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Abstract: Long-time-series climate prediction is of great significance for mitigating disasters; promot-
ing ecological civilization; identifying climate change patterns and preventing floods, drought and
typhoons. However, the general public often struggles with the complexity and extensive temporal
range of meteorological data when attempting to accurately forecast climate extremes. Sequence dis-
order, weak robustness, low characteristics and weak interpretability are four prevalent shortcomings
in predicting long-time-series data. In order to resolve these deficiencies, our study gives a novel
hybrid spatiotemporal model which offers comprehensive data preprocessing techniques, focusing
on data decomposition, feature extraction and dimensionality upgrading. This model provides a
feasible solution to the puzzling problem of long-term climate prediction. Firstly, we put forward a
Period Division Region Segmentation Property Extraction (PD-RS-PE) approach, which divides the
data into a stationary series (SS) for an Extreme Learning Machine (ELM) prediction and an oscillatory
series (OS) for a Long Short-term Memory (LSTM) prediction to accommodate the changing trend of
data sequences. Secondly, a new type of input-output mapping mode in a three-dimensional matrix
was constructed to enhance the robustness of the prediction. Thirdly, we implemented a multi-layer
technique to extract features of high-speed input data based on a Deep Belief Network (DBN) and
Particle Swarm Optimization (PSO) for parameter searching of a neural network, thereby enhancing
the overall system’s learning ability. Consequently, by integrating all the above innovative tech-
nologies, a novel hybrid SS-OS-PSO-DBN-ELM-LSTME (SOPDEL) model with comprehensive data
preprocessing was established to improve the quality of long-time-series forecasting. Five models
featuring partial enhancements are discussed in this paper and three state-of-the-art classical models
were utilized for comparative experiments. The results demonstrated that the majority of evaluation
indices exhibit a significant optimization in the proposed model. Additionally, a relevant evaluation
system showed that the quality of “Excellent Prediction” and “Good Prediction” exceeds 90%, and
no data with “Bad Prediction” appear, so the accuracy of the prediction process is obviously insured.

Keywords: long-time-series climate prediction; ELM learning; LSTM learning; multi-layer high-speed
feature enhancement; three-dimensional input conversion technology; PD-RS-PE data decomposition

1. Introduction

The mitigation of climate change stands out as one of the most pressing challenges
that humanity faces today. Climate change impacts can manifest in both positive and
negative ways, but with the passage of time, the negative impacts have come to dominate.
In different regions, the harmful impacts of climate change are observed in myriad forms,
ranging from ecological disruption and declining biodiversity to soil erosion, dramatic
temperature fluctuations, rising sea levels and global warming. Despite the intricacies
involved in predicting the effects of climate change on Earth, there is a broad scientific
consensus about its negative impacts [1,2]. Given the likelihood of long-term shifts in the
global climate, an understanding of how precipitation and temperature may respond to
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changes in climatic conditions in the coming decades could be exceeding valuable [3]. This
forms the key motivation for the present study.

There are several methodologies employed in climate prediction. We can categorize
them into five mainstream types:

(1) Empirical statistical method;
(2) Mathematical statistical method;
(3) Physical statistical method;
(4) Dynamic mode;
(5) Machine learning.

Next, we will describe the existing research results and characteristics of the above
five methods in paragraphs.

Empirical statistical methods are based on identifying relevant patterns of atmospheric
activity and climate change to predict corresponding outcomes [4]. Chryst et al. [5] pro-
posed a method for calculating correlation coefficients by segments, which aims to address
the presence of phases in the data and improve prediction accuracy. However, this approach
is not without limitations, as it is only applicable to climate data with obvious periodicity
or without complex relevancy.

Different from empirical statistical methods, mathematical statistical methods have
gained widespread use in weather forecasting, demonstrating high accuracy and reliability
that are highly dependent on the acquired data, which often follow data quality standards
and quality measures [2]. Figura et al. [3] take advantage of linear regression models with
historical groundwater and regional air temperature data to forecast the groundwater
temperature in three aquifers by the end of the current century. Several other similar
approaches can also be found in the literature [6–9].

In addition, a comparison and integration of two statistical methods have been ex-
plored to achieve higher accuracy in both regions [10]. In contrast to mathematical statistical
methods, physical statistical methods entail a specific significance-based procedure to select
factors. In particular, these methods rely on a system that characterizes the interconnected-
ness of atmospheric physical phenomena, from which the factors that meet the requirements
for climate-influencing effects are selected. To further improve the predictive capacity of
physical statistical methods, Cheng et al. [11] developed a conceptual model for the analysis
of physical images with higher clarity. The ultimate results rely on the identification of
certain factors chosen from an extensive set.

In spite of their usefulness, the aforementioned methods still face some challenges.
Firstly, they require manual intervention to achieve good results based on human experi-
ence, and secondly, their ability to perform in complex situations is limited. To address these
issues, the dynamic mode has emerged as an alternative approach based on understanding
the locale-specific flow in the Atmospheric Boundary Layer (ABL) for both short-term and
long-term predictions of atmospheric phenomena, such as the El Niño-Southern Oscillation
(ENSO) and wind variability. Modes such as IAP-OGCM and CCM3 can predict future
short-term climate change with promising results [12,13]. Meanwhile, computational fluid
dynamics (CFD) is also becoming a preferred approach for climate prediction due to ad-
vances in computing hardware and software. However, most existing studies leveraging
CFD have either considered idealized setups or a specific realistic situation while focusing
on a limited number of climate variables [14].

Numerous Machine Learning (ML) techniques have been proven robust, reliable and
efficient in dealing with sparse and multivariate climate datasets [15]. Support vector
machines (SVMs) are mainly effective in predicting linearly separable data, albeit with limi-
tations on general data influenced by the data size, parameters and kernel functions [16].
The increasing use of neural networks, which have stronger nonlinear mapping capa-
bilities, has led to an uptick in climate data prediction. For example, back-propagation
neural network algorithms have been employed to great effect in weather prediction [17].
Nonetheless, forecasting multi-dimensional time-series data such as climate change remains
a challenging task due to inherent non-linearities and non-periodic behavior. Echo State
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Networks (ESNs), in contrast to other recurrent neural networks, are a promising option
for online learning due to their lower requirements for training data and computational
power [18]. A statistical time series forecasting technique can also be developed based on
the autoregressive integrated moving average (ARIMA) model, which can generate annual
projections by integrating recent observations with long-term historical trends [19]. Several
other studies have also explored the use of neural networks in climate prediction. In [20],
the authors paid attention to analyzing the hidden neurons in a back-propagation-feed
forward neural network to identify the best pattern. Deshpande [21] took advantage of a
Multilayer Perceptron Neural Network for multi-step ahead predictions of a rainfall data
series and achieved optimal results in comparison with the Jordon Elmann Neural Net-
work, Self-organized Feature Map (SOFM) and Recurrent Neural Network (RNN). Wu [22]
considered enhancing prediction accuracy through both data-preprocessing techniques and
modular modeling methods, with the ANN-SVR and MSVR outperforming other models
in daily and monthly rainfall simulations. Some standards for network performance have
also been researched. In terms of evaluating network performance, Gupta [23] compared
different back-propagation network learning algorithms based on several criteria, such as
correlation, root mean square error (RMSE) and standard deviation. In addition, previous
research has studied intelligent algorithms such as the Extreme Learning Machine (ELM)
for modeling extreme values in climate prediction. Real-time monitoring of water quality
parameters is of utmost importance and, in this study, a new hybrid two-layer decompo-
sition model coupled with an ELM and Least Square Support Vector Machine (LSSVM)
was developed to improve the quality of this process. The model is based on a complete
ensemble empirical mode decomposition algorithm with adaptive noise and a Variational
Mode Decomposition (VMD) algorithm [24]. Another newly developed semi-supervised
ELM framework with a k-means clustering algorithm for image segmentation and a co-
training algorithm to enlarge the sample sets was used to classify agricultural planting
structure in large-scale areas, with relatively fast training, good generalization, universal
approximation capability and reasonable learning accuracy [25]. Furthermore, a Kernel
Extreme Learning Machine (KELM) based on a Cell-Penetrating Peptide (CPP) prediction
model was developed as an efficient prediction tool for identifying a unique CPP prior to
experiments [26]. Due to the time-series nature of climate data, LSTM has been widely used
in past prediction studies. To handle temperature data originating from body-mounted and
fixed sensors, a warning mechanism for temperature increase was developed by combining
a convolutional neural network (CNN) with LSTM. This mechanism exploits the contextu-
alization ability of CNN-LSTM to predict temperature changes in windows of 5–120 s [27].
Multi-input single-output and multi-input multi-output strategies, namely LSTM-MISO
and LSTM-MIMO, respectively, were carried out to predict accurate air temperature for
multi-zone building based on direct multi-step prediction with a sequence-to-sequence
approach [28]. The correlation between surface air temperature (SAT) and land surface
temperature (LST) based on land use was analyzed using the TensorFlow LSTM [29]. To
forecast the spatiotemporal variation of PM2.5, a hybrid model based on the deep learning
method that integrates graph convolutional networks with Long Short-Term Memory
networks (GC-LSTM) was proposed [30]. A deep learning-based method, namely the
Transferred Bi-directional Long Short-term Memory (TL-BLSTM) model, was proposed
for the prediction of air quality. This methodology framework utilizes a bi-directional
LSTM model to learn from the long-term dependencies of PM2.5 and applies transfer
learning to deliver knowledge learned from smaller temporal resolutions to larger temporal
resolutions [31]. LSTM-based deep neural networks with self-organizing feature maps
were adopted to achieve high-spatial-resolution sea surface temperature prediction [32].

Notwithstanding the effectiveness of the extant climate prediction methods, they
primarily concentrate on short-term forecasting. Given the inherent instability and volatility
of climate data, even the most refined and extensive climate model may suffer from
distortions when forecasting for longer periods. Specifically, despite the extensive use of
intelligent models in climate prediction, there are still several challenges that need to be



Remote Sens. 2023, 15, 1951 4 of 29

addressed, mainly including: (1) the current prediction method for climate data of the same
category lacks delicate data classification based on different time orders, which results in
sequence disorder; (2) there is a lack of effective methods to expand the dimensions of
training data to strengthen the robustness of the model; (3) a significant amount of input
data is often useless, which increases the difficulty in extracting characteristic data; (4) the
lack of optimized initial data hinders the interpretation of the model. As a consequence of
these defects, the focus of climate prediction has been mainly on short time series, leading
to shortcomings in the output of long time series. For the former three challenges, we can
conclude that adequate data preprocessing work is essential for the prediction of long-term
data. It contains three parts in this paper: dataset decomposition, feature extraction and
input conversion. For the latter, we can carry out an optimization model utilized for the
parameters in a neural network.

For dataset decomposition, to achieve high-precision forecasting, the proposed model
leverages two neural network algorithms with a novel decomposition approach for raw
data. The combination of these two features endows the proposed system with the ability
to make accurate long-term climate predictions.

For feature extraction, obtaining the most valuable information from long-term useful
data during the data training process is still a challenge. This paper proposed a combination
of a Deep Belief Network (DBN) with ELM and LSTM to assign the characteristic data of
DBN training to neural networks for calling more valuable information and improving the
accuracy of climate prediction.

For input conversion, during time-series prediction, it is common to employ the in-
dependent variable from the previous time to directly predict the dependent variable of
the future time using a linear-type input mode. A “rolling window” method is typically
utilized for data preprocessing in order to enhance the accuracy of air quality prediction.
Despite these efforts, the linear-type input mode persists. Therefore, this paper proposes a
novel approach utilizing a body-type input to a linear-type output mapping pattern. Com-
pared to the previous model, the model of our study achieves a substantial improvement
in prediction accuracy.

Moreover, for the optimization of parameters in a neural network, theoretically, the
improvement of ELM and LSTM’s training accuracy depends not only on a larger number
of hidden nodes but also on more appropriate initial values. To improve the quality
and accuracy of the prediction, this study utilized Particle Swarm Optimization (PSO) to
optimize ELM and LSTM to obtain the optimal initial threshold and weight.

To sum up, this paper stressed a novel hybrid spatiotemporal system for long-term
climate prediction. By using this model, decision makers and non-professionals can make
more accurate judgments and assessments of climate change in the future, climate analysts
can also use this as a means of analyzing long-term climate data to gain further insight into
the trends of global and local climate change in different periods. This system includes
a novel optimal-hybrid model called SS-OS-PSO-DBN-ELM-LSTME (SOPDEL) that in-
tegrates machine learning, an optimization algorithm, input-output remapping, feature
extraction and data decomposition. Machine learning techniques used in the model include
ELM and LSTM neural networks, while the optimization algorithm is based on PSO. Input-
output remapping is achieved through a three-dimensional input conversion technology in
a novel spatiotemporal-factor matrix, and feature extraction uses a DBN as preprocessing
for machine learning. Data decomposition employs a novel PD-RS-PE technology. To
validate the accuracy and stability of the proposed model, five models featuring partial
enhancements were discussed in this paper and three state-of-the-art classical models were
utilized for comparative experiments. The results showed that SOPDEL outperformed
the other models, improving four evaluation indices compared with traditional LSTM
prediction and reducing the cumulative error of long-time-series prediction. Moreover,
the proposed model’s excellent rate is attributed to the development of an evolution index
system of climate prediction.
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The main contributions and innovations of this paper are as follows: (1) A novel
optimal-hybrid model named SOPDEL was established, which integrates machine learning,
optimization algorithm, input-output remapping, feature extraction and data decomposi-
tion. This model represents a notable improvement in the forecasting quality of climate
data. (2) PD-RS-PE technology was proposed, which effectively divides data into a station-
ary series (SS) and oscillatory series (OS), allowing for the use of both smooth-predicting
characteristics of LSTM and extreme-predicting characteristics of ELM to improve the
accuracy of prediction. (3) A new type of input-output mapping mode was constructed
using a three-dimensional matrix composed of region, month and climate impact factors. In
this matrix, a shape-input-mapping linear output was employed to extract original climate
data step by step, which enhances the robustness of the prediction. (4) A method to extract
features of input data from ELM and LSTM was proposed, which enhances the learning
ability of the prediction system. In conclusion, our approach addresses key challenges such
as sequence disorder, weak robustness, low characteristics and weak interpretability to
achieve long-time-series climate prediction. The findings have important implications for
policymakers, urging them to promulgate relevant decisions to control the impacts of cli-
mate change. Furthermore, our methods have significant potential for application to other
long-time-series data due to their stability and extensibility in processing oscillatory series.

2. Materials and Methods
2.1. General Idea of This Paper

An overall flow chart of this paper is shown in Figure 1, and the process of the proposed
SOPDEL model is shown in Figure 2. It mainly includes five parts: datasets decomposition,
feature extraction, input conversion, optimization and final prediction through machine
learning. The proposed improvements to the intelligent prediction algorithm are twofold:
(1) the original data were decomposed, feature-extracted and dimension-remapped to be
well qualified for neural network training; (2) the weights and thresholds of the neural
network model were optimized to improve the convergence speed. The above-mentioned
enhancements aim to improve the model’s suitability for comprehensiveness and stability
prediction of climate data with long periodicity and oscillation. The study’s findings
suggest that the SOPDEL model is well suited for climate prediction processes and can
significantly improve their performance.

2.2. Data Acquisition by Remote Sensing

This study utilizes remote sensing techniques to collect climate data, including tem-
perature, rainfall and snowfall, for the raw materials of developing a machine-learning
model. The amount of solar radiation is measured using a pyranometer or sunshine meter.

(1) Temperature obtained by remote sensing: The meteorological satellite is equipped
with a remote sensor that captures sensing images, while a sensing instrument per-
forms inversion by measuring the range of thermal radiation. Various sensors are
employed to observe far-infrared bands and obtain pixel values, as different compo-
nents of the earth’s surface exhibit different radiation characteristics along bands. The
values are then converted into thermal infrared radiation values, and an appropriate
mapping is established between radiation values and the earth’s surface temperature
by using suitable models.

(2) Rainfall obtained by remote sensing: The method can be divided into infrared remote
sensing, passive-microwave remote sensing and active-microwave detection. Infrared
remote sensing retrieves surface precipitation intensity by utilizing the empirical
relationship between the cloud-top temperature and surface precipitation. Generally,
strong-precipitation clouds tend to have a lower cloud-top temperature. The widely-
used satellite-infrared-inversing precipitation data were developed by the prediction
center of the Atmospheric and Oceanic Administration of the United States according
to this principle. A GPI algorithm is more suitable for deep convective precipitation
and has poor expressiveness for stratus precipitation. Passive microwave remote



Remote Sens. 2023, 15, 1951 6 of 29

sensing employs two schemes for retrieving precipitation: the microwave-emission
scheme and the scattering scheme. The microwave-emission scheme inverts the
surface precipitation by observing low-frequency (e.g., 19 GHz) microwave radiation
emitted by precipitation particles. The principle behind the scheme is that, under the
lower radiation background, stronger precipitation and more liquid water particles in
the cloud will increase the brightness temperature of upward radiation. This scheme
has demonstrated good results on the ocean surface but not on land. In contrast, the
microwave scattering scheme retrieves precipitation by utilizing a high-frequency
(e.g., 85 ghz) signal of ice particles on the upper part of the cloud. The more ice
particles there are, the lower the upward-scattering-brightness temperature and the
stronger the surface precipitation. Although the microwave scattering scheme is more
indirect compared with the emission scheme, it can be used to invert land-surface
precipitation by establishing an empirical or semi-empirical relationship between the
precipitation rate and scattering signal according to the observation.

(3) Snowfall obtained by remote sensing: The method used is the same as that of measur-
ing rainfall. Raining or snowing is related to local temperature.

In the present study, VANCOUVER INT’L A, located in the southwestern region of
Canada, was chosen as the study area. The data used in the investigation were obtained
by applying the aforementioned methodology with monthly records of the highest tem-
perature, the lowest temperature, solar radiation, rainfall and snowfall from 1937 to 2020.
To facilitate the comparative analysis, the collected data were normalized, and the former
200 datasets are presented in Figure 3. These six key factors are considered to have a
significant impact on climate prediction.
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2.3. PD-RS-PE Technology for Data Decomposition

Obviously, the performance of intelligent algorithms varies with different input se-
quences. Thus, it is crucial to decompose climate data with respect to time coordinates,
which is referred to as “data decomposition”. In climate data, the wave crests and troughs
exhibit distinct changes, while the intermediate values remain relatively stable. Therefore,
separating the peak and valley values at both ends from the intermediate values can aid in
separating climate data according to their distinct properties. This novel approach is called
“PD-RS-PE technology” (refer to Algorithm 1).
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Algorithm 1. PD-RS-PE.

Input: original climate data HT, LT, RF
Output: decomposed climate data SS–HT, OS–HT, SS–LT, OS–LT, SS–RF, OS–RF
1. construct three figures with x-axis of month and y-axis of HT, LT, RF respectively
2. for each period of input do in figures
3. split variables with 12 sub-coordinates to n sub region
4. end for
5. for each sub region do in figures
6. get minimum value in peaks peamin1, peamin2, · · · peaminn
7. get maximum value in valleys valmax1, valmax2, · · · , valmaxn
8. end for
9. get peamin = min(peamin1, peamin2, · · · peaminn)
10. get valmax = max(valmax1, valmax2, · · · , valmaxn)
11. draw a line l1 crossing peamin and perpendicular to y-axis
12. draw a line l2 crossing valmax and perpendicular to y-axis
13. extract data with lower to l1 and upper to l2 → SS,

upper to l1 and lower to l2 → OS

The forecasting of stationary and oscillatory time series data by various neural net-
works can yield distinct outcomes. Given that climate data exhibit both types of series,
the need for a data decomposition approach arises. The proposed method involves parti-
tioning the data based on peak, valley, and intermediate values, resulting in the PD-RS-PE
technology. Subsequently, a combination of neural networks can be used to forecast climate
data, utilizing the specific properties of each network.

The steps are mainly divided into three steps:
Step 1: Take every 12 months as a period to describe the chart of the highest tem-

perature, lowest temperature and rainfall. The area behind each section is labeled as
v1, v2, · · · , vn. This segmentation of the chart into discrete periods is termed period divi-
sion (PD).

Step 2: In each sub-region, the dependent variable’s peak and valley values are
identified, and the minimum peak and maximum valley points are extracted. A straight
line is drawn between these two points perpendicular to the y axis, divide this chart into
the first sub-region composed of middle the part, recorded as p1, and the second horizontal
sub-region composed of the upper and lower parts, recorded as p2. This process is called
region segmentation (RS).

Step 3: The proposed method involves extracting data from two distinct regions,
namely, p1 and p2, which are then transformed into a stationary series (SS) and oscillatory
series (OS), respectively. Since these two types of data possess different properties, they can
be forecasted using different methods. This step is referred to as property extraction (PE).

A flow chart of the proposed data extraction method is shown in Figure 4.

2.4. Unsupervised Learning for Feature Extraction

The information contained in the input data for neural network prediction is often
redundant, leading to a long training time and overfitting. To mitigate this issue, the
proposed method of “feature extraction” is introduced to extract useful information from
the input data. A Deep Belief Network (DBN) was chosen as the feature extraction method
due to its strong capacity for processing unlabeled data, which is the category that climate
data belong. Compared to other dimensionality reduction algorithms such as the PCA,
the DBN has a better performance, allowing it to effectively extract internal characteristics
from high-dimensional climate data that are affected by complex conditions.
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The DBN is a neural network composed of a series of Restricted Boltzmann Machines
(RBMs), which are a type of neural perceptron. Unlike ordinary Boltzmann Machines,
RBMs have a simplified internal connection form with no connection within the hidden
layer, thereby greatly reducing computation [33,34]. This means that the activation of
each hidden layer unit is independent when the visible layer unit state (input data) is
given. Similarly, activated conditions of each visible layer unit are also independent when
the state of the hidden layer unit is given, which allows for more efficient processing of
high-dimensional data.

In the context of a DBN, the input data are fed into the network through lower-level
RBMs, and the network output is obtained by a layer-to-layer forward computation. The
network training process is different from conventional artificial neural network training.
During the pre-training stage, each RBM is trained separately from a lower level, with the
objective of minimizing the network energy. After the training of a lower-level RBM is
completed, the output of its hidden layer is used as the input of the next higher-level RBM,
which is then trained. This layer-by-layer training process continues until all RBMs have
been trained. It is noteworthy that only the input data is used in the pre-training process
without a label, rendering a DBN as an unsupervised method.

The structure of a DBN is described in Figure 5. It can be seen that a DBN is a
probability generation model, in which joint distribution can be expressed as follows:

P(v, h1, h2, · · · , hl) = P(v
∣∣∣h1 )P(h1

∣∣∣h2 ) · · · P(hl−2
∣∣∣hl−1 )P(hl−1, hl) (1)
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In this paper, characteristic data generated by DBN were input into neural networks
for prediction (see Algorithm 2). The specific steps are as follows:

Algorithm 2. DBN feature extraction.

Input: decomposed climate data SS− HT, OS− HT, SS− LT, OS− LT, SS− RF, OS− RF
Output: decomposed-feature climate data
FSS− HT, FOS− HT, FSS− LT, FOS− LT, FSS− RF, FOS− RF
1. do unsupervised pre-training:
2. construct a three-layer DBN→ three RBMs with RBM1∼3[hidnum, biases, input, output]
3. train RBM using cd-k
4. RBM2.input = RBM1.output
5. RBM3.input = RBM2.output
6. DBN.weight = [RBM.hidnum; RBM.biases]
7. end do
8. do supervised regression-level training:
9. set input vector and bias number N
10. add. (activation function, regularization coefficient)
11. set weight of test set with bias layer H
12. final output of DBN network OUT = H · N
13. end do

1. Unsupervised pre-training

Step 1: construct a three-layer DBN, set training times and the number of hidden
nodes in each layer;

Step 2: train a RBM with a contrast divergence algorithm. The visible layer of the RBM
is non-binary while the hidden layer is binary;

Step 3: take the output of the first RBM as the input of the second RBM;
Step 4: take the output of the second RBM as the input of the third RBM;
Step 5: the pre-trained RBM is used to initialize the DBN weights.

2. Supervised regression-level training.

Step 6: set the input vector and bias number. The vector should contain a column of
numbers equal to 1 due to bias;

Step 7: an activation function is established with a regularization coefficient and added
to the network.

Step 8: the weight of the test set with the bias layer is set up and the weighted output
sum is obtained.

Step 9: combined with the weight in the output layer, the final output of the DBN is
obtained and utilized as the input for training the ELM and LSTM.
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2.5. Three-Dimensional Input Conversion Technology for Data Dimensionality Upgrading in a
Novel Spatiotemporal-Factor Matrix

Prior to the variables in each algorithm, it is crucial to optimize the number of infor-
mative features to enhance the prediction accuracy. As such, we have introduced a novel
three-dimensional cubic framework, which enables more efficient feature selection. The
cubic is composed of three axes: the x-axis represents the temporal dimension (i.e., month),
the y-axis corresponds to the spatial dimension (i.e., latitude of different areas) and the
z-axis refers to the climate impact factor. The cubic is rasterized based on a matrix form,
where each grid corresponds to a specific matrix element at a specific coordinate in the
matrix cubic.

Subsequently, select input variables from the matrix cubic. In traditional approaches
for processing time-series data, input variables were mostly presented to the 3D
spatiotemporal-factor matrix in a linear input form. For instance, the highest and lowest
temperature of the previous month and the temperature-influencing factor determined by
the principal component analysis method are taken as the input, while the highest temper-
ature, the lowest temperature and rainfall of the next month are taken as the output. This
mapping pattern reflects a linear-type input to linear-type output. The model established
using this method predicts one month’s output with one month’s input. It extends the
z-axis dimension of the 3D spatiotemporal-factor matrix. However, the other two axes are
without expansion. The input presented in the 3D spatiotemporal-factor matrix takes the
form of a line.

In this paper, the input-output mapping pattern was improved by expanding the x-axis
and y-axis. Specifically, the highest temperature, the lowest temperature, rainfall, snowfall
and solar radiation of regions A, B and C within a latitude difference of ±2◦ over the past
n months were selected as the input to predict the temperature and rainfall of region A
in the n + 1 month. This approach enables the prediction of one month’s output using n
months’ input along the x-axis and the prediction of one area’s output using three areas’
input along the y-axis, thus expanding all three axes. The mapping pattern of input and
output can be described as body-type input to linear-type output. Figure 6 demonstrates
the effectiveness of this innovation. The improved input-output mapping pattern offers
two advantages: first, it significantly enhances the accuracy of prediction; and second,
it increases the amount of data that are repeatedly called, similar to LSTM, allowing the
system to determine the importance of the data. This feature prevents the prediction data
from becoming unstable due to short-term climate mutation, which enhances the robustness
of the corresponding system. The improved input-output mapping pattern was applied to
all models in this study, resulting in the corresponding extension algorithms. The suffix “E”
was added to the name of each novel algorithm to indicate that it has been extended.

2.6. Evolutionary Algorithm for Model Optimization

The intelligent algorithm proposed in this paper employs a neural network model,
which inherently introduces randomness in the initial selection of weights and thresholds.
Due to the significant impact of such initial values on the accuracy of network prediction, it
becomes necessary to utilize an optimization algorithm to ensure that the initial weight
and threshold values are as reasonable as possible. This process is referred to as “model
optimization”. It is feasible to implement the PSO method because there are only a few
interfaces for parameter adjustment in the LSTM neural network. In addition, the PSO
algorithm has demonstrated the advantage of fast convergence, making it a suitable candi-
date for efficient climate data prediction in long time series. Therefore, in this study, the
proposed model is optimized using the PSO algorithm.

PSO is a kind of evolutionary algorithm, akin to Simulate Anneal (SA) [35]. It starts
with a random solution and iteratively searches for an optimal solution while evaluating
its quality through fitness. Unlike the Genetic Algorithm (GA), which involves “crossover”
and “mutation” operations, PSO directly seeks a global optimum by following the current
optimal value. This algorithm simulates the foraging behavior of birds, where a group of
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birds randomly searches for food in an area with only one food source. The birds do not
know the location of the food, but they can determine their distance from it. Moreover, they
know the location of “bird A” that is closest to the food, which is the current global optimum.
Consequently, each bird moves towards bird A, and in the process of approaching, each
bird must locate the position closest to the food, which is the local optimal location of
each bird.
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Abstracted as point particles devoid of mass and volume, birds are extrapolated into
n-dimensional space. The position of particle i in n-dimensional space is represented as
vector Xi = (x1, x2, · · · , xn), while its corresponding flight speed is represented as vector
Vi = (v1, v2, · · · , vn). The fitness value of each particle is contingent on the objective
function, and the particle is cognizant of both its optimal position (pbest) and its present
position. This awareness can be seen as the particle’s individualistic flight experience.

In addition, each individual particle retains the knowledge of the best position (gbest)
attained by all the particles in the entire population so far. Thus, while pbest denotes the
current local optimal value, gbest represents the current global optimal value and can be
deemed as the aggregate experience of the community. The particles’ subsequent actions
are contingent upon their own experiences as well as the optimal experience of their peers.

Next, the optimal solution is derived via the iterative operation of random particles.
During each iteration, particles recalibrate their velocity and position by tracking two
“extremum” values (pbest, gbest). The algorithmic details are as follows:

Step 1: initialization.
To begin the Particle Swarm Optimization (PSO) process, the user must first determine

the maximum number of iterations, the number of independent variables and the maximum
speed of the particles. The initial speed and position of each particle within the speed range
and the entire search space are then randomized. Additionally, set the particle swarm scale
as M, and randomly initialize the flight speed of each particle.

Step 2: update of the global optimal solution
The fitness function is determined, and the individual extremum is defined as the

optimal solution of each particle, which represents a local optimal solution. The current
global optimal solution is derived by evaluating the optimal solutions obtained from all
particles. Subsequently, the updating procedure is conducted by comparing the current
global optimal solution with the historical global optimal solution.

Step 3: update of speed and position
The particles update their speed and position as follows:

vi+1 = ω · vi + c1 · rand() · (pbesti − xi) + c2 · rand() · (gbesti − xi) (2)

xi+1 = xi + vi+1 (3)

where ω is the inertia factor, the larger the value, the stronger the global optimization
ability and the weaker the local optimization ability; vi is the particle speed at time i;
rand() is a random number between 0~1; xi is the position of the particle at time i; c1, c2 is
the learning factor.

2.7. Proposed Climate Prediction System Named SS-OS-PSO-DBN-ELM-LSTME (SOPDEL)
2.7.1. PSO-DBN-ELME Algorithm

In terms of network structure, an ELM is a type of Single-Hidden-Layer Forward
Propagation Neural Network (SLFN) [36–38]. Unlike traditional neural networks that rely
on gradient-based algorithms during the training phase, an ELM uses random input layer
weights and biases. The output layer weights are calculated using generalized inverse
matrix theory. Once the weights and biases of all network nodes are obtained, the ELM
training is completed. An ELM is characterized by its ability to set the connection weight
of the input layer and hidden layer randomly, as well as the threshold value of the hidden
layer. Once set, there is no need to adjust them again, which greatly reduces computation
compared to the BP neural network. Moreover, the connection weight does not need to be
adjusted iteratively, it is determined at one time by solving equations. These features make
the ELM highly computationally efficient with good generalization performance.

Suppose a given training set P has N arbitrary sample (xi, ti), xi represents the ith data
sample; ti represents the ith corresponding mark of the data sample. The training data set
satisfies the equation P =

{
(xi, ti)|xi ∈ RD, ti ∈ Rm, i = 1, 2, · · · , N

}
.
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For an ELM neural network, the input is the training sample set, the input layer is
fully connected to the hidden layer. The output of the hidden layer is recorded as H(x):

H(x) = [h1(x), h2(x), · · · , hL(x)] (4)

hi(x) is recorded as the output of the ith hidden layer node:

hi(x) = g(wi, bi, x) = g(wix + bi) (5)

where wi, bi is the hidden layer node parameter; g(wi, bi, x) is the activation function, and
the hidden layer parameter is initialized randomly. Then, the nonlinear mapping is used
as the activation function to map the input data to a new feature space, and the Sigmoid
activation function is selected in the circumstance.

Therefore, the output of the whole neural network can be expressed as follows:

fL(x) =
L

∑
i=1

βihi(x) = H(x)β (6)

where βi is the weight of the ith output.
Next, the objective function needs to be constructed to solve the output weight βi, and

the learning goal of the single-hidden-layer neural network is to minimize the output error.
Therefore, the weight of the connection can be solved by minimizing the square error. The
objective function is as follows:

min‖Hβ− T‖2, β ∈ RL×m (7)

H = [h(x1), h(x2), · · · , h(xN)]
T =


h1(x1) h2(x1) · · · hL(x1)
h1(x2) h2(x2) · · · hL(x2)

...
...

...
...

h1(xN) h2(xN) · · · hL(xN)

, T =


tT
1

tT
2
...

tT
N

 (8)

where H is the output matrix of the hidden layer; T is the target matrix of the training data.
The single objective programming model is solved and Equation (9) is obtained:

β = H+T (9)

where H+ is the Moore Penrose generalized inverse matrix of H.
In this paper, characteristic data generated by a DBN were input into an ELM neural

network for prediction. The specific algorithm is shown in Section 2.4.
PSO was employed to obtain values for initial thresholds and weights, i.e., w, β. Com-

bined with the body-type input pattern in the new matrix, a PSO-DBN-ELME algorithm
was constructed for climate prediction. The corresponding flow chart is shown in Figure 7.

2.7.2. PSO-DBN-LSTME Algorithm

A Recurrent Neural Network (RNN) is a kind of neural network designed for process-
ing sequential data. However, during the training phase, the gradient of a RNN may suffer
from the issues of either vanishing or exploding. To mitigate this problem, LSTM has been
developed as an evolved model of a RNN. LSTM can address the shortcomings of a RNN
and exhibit superior performance in long-term training [39–47].

The architecture of Long Short-Term Memory (LSTM) differs from the traditional
Recurrent Neural Network (RNN) as it comprises four network layers, as opposed to a
single layer. The cell structure of LSTM is depicted in Figure 8. There are three gates to
control the cell state, which are called the forget gate, input gate and output gate.
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(1) Forget gate: Determine which information in cell needs to be discarded. Output
a vector by viewing the information of ht−1 and xt. The element’s value of 0~1 in
the vector indicates how much information in cell state ct−1 needs to be retained or
discarded; 0 means no reservation, 1 means all reservation.

(2) Input gate: Determine which information in the cell needs to be updated. Firstly, ht−1
and xt are used to determine the information to be updated, and then new candidate
cell information c̃t is obtained through a tanh layer, which may be updated into the
cell information. For the update of the old cell information ct−1 to the new ct, the rule
is to forget part of the old cell information by the selection of the forget gate, and ct is
obtained by inputting part of the candidate cell information c̃t by gate selection.

(3) Output gate: Determine which information in the cell needs to be output. The output
is activated by the tanh function, and it needs to enter the Sigmoid layer to get
the judging condition of the cell’s output state characteristics. The final output of
the LSTM cell is obtained by multiplying the judging condition of the input and
output gate.

In this paper, characteristic data generated by DBN were input into a LSTM neural
network for prediction. The specific algorithm is shown in Section 2.4.

PSO was also employed in the same way as it in the PSO-DBN-ELME algorithm. Com-
bined with the body-type input pattern, the PSO-DBN-LSTME algorithm was constructed
for climate prediction. The corresponding flow chart is shown in Figure 8.

2.7.3. SOPDEL Algorithm

The proposed SOPDEL algorithm has been suggested as a viable system for climate
prediction. This algorithm is a combination of the PSO-DBN-ELME and PSO-DBN-LSTME
algorithms, which are utilized in different time series. To achieve this, the PD-RS-PE
technology is utilized for data decomposition, and output data for stationary and oscillatory
series are separately predicted using PSO-DBN-LSTME and PSO-DBN-ELME. Furthermore,
the time coordinates of different data series are used to fuse the two prediction series to
form the final climate prediction data.

2.8. Performance Evaluation Indices

In this paper, four indicators, including the root mean square error (RMSE), mean
absolute error (MAE), mean absolute percentage error (MAPE) and correlation coeffi-
cient (R2), were employed as evaluation criteria to quantitatively assess the forecasting
performance of each proposed model. These indicators can be formulated as follows:

RMSE =

√
1
n

n

∑
i=1

(xi − x̂i)
2 (10)

MAE =
1
n

n

∑
i=1
|xi − x̂i| (11)

MAPE =
1
n

n

∑
i=1

∣∣∣∣ xi − x̂i
xi

∣∣∣∣× 100% (12)

R2 =
(∑n

i=1 x̂ixi −∑n
i=1 x̂i∑n

i=1 xi/n)2

(∑n
i=1 x̂i

2 − (∑n
i=1 x̂i)

2/n)(∑n
i=1 x̂i

2 − (∑n
i=1 xi)

2/n)
(13)

3. Nine Climate Forecasting Models for Comparison and Verification

In order to verify accuracy and stability of the proposed model, comparative models
are formulated.

Firstly, we use LSTM as the basic model, then each improvement occurred in this
paper is utilized one by one, which is abbreviated as M1~M5.

Model 1 (M1): an ordinary LSTM neural network, using no optimization and data processing;
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Model 2 (M2): on the basis of model 1, the three-dimensional input conversion tech-
nology was applied to improve the robustness of the LSTM neural network, forming the
LSTME model;

Model 3 (M3): on the basis of model 2, a DBN was used to extract features from
the original data, the feature data was used as the input of the LSTM, forming a DBN-
LSTME model;

Model 4 (M4): on the basis of model 3, PSO was used to optimize the weights and
thresholds between and within each layer in the LSTM, forming a PSO-DBN-LSTME model;

Model 5 (M5): an ELM neural network was introduced, the weight and threshold
between and within each layer were optimized by PSO. The original data were extracted
by a DBN, and the feature data were used for the input of the LSTM. A PSO-DBN-LSTME
model was formed by combining the new mapping and extracting mode of the input, the
prediction results were averaged with the ones generated by model 4, a PSO-DBN-ELM-
LSTME model was formed by integrating the two methods on each prediction result;

Model 6 (M6): model 6 is proposed in this research paper and incorporates the memory
and forget mechanism of a LSTM neural network to produce smoother prediction results,
while also utilizing the strong fitting ability of an ELM neural network for extreme data.
To further enhance the performance of the model, the PD-RS-PE technology is introduced
to divide the input data into a stationary and oscillatory series, with LSTM used for the
former and an ELM for the latter. The weights and thresholds of the two networks are
optimized using PSO. The original data are preprocessed using a DBN. Combined with
new mapping and extracting mode of input, a SOPDEL model was finally formed.

In addition, we also introduced three classical traditional models for state-of-the-art
climate prediction. It aims to compare the prediction performance of M6 with that of
previous models.

Model 7 (M7): an Autoregressive Integrated Moving Average (ARIMA) model, which
has become one of the most widely-used climate prediction methods from the perspective
of time series characteristics in climate itself.

Model 8 (M8): an Echo State Network (ESN) model, which is a new recursive neural
network, has been gradually applied to climate prediction due to its simple structure and
fast convergence.

Model 9 (M9): a Support Vector Machine (SVM) model, which overcomes the problems
of dimensionality disaster and nonlinear separability, and has achieved certain prediction
results in climate data with complex nonlinear characteristics.

4. Results and Discussion
4.1. Comparative Analysis for Fitting Performance in Training Datasets between M1–M9 Models

In order to prove the best prediction performance, these six models in chapter 3 were
comprehensively analyzed and compared in this study. In order to determine which types
of input data are needed to predict the output data, correlation analysis was carried out
for the highest temperature (HT), the lowest temperature (LT), rainfall (RF), snowfall (SF)
and solar radiation (SR) of the three studied areas. The corresponding results are shown
in Figure 9. The correlation coefficient is between −1 and 1. The greater the positive
(negative) value is, the stronger the correlation (anticorrelation) gets. We made a rule that
if x is selected as the input data to predict the output data y, the absolute value of the
correlation coefficient between x and y is greater than 0.4. According to it, the input data of
predicting HT and LT in the last month are HT, LT, RF, SF and SR in the previous month, the
independent variables of RF in the last month are HT, LT and RF in the previous month, the
independent variables of SF are HT, LT and SF in the previous month and the independent
variables of SR in the last month are HT, LT and SR in the previous month.

All data were divided into a training set and testing set. According to the combination
of independent variables and dependent variables, the five dependent variables were
predicted. R2, RMSE, MAE and MAPE were selected as indexes to evaluate the fitting
accuracy of each model for the training dataset, and the effect is shown in Table 1. In this
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table, for the optimal values of each index, it can be seen that 83% of optimal values is
concentrated in the SOPDEL (M6) model, displayed in bold font. The phenomenon shows
that compared with the other five models, the M6 model has a higher fitting performance
for training data. Among the best evaluation indexes of the M6 model, R2 increased
by 83.9% at most compared with the lowest value, RMSE decreased by 73.6% at most
compared with the highest value, MAE decreased by 73.1% at most compared with the
highest value and MAPE decreased by 99.5% at most compared with the highest value,
which reflected that improvement of the fitting effect was very obvious. Figures 10–12 show
the fitting ability of each model. In general, the M6 model outperforms the other hybrid
models with the highest coefficient of correlation coefficient (R2) value, and displays a
better fitting ability of the highest temperature, the lowest temperature and rainfall, which
can reflect climate extremes.
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Figure 9. Correlation−map of HT, LT, RF, SF and SR in the study areas.

Table 1. Performance evaluation indices for M1–M6 models in training dataset.

Climate Data Model R2 RMSE MAE MAPE

The highest temperature

M6 0.9944 0.4463 0.3243 0.0007
M5 0.9910 0.5599 0.3438 0.0006
M4 0.9742 0.9374 0.7041 0.0005
M3 0.9718 0.9799 0.7647 0.0005
M2 0.9693 1.0472 0.6684 0.0008
M1 0.9614 1.1529 0.7971 0.0009
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Table 1. Cont.

Climate Data Model R2 RMSE MAE MAPE

The lowest temperature

M6 0.9900 0.4760 0.3599 0.0002
M5 0.9791 0.6888 0.4303 0.0006
M4 0.9673 0.8625 0.6158 0.0019
M3 0.9584 0.9710 0.7353 0.0017
M2 0.9444 1.1374 0.7276 0.0026
M1 0.9397 1.1818 0.7875 0.0027

Rainfall

M6 0.9669 11.3331 8.2658 0.0001
M5 0.9602 12.4948 7.7168 0.0005
M4 0.7880 28.4910 19.9793 0.0081
M3 0.7239 32.5228 24.3261 0.0100
M2 0.5611 41.2722 28.5648 0.0208
M1 0.5259 42.8850 30.6940 0.0221
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Figure 12. Scatter plots of observed and predicted rainfall (unit: mm) using M1−M6 models.

The comparison of fitting performance of M1 and M2, M2 and M3, M3 and M4 and
M5 and M6, respectively, shows that three-dimensional input conversion technology, DBN
feature extraction, PSO optimization and PD-RS-PE technology have all played an effective
role in improving the accuracy of the model, which proves that all optimization and data
processing methods proposed in this paper can improve the fitting accuracy of the climate
prediction model.

4.2. Comparative Analysis for Predicting Performance in Testing Datasets between M1–M6 Models

After fitting the training datasets, performance of prediction of each model should be
compared in case of an overfitting phenomenon of some training models. R2, RMSE, MAE
and MAPE were selected as indexes to evaluate the prediction accuracy of each model for
the testing set, and the effect is shown in Table 2. In this table, for the optimal value of
each index, it is also displayed in bold font. It can be seen that 83% of the optimal value is
concentrated on the SOPDEL (M6) model. Among the best evaluation indexes of the M6
model, R2 increased by 50.5% at most compared with the lowest value, RMSE decreased
by 86.4% at most compared with the highest value, MAE decreased by 87.5% at most
compared with the highest value and MAPE decreased by 99.9% at most compared with
the highest value, reflecting that the improvement of the predicting effect was very obvious.

Table 2. Performance evaluation indices for the six proposed models in testing dataset.

Climate Data Proposed Model R2 RMSE MAE MAPE

The highest temperature

M6 0.9990 0.1981 0.1632 0.0052
M5 0.9972 0.3312 0.2206 0.0032
M4 0.9964 0.3836 0.3085 0.0126
M3 0.9835 0.7985 0.5936 0.0092
M2 0.9805 1.1110 0.8832 0.0932
M1 0.9710 1.2862 1.0848 0.1051

The lowest temperature

M6 0.9964 0.2986 0.2141 0.0004
M5 0.9924 0.4476 0.2515 0.0012
M4 0.9890 0.5283 0.3814 0.0082
M3 0.9633 0.9583 0.7018 0.0062
M2 0.9314 1.8562 1.6509 0.3455
M1 0.9147 1.9314 1.7136 0.3332

Rainfall

M6 0.9934 5.9639 4.8788 0.0206
M5 0.9908 7.0205 3.6939 0.0327
M4 0.9793 10.7810 8.5691 0.0484
M3 0.8828 25.3663 19.0880 0.1493
M2 0.7283 45.3143 35.5998 0.4868
M1 0.6602 43.9278 33.6869 0.3867
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As is mentioned above in Section 4.1, all optimization and data processing methods
proposed in this paper can improve the predicting accuracy of the climate prediction model.

Figures 13–15 show the intuitive predicting ability of each model in the form of a
trend chart.
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4.3. Comparative Analysis for Fitting Performance in Training Datasets between M6–M9 Models

Next, a comparative experiment between the proposed model and the traditional
classical climate prediction model is carried out. The results for the training data are
shown in Table 3. For the optimal values of each index, it can be seen that 67% of the
optimal values is concentrated in the SOPDEL (M6) model, displayed in bold and red font.
The phenomenon shows that, compared with the other three models, the M6 model has
a higher fitting performance for the training data. Among the best evaluation indexes
of the M6 model, R2 increased by 8.9% at most compared with the lowest value, RMSE
decreased by 70.3% at most compared with the highest value, MAE decreased by 72.7% at
most compared with the highest value and MAPE decreased by 99.8% at most compared
with the highest value, which reflected that the improvement of the fitting effect was very
obvious. Figures 16–18 show the intuitive fitting ability of each model.
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Table 3. Performance evaluation indices for M6–M9 models in training dataset.

Climate Data Model R2 RMSE MAE MAPE

The highest temperature

M6 0.9944 0.4463 0.3243 0.0007
M7 0.9817 0.9079 0.7281 0.0032
M8 0.9895 1.5036 1.1899 0.0005
M9 0.9889 1.4249 1.1040 0.0003

The lowest temperature

M6 0.9900 0.4760 0.3599 0.0002
M7 0.9733 0.9271 0.7168 0.0063
M8 0.9090 1.4749 1.1457 0.0021
M9 0.9251 1.3080 0.9647 0.0038

Rainfall

M6 0.9669 11.3331 8.2658 0.0001
M7 0.9998 1.0390 0.7868 0.0004
M8 0.3783 51.2115 38.7237 0.0253
M9 0.4600 46.8355 34.4975 0.0402
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4.4. Comparative Analysis for Predicting Performance in Testing Datasets between M6–M9 Models

The results for testing data are shown in Table 4, for optimal values of each index, it can
be seen that 100% of optimal values is concentrated in the SOPDEL (M6) model, displayed
in bold font. The phenomenon shows that, compared with the other three models, the
M6 model has a higher predicting performance for testing data. It is worth noting that
M7 has an extreme distortion in predicting the rainfall test set, which is mainly due to an
over-fitting phenomenon caused by the training set. Except that, among the best evaluation
indexes of the M6 model, R2 increased by 116.4% at most compared with the lowest value,
RMSE decreased by 96.7% at most compared with the highest value, MAE decreased by
97% at most compared with the highest value and MAPE decreased by 99.9% at most
compared with the highest value, which reflected that the improvement of the predicting
effect was very obvious. Figures 19–21 show the intuitive fitting ability of each model.
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Table 4. Performance evaluation indices for M6–M9 models in testing dataset.

Climate Data Model R2 RMSE MAE MAPE

The highest temperature

M6 0.9990 0.1981 0.1632 0.0052
M7 0.8455 5.9297 5.4070 0.6155
M8 0.9893 1.5866 1.2181 0.0972
M9 0.9900 2.1328 1.8084 0.0601

The lowest temperature

M6 0.9964 0.2986 0.2141 0.0004
M7 0.8383 2.2091 1.7702 0.2982
M8 0.8762 1.7638 1.3624 0.1071
M9 0.8549 2.2919 1.8396 0.0267

Rainfall

M6 0.9934 5.9639 4.8788 0.0206
M7 0.0541 93.2919 79.0570 0.4900
M8 0.4590 54.3568 43.6699 0.4365
M9 0.6106 46.1647 35.2501 0.3776
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4.5. Predicting Performance for the Proposed Model

According to comparison tests for each model, we can draw the conclusion that the
proposed SOPDEL model is the best model among all nine models. Therefore, further
tests should be carried out to evaluate the performance of the M6 model. In this study, the
monthly climate data of the target area from December 2015 to January 2020 were predicted
using M6, and the predicted value was compared with the real one. Based on the error
between the predicted value and the real value, the corresponding evaluation system was
set up as follows:

Evaluation system of maximum and minimum temperature:

(1) When the error is within ±0.2 ◦C, it is judged that the prediction quality of the month
is very prominent, which is expressed as “Excellent”;

(2) When the error is between ±0.2 ◦C and 0.5 ◦C, it is judged that the prediction quality
of the month is good, which is expressed as “Good”;

(3) When the error is within ±0.5~1 ◦C, it is judged that the prediction quality of the
month is medium, which is expressed as “Moderate”;

(4) When the error is beyond ±1 ◦C, it is judged that the prediction quality of the month
is poor, which is expressed as “Bad”.

(5) Evaluation system of rainfall:
(6) When the error is within ±5mm, it is judged that the prediction quality of the month

is very prominent, which is expressed as “Excellent”;
(7) When the error is within ±5~10 mm, it is judged that the prediction quality of the

month is good, which is expressed by “Good”;
(8) When the error is within ±10~20 mm, it is judged that the prediction quality of the

month is medium, which is expressed by “Moderate”;
(9) When the error is beyond ±20 mm, it is judged that the prediction quality of the

month is poor, which is expressed as “Bad”.

According to the evaluation system above, we can acquire the effect of the prediction
on each month’s climate data. Table 5 shows the detailed real value, predicted value and
quality of each month, and Figure 22 shows the proportion of each quality in predicting
climate data. It can be seen that for three kinds of climate data, the total proportion with the
prediction quality of “Excellent” and “Good” has exceeded 90%, and no data with “bad”
have appeared, indicating that the SOPDEL model is very stable and convincing, meeting
the high requirements of short-term and long-term climate prediction.
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Table 5. Predicting performance for SOPDEL model under the evaluation system made in this study.

Date

The Highest Temperature
(Unit: ◦C)

The Lowest Temperature
(Unit: ◦C)

Rainfall
(Unit: mm)

Actual Forecast Quality Actual Forecast Quality Actual Forecast Quality

December 2015 7.5 7.3398 Excellent 2.6 2.5070 Excellent 218.6 208.2459 Good
January 2016 7.7 7.5826 Excellent 1.6 1.8390 Good 167.2 159.2228 Good

February 2016 10.1 10.1042 Excellent 4.1 4.1217 Excellent 130.4 137.5251 Good
March 2016 11.6 11.5474 Excellent 5.1 5.0720 Excellent 161.6 160.6963 Excellent
April 2016 15.7 15.9185 Good 7.8 7.9100 Excellent 24.2 16.4077 Good
May 2016 18.5 18.6536 Excellent 10 10.1467 Excellent 51.6 51.5732 Excellent
June 2016 20.2 20.3909 Excellent 12.1 12.3117 Good 58.2 47.6714 Moderate
July 2016 22 22.2694 Good 14.6 14.5930 Excellent 32.8 36.4994 Excellent

August 2016 22 22.6675 Moderate 14.5 14.3521 Excellent 13.8 13.3474 Excellent
September 2016 18 18.2240 Good 10.4 10.6100 Good 78.4 66.4883 Good

October 2016 13.7 13.8064 Excellent 8.3 8.4452 Excellent 203.4 198.4994 Excellent
November 2016 11.8 11.5107 Good 7.6 7.0967 Moderate 240.2 241.4955 Excellent
December 2016 3.7 3.7118 Excellent −1.9 −1.7218 Excellent 117.8 112.8448 Excellent

January 2017 5.1 5.1253 Excellent −1.3 1.2987 Excellent 98.8 99.7717 Excellent
February 2017 6.2 6.5295 Good −0.1 0.1312 Excellent 78.8 75.8139 Excellent

March 2017 9.5 9.4452 Excellent 4.2 4.1198 Excellent 209.8 207.2923 Excellent
April 2017 12.6 12.4872 Excellent 6.5 6.2520 Good 124.2 122.0196 Excellent
May 2017 17.1 16.9661 Excellent 8.9 8.8326 Excellent 102 96.3386 Good
June 2017 19.7 19.7449 Excellent 11.6 11.6155 Excellent 45.2 41.6002 Excellent
July 2017 22.9 23.0222 Excellent 13.8 13.9241 Excellent 1.8 5.1026 Excellent

August 2017 23.3 23.4255 Excellent 14.2 14.2678 Excellent 5 7.3658 Excellent
September 2017 19.9 20.0255 Excellent 11.6 11.7353 Excellent 29.4 29.8482 Excellent

October 2017 13.4 13.2980 Excellent 5.9 6.1782 Good 114.3 128.4054 Moderate
November 2017 9.2 9.2724 Excellent 7.6 7.1276 Good 212 214.0281 Excellent
December 2017 5.1 4.9846 Excellent −0.3 −0.2994 Excellent 151.6 149.0540 Excellent

January 2018 7.5 7.7038 Good 3.1 3.4227 Good 249.4 247.1281 Excellent
February 2018 6.2 6.1890 Excellent 0.6 0.4597 Excellent 89.8 98.0948 Good

March 2018 9.5 9.7942 Good 2.6 2.8414 Good 110.2 106.2041 Excellent
April 2018 12.8 12.7656 Excellent 5.9 5.8745 Excellent 134.4 139.7440 Good
May 2018 19.3 19.4378 Excellent 10.6 10.7660 Excellent 2 9.8711 Good
June 2018 19.9 19.7199 Excellent 12.2 11.3656 Good 39.4 52.8009 Moderate
July 2018 24.1 24.3585 Good 14.2 14.5827 Good 4.4 6.9913 Excellent

August 2018 22.8 22.8814 Excellent 13.8 13.7947 Excellent 16.2 12.2030 Excellent
September 2018 18.2 18.3292 Excellent 10.8 10.9668 Excellent 117.4 110.7052 Good

October 2018 13.7 13.8661 Excellent 5.7 6.4413 Moderate 131.2 119.9685 Moderate
November 2018 10.3 10.6193 Good 7.5 6.9648 Moderate 179.2 180.5537 Excellent
December 2018 7.7 7.6093 Excellent 2 2.3930 Good 251.8 247.2106 Excellent

January 2019 7.9 8.1561 Good 2 2.2026 Good 140.8 135.3906 Excellent
February 2019 3.9 3.7840 Excellent −3.1 −3.3859 Good 43.4 41.1272 Excellent

March 2019 10.9 10.3358 Moderate 1.5 1.5063 Excellent 31.2 35.4759 Excellent
April 2019 13.2 13.1458 Excellent 6 5.9137 Excellent 110.8 103.8416 Good
May 2019 18.5 18.3757 Excellent 10 10.0341 Excellent 30.4 38.5369 Good
June 2019 21.2 21.3732 Excellent 11.9 12.3973 Good 26.2 18.7868 Good
July 2019 22.8 22.4856 Good 14.2 14.0893 Excellent 30.8 34.0751 Excellent

August 2019 23 22.7455 Good 14.2 14.0337 Excellent 25.8 30.1011 Excellent
September 2019 18.6 18.4169 Excellent 11.8 11.6109 Excellent 122.2 124.5298 Excellent

October 2019 12 11.8299 Excellent 4.9 5.2675 Good 122.6 118.3732 Excellent
November 2019 9.4 9.7790 Good 7.6 6.7031 Moderate 92.1 96.2326 Excellent
December 2019 7.5 7.6247 Excellent 3.6 3.6619 Excellent 157.8 156.9835 Excellent

January 2020 7 7.0094 Excellent 2.2 2.2843 Excellent 226 230.1365 Excellent
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5. Conclusions

Environmental protection has been a hot topic in the academic field and an accurate
and stable climate forecast of our study can contribute well to this target. This study
has proposed a novel hybrid spatiotemporal system as a promising alternative tool for
long-term climate forecasting in practice. The proposed model, named SOPDEL, which
fuses advantages of machine learning, optimization algorithm, input-output remapping,
feature extraction and data decomposition, was proved as a particularly suitable model for
long-time-series prediction. Through the analysis and experiment of the proposed model,
specific conclusions are as follows:

(1) Different machine learning methods suitable for temporal data prediction will exhibit
better prediction performance in specific types of datasets. Specifically, LSTM is better
suited for predicting stationary data sequences, while an ELM is more appropriate for
predicting oscillating data sequences. In training datasets, the improvement of R2 in
M6 is 0.0034, 0.0109 and 0.0067 compared to M5, respectively. In testing datasets, the
improvement of R2 in M6 is 0.0018, 0.0040 and 0.0026 compared to M5, respectively.
The case study illustrates the feasibility of PD-RS-PE technology.

(2) The construction of a 3D spatiotemporal-factor matrix enables the realization of
data dimensionality upgrading. Its function is to reduce the disturbance caused
by temporary climate mutations in the predicted data, thus enhancing the overall
system’s robustness. As this method reduces the step size of data entry, it offers
unique advantages in time-series data that require adequate training. In training
datasets, the improvement of R2 in M2 is 0.0079, 0.0047 and 0.0352 compared to
M1, respectively. In testing datasets, the improvement of R2 in M2 is 0.0095, 0.0167
and 0.0681 compared to M1, respectively. The case study embodies the feasibility of
three-dimensional input conversion technology.

(3) A DBN has compatible interfaces with both an ELM and LSTM. As the amount of
information input increases significantly after upgrading the data dimensionality,
eliminating irrelevant information, becomes increasingly critical. The feature extrac-
tion technique of the DBN can effectively assist ELM and LSTM neural networks in
learning more valuable information. In the training datasets, the improvement of
R2 in M3 is 0.0025, 0.0140 and 0.1628 compared to M2, respectively. In the testing
datasets, the improvement of R2 in M3 is 0.0030, 0.0319 and 0.1545 compared to M2,
respectively. The case study announces the feasibility of the DBN feature extraction.

In the trials carried out in this paper, as for the training dataset, among the best
evaluation indexes of the proposed (M6) model and three state-of-the-art (M7~M9) models,
R2 increased by 8.9% at most compared with the lowest value, RMSE decreased by 70.3%
at most compared with the highest value, MAE decreased by 72.7% at most compared with
the highest value and MAPE decreased by 99.8% at most compared with the highest value.
As for the testing dataset, R2 increased by 116.4% at most compared with the lowest value,
RMSE decreased by 96.7% at most compared with the highest value, MAE decreased by
97% at most compared with the highest value and MAPE decreased by 99.9% at most
compared with the highest value, which reflected that the improvement of the fitting and
predicting effect was very obvious. According to the proposed model, a relevant evaluation
system was developed. The results show that for three kinds of climate data, the total
proportion of data with a prediction quality of “Excellent” and “Good” exceeds 90%, and
no data with “Bad” appear. The proposed model shows high performance in long-term
climate prediction, and can be regarded as a good method for environmental decision
makers to analyze future trends of the climate and make relevant strategies to control it.
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