vox10_tot 0.1678 * −0.0406 0.0261 0.2126 * Plot_Vox25_tot 0.2023 −0.1185 −0.1608 0.2369

Vox25_med 0.2540 ** 0.0776 0.1186 0.2491 **

Vox25_tot 0.2634 ** 0.0864 0.1262 0.2702 **
a p-value < 0.1 * p-value < 0.05 ** p-value < 0.01 *** p-value < 0.001. In bold the covariate showing higher
significant correlation.

H_slice and Z_bound were also the TLS-derived metrics that showed the highest
correlation (Table 4) with both the individual height observed in the field (h_st) and the
diameter of the largest shoot within the stool (d_st). The rest of the TLS-derived metrics
presented a significant correlation with h_st or d_st as with those observed for w_st, except
for the metrics obtained from voxelization. As regards the number of shoots within the
stool (N_shoot), we observed a different pattern of correlation since the highest correlations
were identified with Box_BH (product of the section at breast height BH_sec and H_slice), the
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stool volume Vol_stool and BH_Sec, all metrics derived from slicing. Voxelization-derived
metrics were significantly correlated with N_shoot; the greater the size of the voxel, the
higher the correlation.

At the plot scale, the small number of plots involved (n = 9) resulted in a large number
of non-significant correlations (Table 4). We identified a significant correlation between
the total biomass at the plot scale and the mean height of the stools derived by either
slicing (Hm_slice, r: 0.9327, p-value < 0.001) or box bounding (Plot_Z_bound, r: 0.9624,
p-value < 0.001). Less significant relationships were observed between the total biomass of
the plot and the sum of the volumes of the bounding boxes of every stool within the plot
(Plot_vol_bound, r: 0.8277, p-value < 0.01) and between total biomass and the sum of the
volumes of the individual boxes obtained by slicing (Plot_Box_BH, r: 0.6021, p-value < 0.1).
The mean height of the plot (Hm_plot) and plot basal area was only significantly correlated
with both Hm_slice and Plot_Z_bound, while no significant correlations were detected for
the total number of shoots within the plot.

3.2. Modeling Approach
3.2.1. Models for Individual Stool Biomass

We fitted three different models for the biomass of the individual stool (w_st) using
only TLS-derived metrics, only field-inventory metrics, or a combination of both (Table 5).
Our results revealed that the TLS model performed worse than the other two approaches.
The TLS model included the height computed as the difference between the height of the
upper section and stool slices (H_slice) and the volume of the stool (Vol_stool) as predictors,
both variables being derived from the slicing process. Both variables entered the model
with a positive sign, indicating that the larger the values, the larger the predicted individual
biomass. The model showed low predictive capacity (R2

adj = 0.2490, RMSE = 8.7527 kg,
RRMSE = 46.1%) and low agreement between observed vs. predicted analysis (Figure 5a),
indicating that the model tends to overestimate biomass for the smaller stools and underes-
timate the larger ones.

Table 5. Parameter estimates and goodness-of-fit statistics for the three fitted models (Equation (2))
for individual stool biomass.

Model X1 X2 β0 β1 β2 AIC R2
adj RMSE (kg) RRMSE (%)

TLS H_slice Stool_vol −26.6109 3.6224 88.1831 1031.2 0.2490 8.7527 46.1%

Field
Inventory d_st2.h_st N_shoot 4.2524 0.0115 0.9940 896.6 0.7070 5.4675 28.8%

Combined d_st2.H_slice Vox10_med 3.0171 0.0134 1.5881 899.1 0.7018 5.5152 29.1%

The best model only using field-inventory covariates included the product between
the squared diameter of the largest shoot within the stool and the height of the stool
(d_st2.h_st) and the number of shoots within the stool as predictors, both entering with
a positive sign. Using this model resulted in higher predictive capacity (R2

adj = 0.7070,
RMSE = 5.4675 kg, RRMSE = 28.8%) and greater agreement between observed vs. predicted
values (Figure 5b) than the TLS model. Finally, the best model combining TLS-derived
metrics and the easily measured field-inventory covariate included the product between
the squared diameter of the largest shoot within the stool and the height derived from the
slicing process (d_st2.H_slice) and the volume of the 10 cm-sided voxels filled with return
point over the median value (Vox10_med) as predictors. This combined model performed
quite similarly to the field-inventory model, resulting in similar values for R2

adj (0.7018),
RMSE (5.5152 kg), and RRMSE (29.1%) and agreement between observed and predicted
values (Figure 5c).
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In all three fitted models, the inclusion of plot and/or clone random effects did not
lead to an increase in AIC; thus, we omitted these terms from Equation (2). This result
points to a non-significant effect of the clone over the relationship between biomass and
different metrics. In this regard, Figure 6 shows the individual behavior of each clone in
terms of the relationship between w_st and h_slices, revealing non-significant differences
between clones.
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3.2.2. Models for Total Biomass

Table 6 shows the results after fitting the three different models to total biomass. In this
case, the TLS model was that which performed best, displaying high predictive capacity
(R2

adj = 0.9756, RMSE = 2.2082 t·ha−1, RRMSE = 2.9%) and almost 1:1 agreement between
observed and predicted values (Figure 7a). The TLS model included the mean value of the
Z-bounds from the bounding box of the stools within the plot (Plot-Z_bound) and the total
volume of the stool sections (Plot-stool-vol) as predictors. For both the field inventory and the
combined models, only one predictor significantly entered the model, this being the product
between basal area (BA) and the mean height Hm (field-inventory model) or the product
between BA and the mean height obtained from the bounding approach (Plot_Z_bound).
Both models performed worse than the TLS model, with the combined model showing
little superiority with respect to the field-inventory model (Table 6, Figure 7a,b). As in the
case of the models for the individual stool, the inclusion of a random clone effect did not
lead to an improvement in terms of AIC; thus, this term was removed from the models.

Table 6. Parameter estimates and goodness-of-fit statistics for the three fitted models (Equation (2))
for total biomass.

Model X1 X2 β0 β1 β2 AIC R2
adj RMSE (t·ha−1) RRMSE (%)

TLS Plot_Z_bound Plot_stool_vol −97.7637 13.5205 0.0929 42.1 0.9756 2.2082 2.9%

Field
Inventory BA.Hm - 43.4755 0.1154 - 61.2 0.8052 6.2447 8.3%

Combined BA.Plot_Z_bound - 35.0969 0.1395 59.8 0.8333 5.7779 7.7%
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4. Discussion

Our study reveals that using TLS metrics can provide a reliable, non-destructive
approach for estimating aboveground biomass and other tree and plot metrics in poplar
short-rotation coppices. Our results showed that TLS metrics presented significant correla-
tions with field observations of the most relevant tree and plot attributes. Direct estimate
of tree biomass from the TLS cloud can be assessed by means of estimating tree volume
through QSM (quantitative structural modeling) assuming geometrical shapes (commonly
cylinders) for both the stem and branches of the tree [34,65]. While this method seems
optimal for estimating the biomass of adult or even extra mature trees [34,66,67], its appli-
cation to short-rotation coppices is quite difficult since a single stool may share different
small-sized shoots, and the dominant one is occluded by the lateral shoots, which makes
difficult the correct definition of the main stem volume, where a large amount of biomass is
accumulated. As an alternative, and conforming to the main innovation of our work, we
do not aim to directly obtain estimates of stool biomass from TLS measurements, but we
focus on obtaining easy-to-measure TLS-derived metrics to be included in the models for
individual stool and plot biomass.

4.1. Individual Correlations

The TLS-derived heights, obtained using different procedures (bounding, voxelization,
or slicing), were the TLS-derived metrics which presented the highest correlation not
only with the stool height (as expected) but also with the diameter at breast height of the
dominant shoot within the stool, and the total biomass of the stool. Surprisingly, at the plot
level, we obtained a similar result, the mean value of the TLS-derived heights being the
covariate highly correlated with plot attributes.
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TLS has the potential to more accurately estimate tree height than traditional field
measurements, although in dense forest environments, this assertion needs further test-
ing [35]. Studies such as [58,68–70] have previously investigated the accuracy of tree height
estimation using terrestrial laser scanning. They concluded that this methodology leads
to an underestimation of 1–3 m caused by occlusions in the highest parts of the canopy.
In addition, other studies have found that TLS-derived heights are strongly affected by
the visibility of the tree, especially in denser stand conditions [69,71,72]. However, such
limitations are likely to be less relevant in tree plantations such as that of our study, due to
the greater homogeneity of the trees and lower complexity, compared with natural forest
conditions. Moreover, these studies suggest that reliable tree heights can be expected when
trees are below 20 m in height, as in this study (mean tree height 11.48 m), whereas the
height of taller trees is likely to be underestimated by TLS [71]. Our results also agree with
those of [34], who concluded that TLS-derived height correlates better with the reference
tree height than field-measured height when evaluating height as a predictor for above-
ground biomass. Moreover, our approach, based on scanning the individual stool from
different positions, also reduces the problems associated with occlusion and inefficient
identification of the terminal shoot of the stool.

The only tree-level metric measured in the field that is not highly correlated with
TLS-derived heights is the number of shoots per stool (N_shoot), which showed a signifi-
cant correlation with TLS metrics such as the area of the breast height slice (BH_sec), the
maximum area of the slices included in the stool (Stool_sec) or the box at 1.3 m (Box_BH).
This aspect reveals the importance of the number of shoots per stool in coppice species. In
addition, the number of shoots per stool is directly related to variables such as diameter at
breast height of the shoots—this variable generally being higher the lower the number of
shoots in the stool- [16], or the profile of the stems—the latter generally being more sinuous
the higher the number of shoots in the stool [73]. Furthermore, the average number of
shoots per stool is often highly correlated to total biomass [23] and, therefore, is considered
an explanatory variable when fitting biomass models for coppice species [15,23,29].

With regard to individual stool biomass, we identified significant correlations with the
volumes computed after bounding box, slicing, or voxelization of the TLS-derived cloud
point, although the observed correlations were lower than those obtained between stool
biomass and the TLS-derived heights. Our results also provide evidence that, among the
three different evaluated methods for processing the TLS cloud point (bounding box, slicing,
and voxelization), the simplest method (bounding box) performs similarly or even more
efficiently than the most complex ones (slicing or voxelization). This pattern is also observed
when evaluating the correlation between the plot-level biomass and the TLS-derived metrics
aggregated at the plot level. This result agrees with previous findings by [74] that compared
the ability of Quantitative Structure Models (QSMs) and bounding boxing to estimate
aboveground biomass in small Picea mariana (L.) trees, with a higher accuracy (R2

adj = 0.89)
for the bounding box in comparison to the QSM (R2

adj = 0.82). In contrast, other studies
such as [50,65] have demonstrated the superiority of slicing or voxelization over simpler
methods in computing crown volume, crown structure, or aboveground biomass. In our
case, the superiority of the bounding box may be related to the small distance between
stools within the same row (1 m), which results in severe overlapping between the crowns
of adjacent stools and complicates the individual segmentation of the trees. Moreover, this
narrow spacing prevents crown expansion, thus constraining the shape of the stool. A
similar finding was observed in [55], where the volume of a simple geometric box was
identified as the best predictor for shrub volume. In this regard, shrubs and coppices may
share similar properties, such as the existence of multiple stems, structural heterogeneity,
and difficulty in differentiating between the main stem and crown.

Our finding that the simpler methods perform better is emphasized by the fact that in
the case of voxelization methods, the most efficient one was that of a large voxel grid of
25 cm (low number of voxels) when compared with finer resolutions of voxelization. With
regard to the use of virtual laser scanning in forestry applications, the findings of a study
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by [56] contradict those of our research in that these authors concluded that using regular
fixed-sized voxel models with notably finer resolution (2 cm) presented high accuracy in
the derived metrics. However, in their comparison of four voxel sizes (as in our study),
it was concluded that the scaled voxels better represent gaps in the canopy, allowing for
higher and more realistic crown penetration. Due to the structure of the stools in the
evaluated plots, our results revealed that the effort involved in voxelization and subsequent
quantification of full vs. empty voxels is not rewarded by an improvement in stool biomass
prediction. In addition, the structure of SRC plantations makes it more difficult to scale the
size of voxels depending on the section of the stool in the study.

4.2. Modeling Approach

The model with the best fit for individual stool biomass using only TLS metrics was
based on the combination of H_slice and Stump_vol. As previously mentioned, TLS-derived
heights, such as H-slice, are the TLS metrics that are strongly correlated with individual
biomass (Table 4); thus, their inclusion in the model seems logical. In [66], TLS-derived
height was successfully used as the main predictor of tree AGB, performing even better
than crown-related covariates, as in our case. The other variable entering the model, the
stump volume (Stump_vol), showed the strongest significant correlation (p-value < 0.0004)
with the number of shoots. The number and size of the shoots in the stool were identified in
this case as important variables for estimating aboveground biomass, which is supported
by the findings of previous studies carried out in similar poplar plantations [15,23]. In
particular, in a study by [23] of a three-year-old SRC, the authors reported that the average
number of shoots per stool might have a major impact on models developed for subsequent
rotations, as in our case, where the stools have one more rotation. These findings are also
supported by the fact that both h_st and N_shoot are the covariates included in the model,
which only considers field-inventory metrics.

However, none of the models based only on TLS metrics allowed the individual
stool biomass to be predicted as efficiently (R2

adj = 0.2490, RMSE = 8.7527 kg) as the
models constructed using metrics recorded in traditional field inventories (R2

adj = 0.7070,
RMSE = 5.4675 kg). This may be due to the difficulty associated with the individual
segmentation of the stools, given the dense overlap between the crowns of adjacent trees,
which makes it difficult to correctly assign each shoot and branch to their corresponding
stool. A potential improvement in the TLS-derived AGB models may be achieved if cloud
point data were used to determine the diameter at breast height of the dominant shoot by
means of algorithms such as least-square circle or cylinder fitting [75].

Furthermore, the combination of variables easily measured in the field and TLS metrics
allowed more accurate predictions of stool biomass (R2

adj = 0.7018, RMSE = 5.5152 kg),
almost equaling the precision obtained by the model which only uses inventory metrics
(R2

adj = 0.7070, RMSE = 5.4675 kg). In our case, the best model was that which combined
the product of the squared diameter at breast height of the largest shoot within the stool
(measured in the field), with the height of the stool measured using TLS (d_st2. H_slice)
together with the volume of the 10 cm-sided voxels with the number of returns > median
(Vox10_med). This finding once more demonstrates the ability of TLS metrics to accu-
rately estimate the height of the stool, avoiding the difficulties associated with directly
measuring the height in the field from the ground [34]. The combined use of TLS and
field-inventory metrics in models has previously been proposed by [76], who successfully
modeled cone production in Pinus pinea L. using accurate crown metrics obtained from
TLS and classical inventory metrics, such as mean quadratic diameter, as predictors. In this
regard, TLS-derived metrics must be seen as a potential tool for obtaining accurate and
unbiased measurements of tree parameters not easily accessible from the ground or whose
measurement is highly laborious and time-consuming.

In the case of the total biomass per ha, TLS metrics entering the model are, as in the
individual biomass models, the mean value of the heights derived from box bounding
(Plot_Z_bound) and the plot-level sum of the stump volumes (Plot_Stump_volume), high-
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lighting the importance of these metrics in determining aboveground biomass in poplar
SRC. The most surprising finding was that, in this case, models which only depend on TLS
metrics performed much better (R2

adj = 0.9756, RMSE = 2.2082 t·ha−1) than those based only
on field-inventory variables (R2

adj = 0.8052, RMSE = 6.2447 t·ha−1). A potential explanation
for this behavior may be the fact that, at the plot level, the errors arising when assigning
individual branches or terminal shoots to their corresponding stool may be compensated.
In addition, the low number of plots we were able to use in this study could also influence
this behavior. Therefore, the inclusion of more plots would be advisable to improve these
models in further studies.

4.3. Final Remarks

The results obtained in this work highlight the great potential of TLS to replace
traditional SRC measurements. On the one hand, it allows biomass to be estimated in a
similar way to field inventories without the need to measure individual stool heights from
the ground. On the other hand, TLS permits the quantification and inclusion in the models
of certain metrics that cannot easily be assessed through traditional inventories, such as
stool volume or the volume of the 10 cm-sided voxels with the number of returns > median.
These variables improve the model fit statistics and help us to better understand biomass
development in poplar SRC.

In addition, stand-level biomass can be estimated more quickly and easily without the
need for destructive sampling. In short, the method allows us to conduct a non-destructive,
short-frequency, low-cost assessment of standing biomass and biomass increment in poplar
SRC. Focusing on the potential for lowering costs, TLS inventories permit the reduction of
working time in the field but require a large investment of deskwork for post-processing
data, together with an initial investment in the acquisition of the scanning device. However,
as new techniques for automatic stool segmentation are developed, new models relating
easy-to-obtain TLS-derived metrics with biomass (as the one presented in this work) are
constructed, and new and cheaper scanning equipment enters the market, costs for a
TLS-based assessment of biomass will be reduced. In this sense, comparing costs between
traditional field inventories and TLS surveys is a topic requiring further research.

TLS metrics permit a significant improvement in estimates obtained through allometric
biomass models since these models predict population averages for individuals with the
same characteristics [77]. Furthermore, TLS approaches allow us to account for regional
and/or local variations in trees associated with different clones or possible abiotic/biotic
effects, as could be the case with poplars in SRC. Future research initiatives should focus on
testing the results obtained in this study, comparing a larger number of clones with more
widely differing characteristics as well as different stand densities. In addition, a detailed
analysis comparing the cost of TLS, traditional field, and mixed TLS-field inventories should
be carried out. The development of new point cloud metrics should also be addressed, and
new methodologies such as convex hulls should be included, along with the building of
more efficient algorithms for automatic stool segmentation.
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