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Abstract: The distribution of the population is an essential aspect of addressing social, economic,
and environmental problems. Gridded population data can provide more detailed information
than census data, and multisource data from remote sensing and geographic information systems
have been widely used for population estimation studies. However, due to spatial heterogeneity,
the population has different distribution characteristics and variation patterns at different scales,
while the relationships between multiple variables also vary with scale. This article presents a
stepwise downscaling approach in that the random forest regression kriging technique is used to
downscale census data to multi-resolution gridded population datasets. Using Nanjing, China, as the
experimental case, population distribution maps were generated at 100 m, 500 m, and 1 km spatial
resolution, and compared with the other three downscaling methods and three population products.
The results demonstrated the produced gridded population maps by the proposed approach have
higher accuracy and more accurate details of population distribution with the smallest mean absolute
error (MAE) and root mean squared error (RMSE) values of 1.590 and 2.189 ten thousand people (over
40% reduction). The artificial land and road data are the two most important indicators of population
distribution for the regional random forest modeling in Nanjing. Our proposed method can be a
valuable tool for population mapping and has the potential to monitor sustainable development goals.

Keywords: remote sensing; population mapping; multiple scales; random forest kriging

1. Introduction

The spatial distribution of the population and its changes have been an essential
topic of urban geography, economics, and urban planning research, which have received
widespread attention [1–3]. Traditional spatial population data are mainly derived from
field surveys, in the case of Chinese census data, a national household survey is conducted
every 10 years and a 1% sample survey is conducted every 5 years [4]. While authoritative,
systematic, and standardized, these data are often not up-to-date, and the demographic
statistics cannot fully reflect the actual spatial distribution of the population. As a result,
they cannot effectively reveal the spatial variability of population distribution within cities.
The population spatialization provides a visual and multi-scale representation of the actual
distribution of the population [5,6], which serves as a refinement and supplement to the
statistical data. Understanding the spatial distribution of the population at a finer spatial
scale is of great value for many applications, such as urban expansion and population
migration, disaster prevention and relief operations, resource allocation, and sustainable
development assessment [7,8]. Multi-resolution gridded population data are the basis for
analysis at different resolutions, such as tracking United Nations Sustainable Development
Goals (SDGs) using the population data of different spatial resolutions [9,10].
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With the continuous development of population spatialization research, various meth-
ods have been developed to downscale the census data [11,12], and a series of gridded
population products have emerged [13–15]. The spatialization methods can be summarized
as spatial interpolation and statistical modeling [16], as well as hybrid methods. Spatial
interpolation is the conversion of census data from a source unit (i.e., census unit) to a target
spatial unit, including point interpolation [17] and areal interpolation [18]. Based on the
assumption that the population distribution decays with distance, the point interpolation
method is used to map the population distribution by interpolating the selected control
points within the region, such as kernel interpolation [19]. The areal interpolation maps pop-
ulation distribution by multiplying the population density within different units with their
corresponding areas, such as the areal weighting method and dasymetric mapping [20],
which assumes a uniform or proportional distribution of population within administrative
units. The areal weighting method has been applied to generate the Gridded Population
of the World, a global 1 km population product [21]. Subsequently, auxiliary data were
incorporated into spatial interpolation as control points [22] or a basis for the division of
different population density regions [23]. However, the assumptions of spatial interpolation
methods could make them prone to errors when applied in regions of heterogeneity.

Compared with spatial interpolation, the statistical modeling method can better utilize
the spatial distribution information of the population in multisource data by establishing
the relationship between the population and the auxiliary variables [24]. Common statistical
modeling includes linear regression models (e.g., multiple linear regression [25,26], spatial
regression models (e.g., geographically weighted regression (GWR) [27]), and artificial
intelligence algorithms (e.g., extreme gradient boosting (XGboost), random forest and
convolutional neural network [7,28]). However, linear models assume a linear relationship
between the population and the auxiliary variables, making it difficult to capture the
spatial heterogeneity of population distribution [29]. Although the GWR model takes
spatial heterogeneity into account, sometimes invalid or meaningless predictions would
occur, such as appearing in negative populations in rural areas [30]. Meanwhile, artificial
intelligence algorithms are widely used in population mapping due to their strong ability
to mine relationships between multiple variables [31,32]. Among them, random forest is an
integrated learning method consisting of multiple decision trees less prone to overfitting,
which is the most popular method used for mapping population distribution [16,33].
Worldpop releases the global gridded population maps at two spatial resolutions (100 m
and 1 km) each year by employing a random forest model [34]. Moreover, the hybrid
methods generally integrate different methods to improve the prediction performance by
exploiting the advantages of the different methods, such as interpolation dasymetric and
statistical dasymetric [35–37], which combine spatial interpolation and statistical modeling
with dynamic mapping. For example, Roni et al. [38] proposed a population disaggregation
model by incorporating GWR into a dasymetric model, which performed better than
traditional dasymetric mapping.

Most population mapping studies have focused on the study of models and modeling
factors, which are the two most important aspects of modeling populations [8]. The men-
tioned statistical modeling methods usually establish a regression model at the census unit
scale [39], which is considered applicable on both the source and target scales. However,
due to spatial heterogeneity being a common phenomenon in the spatial distribution of
population, the relationship between the population and multiple geographical variables
would change with scale [40]. In the case of scale variation, there is a mismatch between the
training data and the predicted data, resulting in low accuracy of population mapping [41].
Meanwhile, dominant auxiliary variables for population density distribution also vary at
different scales. On the other hand, with the increasing abundance of auxiliary data for
population spatialization, the combination of multiple natural and socioeconomic factors
has become a trend in population mapping [8,29], including remotely sensed data (e.g., land
cover/land use, vegetation information, and night light) and geospatial data (e.g., points
of interest (POIs), road and transportation). As mentioned, machine learning methods
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could capture the complex non-linear relationships that exist between the population and
multiple geographical factors [7,42]. However, as errors in all input data are propagated
cumulatively during the downscaling process, this may significantly affect the accuracy of
the final prediction [40]. Considering the error propagation contribution of an auxiliary
variable might be greater than its contribution to modeling, there would be little discrep-
ancy in the performance of the model on the training and test datasets before and after the
reduction in variables. Hence, it might be possible to enhance prediction accuracy by choos-
ing optimal variables. In addition, although global and regional population products have
emerged at different resolutions, differences in input data and modeling methods make
these gridded population data significantly different in terms of accuracy and quality [6,43].
Fewer population products are currently available with multiple resolutions.

Hence, this paper designed a stepwise downscaling framework based on the random
forest regression kriging to generate a multi-resolution gridded population. For each
different spatial resolution, the random forest regression kriging model was established by
selecting the corresponding optimal auxiliary variables. This strategy reduces input errors
by selecting the most relevant variables and narrows the mismatch between the training
and predicted data through stepwise downscaling, resulting in more accurate downscaled
results. The established random forest regression kriging models of the previous coarse
spatial resolution were employed in the following finer spatial resolution. The proposed
stepwise downscaling approach was validated in Nanjing, China, using sixth and seventh
national census data (i.e., 2010 and 2020 census data) to generate population distribution
maps at 1 km, 500 m, and 100 m spatial resolution. To compare the multi-resolution
population mapping of 2010 and 2020, three methods and three population products were
used, including WorldPop, LandScan, and China population mapping. Furthermore, the
predicted multi-resolution population data were also used to explore one of the SDGs
indices to discuss their potential applications.

2. Materials and Methods
2.1. Study Area

Nanjing is the capital city of Jiangsu Province, located at 118◦22′~119◦14′E and
31◦14′~32◦37′N, in the middle of the lower reaches of the Yangtze River and southwest
of Jiangsu Province, China (see Figure 1). Nanjing has a total area of 6597 km2, with a
main urban area of 243 km2, which is long in the north-south direction and narrow in
the east-west direction. As of 2020, Nanjing has 11 districts and 9.31 million (referred to
Nanjing statistics agency), including Xuanwu District, Qinhuai District, Jianye District,
Gulou District, Pukou District, Qixia District, Yuhuatai District, Jiangning District, Liuhe
District, Lishui District, and Gaochun District. Compared to 2010, the population has in-
creased by 1.31 million, and the Baixia and Xiaguan districts have been abolished. It has a
subtropical monsoon climate [44] and is a hilly and mountainous terrain with low hills and
gentle hills. With the rapid development of regional integration in the Yangtze River Delta,
Nanjing has emerged as a mega-city and a sub-center city within the Yangtze River Delta
Economic Zone. Detailed population information within administrative units is crucial for
the urban planning and sustainable development of Nanjing. In this paper, we define the
study domain as Nanjing City, which ranks among the top 10 municipalities and provincial
capitals in China in terms of regional GDP [45].
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Figure 1. Nanjing Study area.

2.2. Materials and Data Processing

Based on the statistics of the district from the Nanjing statistics agency and the official
websites of each district, we have collected 2010 and 2020 Nanjing census data (shown in
Figure 2), including complete population data for each district, complete population data
for each administrative street zone in 2010 (121 administrative streets), and population
data for partial administrative street zone in 2020 (39 of 107 administrative streets until
22 February 2023). Although several street-level population data are also publicly available
on other websites, this study only considers information from authoritative sources. The
auxiliary geographical factors influencing the population were collected from two types of
data sources: geospatial data and remote sensing data. Table 1 provides the list of datasets
and sources used in this study. All auxiliary data were generated and resampled to three
spatial resolutions, 1 km, 500 m, and 100 m.

2.2.1. Geospatial Data

Geospatial data includes basic geographic data and OpenStreetMap (OSM) data. Basic
geospatial data were obtained from the National Geomatics Center of China and the
Department of Natural Resources of Jiangsu Province, such as administrative boundaries,
water area, railway, and road. The rasterized water data at 1 km, 500 m, and 100 m
were used as masks for population predictions at corresponding resolutions for 2010 and
2020. The OSM contains more detailed information about the city, which helps in making
population predictions. The POIs, transportation (Trans), railway (Rail) and road (Road)
were extracted for the study area in 2013 and 2020. The 2013 data were used as a proxy
for the 2010 data. To obtain the final railway and road data, we merged information from
basic geospatial data and OSM data. The kernel density analysis was applied to POIs,
transportation, railway, and road. The density layers of these four variables with various
bandwidths were used to establish the random forest models by combing other remote
sensing auxiliary variables. The optimal bandwidth for kernel density estimation was
2500 m in this experiment, corresponding to the highest accuracy model accuracy.
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2.2.2. Remote Sensing Data

The remote sensing product utilized in this study comprises six components, including
DEM, vegetation, land surface temperature (LST), night light (NL), land cover (LC), and
WorldPop. We acquired the DEM data from the ASTER Global Digital Elevation Model
V003 product, which has a spatial resolution of 30 m. The slope direction analysis was
carried out to obtain four slope directions: shady, sunny, semi-shady, and semi-sunny
slopes, denoted from Aspect1 to Aspect4 and slope analysis was carried out to obtain the
percentage of areas with slopes no greater than 5◦, marked as Slope5. The vegetation and
LST data were obtained from the MODIS products, MOD11A1 and MOD13A2. The different
vegetation indices (VIs), NDVI, EVI, and NIRv were extracted as auxiliary variables. The
daily LST and 16-day vegetation indices were synthesized as annual maximums in 2010 and
2020, respectively. The NL data with a spatial resolution of 500 m was obtained from a
global NPP-VIIRS-like NL product [46]. The average nighttime light index (NLave) and
compounded nighttime light index (CNLI) [47] were extracted as auxiliary variables. The
LC data were obtained from the GlobeLand30 product with a spatial resolution of 30 m
(http://www.globallandcover.com/, accessed on 19 June 2022). Seven LC types occur
in the study area, including cropland, forest, grass, wetland, water, artificial land, and
bare land, denoted from LC1 to LC7, respectively. The proportion of each land cover type
was employed as an auxiliary variable with different spatial resolutions. The WorldPop
global population data set (https://hub.WorldPop.org/, accessed on 8 June 2022) was a
widely used gridded population counts data provided by the University of Southampton
at two spatial scales of 3 and 30 arc-seconds. The WorldPop data were resampled to 1 km
and 100 m, and then employed to compare with the downscaled population predictions.
The LandScan global population database of 30 arc-seconds (https://landscan.ornl.gov/
landscan-datasets, accessed on 24 February 2023) and China Population mapping of 100 m
generated by Ye et al. [48] were also employed to compare with the predicted gridded
population results.

http://www.globallandcover.com/
https://hub.WorldPop.org/
https://landscan.ornl.gov/landscan-datasets
https://landscan.ornl.gov/landscan-datasets
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Table 1. List of datasets and sources used in this study.

Datasets Sources Time Spatial
Resolution Indicators Resampling

Census data Nanjing Government,
China

2010
2020

District level
Street level / /

WorldPop WorldPop
Mainland China

2010
2020

3 arc-seconds
30 arc-seconds / 1 km × 1 km

100 m × 100 m

LandScan LandScan
Mainland China

2010
2020 30 arc-seconds / 1 km × 1 km

Population mapping Ye et al. [48] 2010 100 m / 100 m × 100 m

OSM data OSM project 2013
2020 Vector POIs, Trans,

Rail, Road

Street level
1 km × 1 km

500 m × 500 m
100 m × 100 m

Basic geospatial data

National Geomatics
Center of China 2021 Vector Water area, Rail,

Road, Partial POIs

Department of Natural
Resources of

Jiangsu Province
2019 Vector Rail, Road,

Boundary

DEM ASTER Global Digital
Elevation Model V003

2010
2020 30 m Raster

Four slope
directions,
Slope ≤ 5◦

Vegetation MOD13A2 2010
2020 1 km Raster Annual maximum

NDVI, EVI, NIRv

LST MOD11A1 2010
2020 1 km Raster Annual

maximum LST

Night light Global NPP-VIIRS-like
NL product

2010
2020 500 m Raster Nlave, CNLI

Land cover GlobeLand30 2010
2020 30 m Raster

Cropland, forest,
grass, wetland,
water, artificial
land, bare land

2.3. Stepwise Downscaling

To address the problems of dynamic relationships at different scales in the downscaling
process, this study describes a stepwise downscaling strategy for gridded population
distribution mapping at multiple resolutions. Given the spatial resolution of auxiliary data
on natural factors used in this study, we employed the stepwise downscaling approach
to generate gridded population predictions at three resolutions. These predictions at
1 km, 500 m, and 100 m resolutions provide a more detailed representation of population
distribution within administrative units. The method and the specific flowchart were
presented in the following sub-sections. In this study, the methods and analyses were
mainly implemented using the R software.

2.3.1. Stepwise Downscaling Model

The downscaling strategy mainly repeats three steps: (a) establish the regression model
at the coarse resolution and estimate the relative importance of each variable; (b) perform
the regression model with selected covariates at the finer resolution; (c) correct the simulated
population. The random forest regression kriging method is used repeatedly to downscale
population distribution from an administrative unit scale (administrative street zone) to
multiple resolutions (1 km, 500 m, and 100 m). Random forest, as a nonparametric method,
has been widely applied to classification [49] and regression, which integrates multiple
tree models trained from sample data. Regression kriging is a hybrid technique that uses
kriging to interpolate the residuals of regression models. The random forest regression



Remote Sens. 2023, 15, 1947 7 of 22

kriging model, as a regression-kriging form improves the predictions from the random
forest regression model by using kriging to interpolate the residuals of the random forest
models [50].

Let Z(HC
J) and Xk(HC

J) be the population and corresponding k ancillary variables at
coarse unit or pixel HC

J, and Xk(HF
j) be the ancillary variables at finer pixel HF

j. The random
forest regression model between Z(HC

J) and Xk(HC
J) can be established and denoted as

fCRF, which would also perform the predictor variable’s relative importance. Based on
ensuring the performance of the regression model, the optimal variables can be selected
for regression modeling to reduce the error induced by input data according to the rank of
the predictor variable’s relative importance. The finer-resolution trend component of the
population would be estimated by bringing selected predictor variables Xk(HF

j) into the
corresponding regression model fCRF. Meanwhile, through the original value and predicted
value of the population, the regression residuals at coarse resolution can be obtained from
their differences, which would be interpolated into finer-resolution pixels by using the
ordinary kriging method. Then the predicted population Z(HF

j) at finer resolution using
random forest regression kriging can be expressed as:

Z(H F
j) = f C

RF(X k(H F
j))+∑N

J=1 λJ [Z(H C
J) − f C

RF(X k(H C
J))], (1)

where λJ is the weight assigned to Jth neighboring unit or pixel for the estimated value in
the kriging method.

In population mapping, the census data need to be disaggregated to the pixel scale.
Hence, the population density distribution should be controlled by the census data at the
administrative unit scale. Similarly, for the stepwise downscaling, finer spatial-resolution
population data are obtained from the coarse spatial-resolution data. The sum of values
of the covered finer pixels should be consistent with the corresponding coarse pixel. It is
necessary to adjust the simulated gridded population according to the actual population
at the administrative unit and coarse pixels. In this study, the census data at the district
level and predicted population at coarse resolution were employed to adjust the simulated
population derived from Equation (1). The corrected population at the pixel level is
shown as:

ZP(H F
j) =

POPupper

∑
NFupper
m=1 Z(HF

m)
×Z(H F

j), (2)

where Zp(HF
j) represents the corrected population of pixel HF

j, Z(HF
j) is the corresponding

predicted value of the grid HF
j before correction, POPupper is the statistical population of

an administrative district zone or the predicted gridded population, NF
upper is the number

of pixels at F resolution within the administrative district zone or the coarse pixel, and the
denominator is the total predicted gridded population of the corresponding coarse zone.

The population mapping at different spatial resolutions can be obtained by reusing
Equations (1) and (2). A three-step downscaling strategy was employed to generate grid-
ded population data at 1 km, 500 m, and 100 m. First, the statistical population data of
administrative street units were downscaled to a 1 km spatial resolution, which can be
estimated as followed:

ZP(H 1km
j) =

POPcensus

∑N1kmcensus
m=1 Z(H1km

m)
×

[
f street

RF(X k(H 1km
j))+∑N

J=1 λJ [Z(H street
J)− f street

RF(X k(H street
J))]

]
. (3)

Second, the above population predictions at a 1 km spatial resolution were downscaled
to a 500 m spatial resolution, which can be written as:

ZP(H 500m
j) =

POP1km

∑N500m
1km

m=1 Z(H500m
m)
×

[
f 1km

RF(X k(H 500m
j))+∑N

J=1 λJ [Z(H 1km
J)− f 1km

RF(X k(H 1km
J))]

]
. (4)
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Then, the above population predictions at 500 m spatial resolution were downscaled
to 100 m spatial resolution, where Zp(H100m

j) is the predicted population distribution value
of pixel H100m

j at 100 m resolution:

ZP(H 100m
j) =

POP500m

∑N100m
500m

m=1 Z(H100m
m)
×

[
f 500m

RF(X k(H 100m
j))+∑N

J=1 λJ [Z(H 500m
J)− f 500m

RF(X k(H 500m
J))]

]
. (5)

2.3.2. Flowchart of Multi-Resolution Population Mapping

In this experiment, 23 variables derived from six products were employed as the
ancillary variables, including DEM, Aspect1, Aspect2, Aspect3, Aspect4, Slope5, LST,
NDVI, EVI, NIRv, LC1, LC2, LC3, LC4, LC5, LC6, LC7, NLave, CNLI, POIs, Trans, Rail,
and Road. All indicators were preprocessed as described in the data description. In the
experiments, considering that there was no population in the water area, population
values for water bodies were not included. By repeating the regression and interpolation
model, maps of population distribution predicted by multiple linear regression (MLR),
random forest regression (RF), multiple linear regression kriging (MLRK) and random
forest regression kriging (RFRK) were produced. Random forest regression was also used to
sort the predictor variables by their relative importance, and then the top-ranking indicators
were selected for the regression model. The library packages “randomForest” and “gstat”
were used to implement the RF and kriging methods [51,52]. In the RF model, mtry and
ntree were the two crucial parameters which should be optimized [53]. In this study, the
value of mtry was set from 1 to 23, and ntree was set as 5, 20, 50, 100, 200, 300, 500, and
1000. Finally, mtry was taken as 4 or 2, whereas the ntree was taken as 500. Given the small
amount of street-level census data collected for 2020, two years of data were combined
together for regression modeling in the first step of stepwise downscaling. In all regression
modeling, 75% and 25% of samples were assigned as the training set and testing set. The
R-squared for the two regression models (i.e., RF and MLR) was greater than 0.7 for both the
training and testing datasets, with p-values less than 0.01, indicating that the modeling was
valid. The multi-resolution population mapping procedure is shown in Figure 3, including
the brief data processing, stepwise downscaling, and validation processes. The research
mainly comprises the following steps.

(Step 1): Geospatial data (i.e., census data, basic geographic data, and OSM data)
and remote sensing data (i.e., MODIS, ASTER, GlobeLand30, NPP-VIIRS-like NL, and
WorldPop) were integrated to construct indicators by using kernel density estimation
(KDE), slope and aspect analyses (SAA), annual maximum value composite (AMVC), index
calculation (ICA), and masking, resampling.

(Step 2): The variable importance analysis (VIA) was realized by random forest at
administrative street units. Based on the census data at administrative street units and
the top-8 effective indicators (shown in Figure 3), MLR, RF, MLRK, and RFRK (Equation
(3)) were developed to estimate the 1 km population distribution, which was corrected by
administrative district census data.

(Step 3): The predictor variable’s relative importance was calculated by random forest
at 1 km resolution to select effective indicators, including top-7 indicators. Based on the
relationship between effective indicators and 1 km population, MLR, RF, MLRK, and RFRK
(Equation (4)) were developed to estimate the 500 m population distribution, which was
corrected by 1 km corrected population.

(Step 4): The predictor variable’s relative importance was calculated by random forest
at 500 m resolution to select effective indicators for two downscaling models, including
top-5 indicators. MLR, RF, MLRK, and RFRK (Equation (5)) were developed to estimate the
100 m population distribution, which was corrected by a 500 m corrected population.

(Step 5): To verify the accuracy of the results, the predicted population maps at grid
scales (i.e., 1 km, 500 m, and 100 m) in 2010 and 2020 were counted to the street scale
for comparison with the actual statistical community population and compared with two
WorldPop global population data sets at 1 km and 100 m resolutions, two 1 km LandScan
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global population database and 100 m China population mapping. Four classical statistical
metrics were calculated for each gridded population map, including mean absolute error
(MAE) (ten thousand people), root mean square error (RMSE) (ten thousand people), the
RMSE divided by the mean census unit count (%RMSE) [34], and correlation coefficient (R).
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3. Results
3.1. The Results of Indicators Selections

In the experiment, the indicator importance of the independent variables was analyzed
in each step of the stepwise strategy by random forest regression method to select the
optimal variables for subsequent regression models. The feature importance of the selected
independent variables for three steps were displayed in Figure 4.
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All of the 23 variables for the 157 administrative street zones were used for fitting
and validating the RF model at the street scale. The feature importance of the top-10
variables in three steps is shown in Figure 4. The indicators with an importance greater
than five were selected as independent variables. In the first step, there are eight indicators
with an importance greater than 5. The variance explained in establishing the model
for population prediction of top-8 indicators at the street scale was 85.94%. These top-8
indicators were employed as the ancillary variables to establish the regression models to
generate 1 km predictions. LC6, Road, LC1, and transportation (Trans) are the four most
important predictors. Among them, the indicator importance of the LC6 is 15.2, and the
following variables are Road, LC1 and, Trans with values of 13.4, 12.7, and 12.4. If these
top-4 indicators were not involved in the regression model training, the model’s accuracy
would drop by more than half. There are seven indicators with importance greater than
5 in Figure 4b; hence, the top-7 indicators were selected at 1 km spatial resolution in the
second step, which would be used as the ancillary variables to establish the regression
models to generate 500 m predictions. These seven predictors explained 86.12% of the
variance of predicted population distribution. At 500 m spatial resolution, the indicator
importance of the selected ancillary variables for the third step is displayed in Figure 4c.
The top-5 indicators were chosen for establishing the regression models of 100 m resolution,
of which the variance explained was 80.57%. LC6 and Road rank in the top three in each
step. If both Road and LC6 data did not participate in the model training, the model’s
accuracy would decrease by more than 20% in every modeling. Roads serve as a vital
means of communication between regions, facilitating the migration of resources, including
the population [8]. Artificial land, on the other hand, reflects human activity and is closely
linked to population distribution. Therefore, the regression model that combines Road and
LC6 data is more effective in estimating population distribution at all three resolutions.

3.2. Gridded Population Mapping

The selected indicators were taken as independent variables to establish the downscal-
ing models in the corresponding step. After the stepwise downscaling with three steps, the
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gridded multi-resolution population maps were generated using different models at 1 km,
500 m, and 100 m spatial resolutions for the years 2010 and 2020.

The spatial distribution of the population for the three spatial resolutions in both
years is shown in Figures 5 and 6. For all downscaled maps, there is a clear concentration
of population, mainly in the central part of the city, with a trend of decreasing from the
central city to the surrounding area, which is consistent with the distribution of census
data. In 2010, the population was mainly concentrated in the main urban area consisting of
Gulou, Xuanwu, Qinhuai, Baixia, Xiaguan, and Jianye districts. Although the population
in 2020 remains concentrated in the current main urban area, there has been a significant
decrease in population in the city’s center. Instead, there has been a notable spread of
population from the center to the surrounding areas, accompanied by the emergence of
sub-centers. These areas with densely distributed populations were geographically and
economically well-situated for people to live, engage in economic activities, and carry out
other daily tasks.

The values of predictions were classified into nine classes for displaying the spatial
distribution of the population; however, the range of values for each downscaled result was
different. The ranges of values for the RF-based downscaled results were less than the MLR-
based models’ ranges. The latter had larger order of magnitude of the maximum values
at three different resolutions with less variation. Compared to the RF-based predicted
population maps, the predicted results using MLR and MLRK models show less spatial
variation within districts and exhibit more distinct district boundaries in both years (see
Figures 5 and 6), which could easily lead to underestimation and overestimation, and
fail to identify the urban sub-centers. The results from the RFRK model have the largest
spatial difference and also revealed the spatial boundaries and could be able to reflect
the population clustering phenomenon outside the main urban area, which is particularly
evident at 1 km and 500 m resolutions, such as Moling and Dongshan streets in Jiangning
District of 2020. The identification of densely populated and sparsely populated areas
appears to be largely the same for two RF-based downscaling models at three spatial
resolutions. The spatial distribution of the population in Nanjing predicted in this study is
consistent with the results of the previous study [54]. However, the gridded population
data based on RFRK have more detailed information due to the combined effect of residual
interpolation. The population density map can be widely used in tasks such as demographic
migration, decision-making, spatial planning and emergency response in Nanjing. The
following validation further demonstrates the improved performance of the RFRK method.

3.3. Accuracy Assessment

The population spatialization results predicted by four downscaling models at 1 km,
500 m, and 100 m resolutions were counted to the administrative street scale. The accuracy
of various downscaled results for 2010 and 2020 was verified using the street demographic
population, respectively.

Table 2 shows the calculated four classical statistical metrics for each gridded pop-
ulation map at different spatial resolutions in each year. Overall, the predictions of the
population by using the RFRK method had the highest accuracy, followed by the use of RF
and MLRK, with the worst accuracy achieved using MLR. At three different spatial resolu-
tions, the 1 km predictions had a higher accuracy than the 500 m and 100 m downscaled
results, and the 1 km population distribution map derived from the RFRK model has the
highest accuracy in predictions of all cases. Figure 7 displays the average values of four
comparison metrics for different downscaling models in different years. The RFRK-based
stepwise model produces more accurate predictions than others with an average MAE
value of 1.311, an average RMSE value of 1.867, an average %RMSE value of 0.275, and
an average R-value of 0.917 in 2010, taking values of 1.869, 2.510, 0.334 and 0.874 in 2020,
respectively. For both years, the RFRK approach outperforms the other three downscaling
approaches, showing the smallest MAE, RMSE, and %RMSE values of 1.590, 2.189, and
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0.304, respectively, and the largest R-value of 0.895 on average. This resulted in a reduction
of more than 40% in the first three statistical metrics and an increase of 13% in R.
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Table 2. Four statistical metrics for each gridded population map at different spatial resolutions in
2010 and 2020.

2010 2020

MAE RMSE %RMSE R MAE RMSE %RMSE R

1 km

MLR 5.020 11.259 1.656 0.085 4.709 6.320 0.842 −0.031

RF 1.485 2.008 0.295 0.903 1.884 2.613 0.348 0.860

MLRK 5.008 11.216 1.649 0.086 4.707 6.318 0.841 −0.031

RFRK 1.271 1.815 0.267 0.922 1.790 2.452 0.327 0.880

500 m

MLR 4.748 10.441 1.535 0.095 4.696 6.207 0.827 0.008

RF 1.548 2.082 0.306 0.895 2.003 2.688 0.358 0.852

MLRK 4.728 10.367 1.524 0.098 4.695 6.206 0.826 0.008

RFRK 1.329 1.903 0.280 0.913 1.898 2.516 0.335 0.873

100 m

MLR 4.744 10.378 1.526 0.100 4.724 6.278 0.836 −0.009

RF 1.553 2.076 0.305 0.896 2.032 2.750 0.366 0.845

MLRK 4.727 10.304 1.515 0.102 4.722 6.277 0.836 −0.009

RFRK 1.333 1.884 0.277 0.915 1.919 2.562 0.341 0.868
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3.4. Comparison with Population Products

The 1 km and 100 m WorldPop, 1 km LandScan products and 100 m China population
mapping were employed to compare with the RFRK-based predicted gridded population
of the corresponding resolutions. Table 3 presents the statistical metrics used for comparing
the aggregated gridded population with census data, as well as the improvements achieved
by RFRK-based predictions in comparison to other data.

As shown in Table 3, it is evident that both WorldPop products and China population
mapping outperform the LandScan database. Specifically, China population mapping ex-
hibits the highest accuracy at 100 m resolution, while WorldPop yields the highest accuracy
at 1 km resolution. The accuracy of 1 km WorldPop products is better than that of 100 m in
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both years. At the two spatial resolutions, the average RMSE values of the WorldPop prod-
ucts are 3.262, and 4.747 in 2010 and 2020, respectively, and the MAE values are 2.235 and
3.439, respectively. To analyze the differences between population products and census
data, the absolute error between census data and aggregated population predictions of
1 km and 100 m resolutions were calculated at administrative street zones in 2010 and 2020
using WorldPop products as examples, as shown in Figure 8. The RFRK-based population
datasets are better than the WorldPop datasets, which appeared to have more overesti-
mations and underestimations. Compared to the three population products, the average
MAE values of RFRK-based predictions decreased by 1.259, 2.277 and 1.435, respectively,
and average R values increased by 0.206, 0.478 and 0.011, respectively. Each prediction of
1 km and 100 m from the RFRK method has significant improvements with more than a
40% decrease in MAE, RMSE and %RMSE, which means that the designed stepwise RFRK
downscaling model has a good predictive ability.
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Table 3. Four statistical metrics for 1 km and 100 m WorldPop products in Nanjing of 2010, 2020, and
both years.

WPop 1 km WPop 100 m LPop CPop Improvements of RFRK

2010 2020 2010 2020 2010 2020 2010 Wpop LPop CPop

MAE 2.231 3.753 2.238 3.124 2.953 4.661 2.768 ↓ 1.259 ↓ 2.277 ↓ 1.435

RMSE 3.231 5.179 3.292 4.314 4.321 6.319 3.677 ↓ 1.826 ↓ 3.186 ↓ 1.793

%RMSE 0.475 0.690 0.484 0.575 0.635 0.841 0.541 ↓ 0.253 ↓ 0.442 ↓ 0.264

R 0.820 0.509 0.815 0.617 0.587 0.260 0.904 ↑ 0.206 ↑ 0.478 ↑ 0.011

Note: WorldPop, LandScan and China population mapping are noted as WPop, LPop and CPop. The arrows ↓
and ↑ denote increase and decrease, respectively.

4. Discussion

In order to further discuss the performance of the developed stepwise downscaling
method, we analyzed the influences of variables which also made a comparison using the
XGBoost method. The errors in stepwise downscaling were discussed which might also be
responsible for the differences between methods. Additionally, we explored the potential
application of the generated gridded population for monitoring one of the sustainable
development goals (SDGs).

4.1. The Influences of Variables

The spatial distribution of the population is influenced by both natural and socioeco-
nomic conditions. In order to explore the feature importance of indicators at three spatial
resolutions, XGBoost [55,56] was also employed for the variable importance analysis based
on the generated gain scores. The gain scores of indicators for each step were displayed
in Figure 9. Comparing the importance of the indicators between the random forest and
XGBoost methods, the relative rankings of forest (i.e., LC2) and NIRv are significantly dif-
ferent. The forest is more important in Figure 9a and NIRv is more important in Figure 4a,
but both forest and NIRv characterize the vegetation condition. Although the ranking of
the importance of the indicators changes, the indicators at the top of the ranking remain
largely consistent in the two results from the random forest and XGBoost. In both analyses
of the importance of indicators, the variables related to DEM, slope, and aspect were of
low importance, which would illustrate that the influence of topographic factors was not
significant in Nanjing. This is probably because Nanjing is a hilly area dominated by low
hills and gentle hills; its topography is relatively flat, and the population distribution is
not obviously clustered in the low-lying areas of the plain. As shown in Figures 4 and 9,
the feature importance of NL data is not as high as expected, especially in predicting the
population distribution of 100 m resolution. On the one hand, the late overpass time of
NPP/VIIRS results in the phenomenon of light loss [57]. Areas without light will also have
a population distribution. On the other hand, the original NL data of 500 m were resampled
directly into 100 m, and the resampled 100 m NL data might have a large error which
would not reflect the population distribution effectively. The artificial land (i.e., LC6) and
the road appear to have highly important in all three scales, which are related to their close
association with human activity. The overall importance of social factors is higher than
natural factors in modeling, indicating a stronger correlation between social factors and the
spatial distribution of the population in Nanjing. This may be attributed to the fact that
Nanjing is the capital city of the province, and its economic and transport factors exert a
more significant influence on the distribution of the population.
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4.2. Errors in Stepwise Downscaling

The accuracy of downscaled predictions can be impacted by errors in input data and
models used, as noted in previous studies [40]. When comparing different methods, it
was observed that the MLR-based approaches had poor accuracy, especially with very
low R values. This could be due to the presence of large model errors. In the process of
downscaling, the regression relationship established at a coarse spatial resolution will be
applied directly to a finer resolution, under the assumption of scale invariance. However, if
the regression relationship at finer resolutions changes, the original regression model might
have difficulty in accurately characterizing the relationship between the variables, i.e.,
there may be large model errors, which would lead to a reduction in prediction accuracy
at high resolution. The gridded population data based on RF and RFRK outperformed
the WorldPop products which also used random forest, probably due to their uses of
stepwise modeling and higher-quality indicators. The stepwise modeling allows for the use
of different ancillary variables in each regression model, narrowing the range of scales for
the scale invariance of the model. The OSM data and night lighting data were applied in
both WorldPop and RF-based products; however, the latter integrated the basic geospatial
data (such as road and rail) with OSM and replaced the 1 km DMSP/OLS data with the
NPP-VIIRS-like NL product at a higher resolution of 500 m. The updated data sources
would better reflect the spatial heterogeneity of the population and improve the accuracy of
the downscaling model. In China population mapping, which is more accurate than 100 m
WorldPop, POIs data were obtained from Baidu Map, China’s largest mobile mapping
service provider, which typically provides more accurate data than OSM data for mainland
China. The poor performance of LandScan might be due to the fact that the modeling data
in China is from the provincial census [8]. Of all the gridded population data, the RFRK-
based population predictions are more accurate than all the others. The residual prediction
takes into account the spatial distribution characteristics of the variables after the regression
analysis, and stepwise modeling allows for the use of different ancillary variables in each
regression model, both of which might improve the accuracy of downscaling.

Moreover, in the stepwise downscaling process, the errors can propagate from the
previous step to the following steps and can influence the accuracy of the predictions for the
next steps. Reducing the errors in the input data of downscaling model is an effective way
to restrain error accumulation and thus improve the accuracy of the downscaled results. In
this study, on the one hand, the simulation results are corrected to reduce the input errors
in the next step of the downscaling process by improving the accuracy of the population
prediction in the previous step; on the other hand, the optimal auxiliary variables are
selected to reduce the error by controlling the number of input variables. However, there
are still some errors based on the downscaled results (as shown in Figure 8). Errors in
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both the downscaling model and the data used in the model will increase the error in the
downscaled predictions. More ways to reduce errors and eliminate error propagation need
to be explored in the future.

4.3. Potential Application of Gridded Population

The street-level and district-level census data show general trends in population dis-
tribution; however, they could not reflect the population information within administrative
units. The gridded population results provide more details of the spatial distribution
patterns of the population, such as the identification of the urban sub-centers. Combining
the results of the population predictions for both years, it is clear that the population is
spreading from the center to the surroundings, which coincides with the facts of Nanjing’s
urban expansion in recent years, as well as the built-up area of the city continuously ex-
panding. For example, the growth in the population of Luhe reflects the implementation of
Nanjing’s policy of cross-river development and development along the river.

In order to explore the potential applications of gridded population mapping, the
downscaled data were used to calculate the SDG 11.3.1 indicator for monitoring the rela-
tionship between urban expansion and demographic change from 2010 to 2020. SDG 11.3.1,
namely land use efficiency indicator, is the ratio of the land consumption rate (LCR) to
the population growth rate (PGR), denoted as LCRPGR, which has been widely used in
sustainability analysis of many regions [58,59]. As an initial exploration for future research,
the LCR calculation was simplified by replacing the urban built-up area with artificial land
information from the GlobeLand30 product. The LCR values at different resolutions were
obtained based on the changes in the artificial land in the two years. The district-level PGR
was calculated from the district census data, while the street-level PGR was calculated
using the 100 m downscaled population due to the absence of a street census. The LCRPGR
was figured out by combining the corresponding LCR and PGR at different resolutions,
which was divided into five classes, as shown in Figure 10.
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The closer the LCRPGR value is to 1, the more coordinated the relationship between
land expansion and population growth, indicating a more sustainable development. For
three resolutions, more than half of the zones or grids have LCRPGR values between 0 and
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2, i.e., 0 < LCRPGR ≤ 1 or 1 < LCRPGR ≤ 2, indicating that the PGR is greater than the LCR
and that the LCR is between one and two times the PGR. In Figure 10a, LCRPGR values
greater than 2 occur in Luhe, Lishui and Gaochun districts, revealing that land consumption
in these regions has increased dramatically and the LCR is much faster than the PGR.
LCRPGR greater than 2 at street zones is concentrated in four administrative districts in
Figure 10b, with the addition of Jiangning district compared to the district situation. The
coordination between the LCR and PGR at the street level is better in Jiangning than in the
other three administrative districts. This demonstrates the policy of building development
zones in Jiangning of Nanjing, which has gradually become an essential part of Nanjing’s
urban area. In Figure 10c, many grids with invalid values appear at 1 km spatial resolution.
This is because the artificial land, population and corresponding ratios might appear
close to zero at these grids, which would lead to invalid natural logarithm and division
calculations in LCR and PGR. For example, in the farmland areas of Chengqiao, Longtan,
Tangshan and Shiqiu, where the area of artificial land is zero in 2010 or 2020, the LCRPGR
values cannot be obtained in the corresponding regions (as shown in the blue circles in
Figure 10c). The 1 km LCRPGR shows that many grids have high values of LCR or PGR,
such as the purple circles in Figure 10c, including Qiaolin, Qilin and Lukou, which are
vigorously developed areas in Pukou, Jiangning and Lishui districts, respectively. For
regions with particularly high LCRPGR values, the sustainability of regional development
could be increased by accelerating population clustering through the proper incentives
and effectively controlling the intensity of urban expansion [60]. The results of the land
use efficiency analyses based on the gridded data all demonstrate the potential for the
application of the generated multi-resolution population mapping. Several improved SDG
11.3.1 indicators could be considered in the future to better reflect the land use efficiency.

5. Conclusions

This paper proposes a stepwise downscaling method based on random forest regres-
sion kriging, which takes into account the different relationships among variables and
varied degrees of indicators’ importance at different scales. At each step of the downscal-
ing process, a random forest model is re-established and optimal indicators are selected
through variable importance analysis. The impact of uncertainties in input variables is
reduced by choosing and decreasing the number of explanatory variables involved in the
regression model. The commonly used random forest algorithm is combined with residual
interpolation prediction based on ordinary kriging to improve the accuracy of downscaling
results. To demonstrate the effectiveness of this method, a three-stepwise RFRK model was
applied to downscale the street-level census data of 2010 and 2020 in Nanjing, China, using
23 indicators from six products as independent variables. The results of variable impor-
tance analysis show that artificial land and road data are the two most crucial indicators
at three resolutions, due to their close relationship to human activity. The downscaling
model combined with Road and LC6 data is more conducive to the predictions of pop-
ulation distribution. Comparison experiments with three other baseline methods (MLR,
RF, MLRK) and products (WorldPop, LandScan, and China population mapping) show
that the proposed stepwise RFRK method achieves better prediction accuracy than the
other baseline methods, with a reduction of more than 40% in MAE, RMSE, and %RMSE,
a 21% increase in R, and significant improvement in accuracy compared to WorldPop
products. This study demonstrates that the proposed method of fused multisource data
can effectively improve the accuracy of population mapping at high spatial resolution. In
future work, more socioeconomic data, such as building (e.g., average building height),
urban functional areas (such as residential, industrial, and commercial zones), and Tencent
location data, will be encouraged in downscaling modeling to enhance the accuracy of
population predictions. Additionally, the stepwise method can be extended to downscale
census data to fine-resolution populations, such as 10 m and 30 m, by combining it with
finer-resolution auxiliary variables.
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