Rockfall Magnitude-Frequency Relationship Based on Multi-Source Data from Monitoring and Inventory
Abstract
:1. Introduction
1.1. Magnitude-Frequency Relationship for Quantitative Assessment
- Detachment: starting zone characterization to stabilize instability scenarios on the rock face dealing with rockfall initiation. The questions are: which events of a certain magnitude should be expected, and what is their probability of occurrence?
- Propagation: trajectory analysis to map the resulting hazard distribution. In this step, it is critical to consider fragmentation, which modulates both the probability and intensity of impact. Rockfall simulation is required.
- Impact: exposure considerations are to be cross checked with the hazard under several conditions, either from the perspective of individual or collective risk. The consideration of all possible damage scenarios can be addressed using event trees.
- Damage: vulnerability analysis to estimate the intensity of damage for each element type in statistical terms. Fragility curves help to raise the uncertainty in this last step.
1.2. Rockfall Activity Detection and Registration
- Where? The localization of the detachment point. In rockfall from vertical cliffs, xyz coordinates are needed, as xy coordinates on digital terrain models incur a great deal of indeterminacy in the elevation. To determine the spatial representativeness, at least each rockfall is needed to be linked to a cliff sector that will determine the spatial resolutions of the analysis.
- When? The accuracy of the dating of events can be highly variable depending on the data source, from imprecise references in years to detailed dates and times. For the annual frequency calculation, we simply need the dating by years, but this is not the case in triggering factor analyses.
- How big? This is the feature to be analyzed for hazard scenario assessment. It is expressed in the total volume of rock detached from the cliff as a single rockfall event.
1.3. Remote Sensing in Rockfall Problems
1.4. Objectives and Content
- Hazard variability over time is due to triggering conditions and other evolving factors.
- Hazard variability at different scales from outcrop to massif.
- Influence of other factors on rockfall detachment conditions and related hazards.
2. Methods
2.1. Methodological Basis
- is the normalized or unitary activity, as , being the number of rockfalls of m3 detached from 1 hm2 of cliff surface in 1 year. It is a significant normalizing case since in most situations, this size is both frequent and destructive enough to be considered a reference.
- is the uniformity coefficient in the volume distribution. The greater the , the greater the reduction in probability when going from small to large rockfalls. By definition of cumulative frequency, and the negative sign of the exponent is already introduced in the equation.
2.2. Sampling Extent
3. Test Sites and Data
3.1. Conglomerate Massif in Montserrat
3.1.1. Observational Inventory
3.1.2. TLS Monitoring
3.2. Basaltic Cliff in Castellfollit de la Roca
3.2.1. Observational Inventory
3.2.2. TLS Monitoring
4. Data Analysis for McF Results
4.1. Monitoring Data Analysis
4.1.1. Rollover Effect
4.1.2. Undersampling of Large Events
4.1.3. Oversampling of Large Events
4.2. Observational Data Analysis
4.2.1. Frequency Calculation on Inventories
4.2.2. Size Distribution of Registered Events over Time
4.2.3. Size Distribution of Registered Events over Space
5. McF Discussion
5.1. Spatial Variability in McF
5.1.1. Multi-Scale Comparison
5.1.2. Multi-Source Comparison
5.1.3. Multi-Site Comparison
5.2. Temporal Variability in McF
5.2.1. McF Relationship over Time
- Variability of activity is due to natural cycles of the different triggering agents (e.g., rainfall regime, thermal regime, seismic activity, the evolution of the rock massif, and degradation of its resistant properties depending on environmental physical and chemical agents).
- Modification of the activity due to the work carried out. The clearing of blocks of precarious stability concentrates in a short period a large part of the activity that would have happened more evenly over a longer period. Stabilizing potentially unstable masses makes the future activity less likely in a wide range of sizes. Therefore, McF could provide a quantitative method for assessing the effectiveness of hazard mitigation measures, as explored in Supplementary Material SM5.
5.2.2. McF Sensitivity to Detection Algorithms
5.2.3. Detachment Mechanisms Overlap
- Mechanism 1 () corresponds to the most considered rockfall type, that is, rock blocks delimited by mechanical discontinuities in the rock mass. For the conglomerates in Montserrat, these are fracture sets and stratigraphic layers, both of high persistence, which delimit prismatic blocks of a wide range of volumes depending on the joint spacing at the specific point, from less than one cubic meter to several thousands of cubic meters (mainly from 10−1 to 104 m3). The basic properties of the discontinuities can be found in Supplementary Material SM3.
- Mechanism 2 () corresponds to weathering flakes produced by thermal exfoliation, forming curved plates or slabs of intermediate volume from 10−3 to 102 m3, although the most common are in the range of few to several dm3.
- Mechanism 3 () corresponds to pebble detachment from the conglomerate due to the matrix weathering in contrast to the resistance of the pebbles. Additionally, masses of aggregates can fall together, especially if small and local fractures are present. These rockfalls are of irregular shape and generally of small volume, ranging from 10−6 to less than 10−1 m3.
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Agliardi, F.; Crosta, G.B.; Frattini, P. Integrating rockfall risk assessment and countermeasure design by 3D modelling techniques. Nat. Hazards Earth Syst. Sci. 2009, 9, 1059–1073. [Google Scholar] [CrossRef] [Green Version]
- Scavia, C.; Barbero, M.; Castelli, M.; Marchelli, M.; Peila, D.; Torsello, G.; Vallero, G. Evaluating Rockfall Risk: Some Critical Aspects. Geosciences 2020, 10, 98. [Google Scholar] [CrossRef] [Green Version]
- Hantz, D.; Corominas, J.; Crosta, G.; Jaboyedoff, M. Definitions and Concepts for Quantitative Rockfall Hazard and Risk Analysis. Geosciences 2021, 11, 158. [Google Scholar] [CrossRef]
- Janeras, M.; Buxó, P.; Paret, D.; Comellas, J.; Palau, J. Valoración del riesgo como herramienta de análisis de alternativas de protección frente desprendimientos de roca en el Cremallera de Núria. In VII Simposio Nacional Sobre Taludes y Laderas Inestables; Alonso, E., Corominas, J., Hürlimann, M., Eds.; CIMNE: Barcelona, Spain, 2009. (In Spanish) [Google Scholar]
- Budetta, P.; De Luca, C.; Nappi, M. Quantitative rockfall risk assessment for an important road by means of the rockfall risk management (RO.MA.) method. Bull. Eng. Geol. Environ. 2015, 75, 1377–1397. [Google Scholar] [CrossRef]
- Corominas, J.; Matas, G.; Ruiz-Carulla, R. Quantitative analysis of risk from fragmental rockfalls. Landslides 2019, 16, 5–21. [Google Scholar] [CrossRef] [Green Version]
- Hantz, D.; Colas, B.; Dewez, T.; Lévy, C.; Rossetti, J.-P.; Guerin, A.; Jaboyedoff, M. Caractérisation quantitative des aléas rocheux de départ diffus. Rev. Française Géotechnique 2020, 163, 2. [Google Scholar] [CrossRef]
- Casagli, N.; Intrieri, E.; Tofani, V.; Gigli, G.; Raspini, F. Landslide detection, monitoring and prediction with remote-sensing techniques. Nat. Rev. Earth Environ. 2023, 4, 51–64. [Google Scholar] [CrossRef]
- Bonilla-Sierra, V.; Scholtes, L.; Donzé, F.V.; Elmouttie, M.K. Rock slope stability analysis using photogrammetric data and DFN–DEM modelling. Acta Geotech. 2015, 10, 497–511. [Google Scholar] [CrossRef]
- Jaboyedoff, M.; Ben Hammouda, M.; Derron, M.H.; Guérin, A.; Hantz, D.; Noel, F. The Rockfall Failure Hazard Assessment: Summary and New Advances. In Understanding and Reducing Landslide Disaster Risk, 5th ed.; Springer International Publishing: Cham, Switzerland, 2021; pp. 55–83. [Google Scholar] [CrossRef]
- Yan, J.; Chen, J.; Tan, C.; Zhang, Y.; Liu, Y.; Zhao, X.; Wang, Q. Rockfall source areas identification at local scale by integrating discontinuity-based threshold slope angle and rockfall trajectory analyses. Eng. Geol. 2023, 313, 106993. [Google Scholar] [CrossRef]
- Corominas, J.; Einstein, H.; Davis, T.; Strom, A.; Zuccaro, G.; Nadim, F.; Verdel, T. Glossary of terms on landslide hazard and risk. In Engineering Geology for Society and Territory—Volume 2: Landslide Processes; Lollino, G., Giordan, D., Crosta, G., Eds.; Springer International Publishing: Cham, Switzerland, 2015; Volume 2, pp. 1775–1779. [Google Scholar] [CrossRef]
- Gili, J.A.; Ruiz-Carulla, R.; Matas, G.; Moya, J.; Prades, A.; Corominas, J.; Lantada, N.; Núñez-Andrés, M.A.; Buill, F.; Puig, C.; et al. Rockfalls: Analysis of the block fragmentation through field experiments. Landslides 2022, 19, 1009–1029. [Google Scholar] [CrossRef]
- Moos, C.; Bontognali, Z.; Dorren, L.; Jaboyedoff, M.; Hantz, D. Estimating rockfall and block volume scenarios based on a straightforward rockfall frequency model. Eng. Geol. 2022, 309, 106828. [Google Scholar] [CrossRef]
- Riley, K.L.; Bendick, R.; Hyde, K.D.; Gabet, E.J. Frequency–magnitude distribution of debris flows compiled from global data, and comparison with post-fire debris flows in the western U.S. Geomorphology 2013, 191, 118–128. [Google Scholar] [CrossRef]
- Guzzetti, F.; Malamud, B.D.; Turcotte, D.L.; Reichenbach, P. Power-law correlations of landslide areas in central Italy. Earth Planet. Sci. Lett. 2002, 195, 169–183. [Google Scholar] [CrossRef]
- Guthrie, R.H.; Deadman, P.J.; Cabrera, A.R.; Evans, S.G. Exploring the magnitude–frequency distribution: A cellular automata model for landslides. Landslides 2008, 5, 151–159. [Google Scholar] [CrossRef]
- Dussauge-Peisser, C.; Helmstetter, A.; Grasso, J.-R.; Hantz, D.; Desvarreux, P.; Jeannin, M.; Giraud, A. Probabilistic approach to rock fall hazard assessment: Potential of historical data analysis. Nat. Hazards Earth Syst. Sci. 2002, 2, 15–26. [Google Scholar] [CrossRef]
- Hungr, O.; Evans, S.G.; Hazzard, J. Magnitude and frequency of rock falls and rock slides along the main transportation corridors of southwestern British Columbia. Can. Geotech. J. 1999, 36, 224–238. [Google Scholar] [CrossRef]
- Brunetti, M.T.; Guzzetti, F.; Rossi, M. Probability distributions of landslide volumes. Nonlinear Process. Geophys. 2009, 16, 179–188. [Google Scholar] [CrossRef] [Green Version]
- Graber, A.; Santi, P. Power law models for rockfall frequency-magnitude distributions: Review and identification of factors that influence the scaling exponent. Geomorphology 2022, 418, 108463. [Google Scholar] [CrossRef]
- Bhuyan, K.; Tanyaş, H.; Nava, L.; Puliero, S.; Meena, S.R.; Floris, M.; van Westen, C.; Catani, F. Generating multi-temporal landslide inventories through a general deep transfer learning strategy using HR EO data. Sci. Rep. 2023, 13, 1–26. [Google Scholar] [CrossRef]
- Blanco, L.; García-Sellés, D.; Guinau, M.; Zoumpekas, T.; Puig, A.; Salamó, M.; Gratacós, O.; Muñoz, J.A.; Janeras, M.; Pedraza, O. Machine Learning-Based Rockfalls Detection with 3D Point Clouds, Example in the Montserrat Massif (Spain). Remote Sens. 2022, 14, 4306. [Google Scholar] [CrossRef]
- Abellan, A.; Derron, M.-H.; Jaboyedoff, M. “Use of 3D Point Clouds in Geohazards” Special Issue: Current Challenges and Future Trends. Remote Sens. 2016, 8, 130. [Google Scholar] [CrossRef] [Green Version]
- Abellán, A.; Oppikofer, T.; Jaboyedoff, M.; Rosser, N.J.; Lim, M.; Lato, M.J. Terrestrial laser scanning of rock slope instabilities. Earth Surf. Process. Landforms 2013, 39, 80–97. [Google Scholar] [CrossRef]
- Janeras, M.; Jara, J.-A.; Royán, M.J.; Vilaplana, J.-M.; Aguasca, A.; Fàbregas, X.; Gili, J.A.; Buxó, P. Multi-technique approach to rockfall monitoring in the Montserrat massif (Catalonia, NE Spain). Eng. Geol. 2017, 219, 4–20. [Google Scholar] [CrossRef] [Green Version]
- Jaboyedoff, M.; Oppikofer, T.; Abellán, A.; Derron, M.-H.; Loye, A.; Metzger, R.; Pedrazzini, A. Use of LIDAR in landslide investigations: A review. Nat. Hazards 2012, 61, 5–28. [Google Scholar] [CrossRef] [Green Version]
- Janeras, M.; Gili, J.A.; Palau, J.; Buxó, P. Checking complementarity of different LiDAR / photogrammetry terrain models for rockfall mitigation in a demanding environment. In Proceedings of the 3rd Virtual Geoscience Conference, Kingston, ON, Canada, 23–24 August 2018. [Google Scholar]
- Núñez-Andrés, M.A.; Prades-Valls, A.; Matas, G.; Buill, F.; Lantada, N. New Approach for Photogrammetric Rock Slope Premonitory Movements Monitoring. Remote Sens. 2023, 15, 293. [Google Scholar] [CrossRef]
- Guerin, A.; Jaboyedoff, M.; Collins, B.D.; Stock, G.M.; Derron, M.-H.; Abellán, A.; Matasci, B. Remote thermal detection of exfoliation sheet deformation. Landslides 2020, 18, 865–879. [Google Scholar] [CrossRef] [PubMed]
- Grechi, G.; Fiorucci, M.; Marmoni, G.; Martino, S. 3D Thermal Monitoring of Jointed Rock Masses through Infrared Thermography and Photogrammetry. Remote Sens. 2021, 13, 957. [Google Scholar] [CrossRef]
- Lato, M.J.; Vöge, M. Automated mapping of rock discontinuities in 3D lidar and photogrammetry models. Int. J. Rock Mech. Min. Sci. 2012, 54, 150–158. [Google Scholar] [CrossRef]
- Núñez Andrés, M.A.; Buill Pozuelo, F.; Puig i Polo, C.; Lantada, N.; Janeras Casanova, M.; Gili Ripoll, J.A. Comparison of several geomatic techniques for rockfall monitoring. In Proceedings of the 2019 4th Joint International Symposium on Deformation Monitoring, Athens, Greece, 15–17 May 2019. [Google Scholar]
- Eltner, A.; Hoffmeister, D.; Kaiser, A.; Karrasch, P.; Klingbeil, L.; Stöcker, C.; Rovere, A. UAVs for the Environmental Sciences; Wissenschaftliche Buchgesellschaft: Darmstadt, Germany, 2022. [Google Scholar]
- Giordan, D.; Adams, M.S.; Aicardi, I.; Alicandro, M.; Allasia, P.; Baldo, M.; De Berardinis, P.; Dominici, D.; Godone, D.; Hobbs, P.; et al. The use of unmanned aerial vehicles (UAVs) for engineering geology applications. Bull. Eng. Geol. Environ. 2020, 79, 3437–3481. [Google Scholar] [CrossRef] [Green Version]
- Ruiz-Carulla, R.; Corominas, J. Documenting rock mass failure with UAV during an emergency phase: Castell de Mur case study. In Proceedings of the 13th International Symposium on Landslides, Cartagena, Colombia, 22–26 February 2021. [Google Scholar]
- Robiati, C.; Mastrantoni, G.; Francioni, M.; Eyre, M.; Coggan, J.; Mazzanti, P. Contribution of High-Resolution Virtual Outcrop Models for the Definition of Rockfall Activity and Associated Hazard Modelling. Land 2023, 12, 191. [Google Scholar] [CrossRef]
- Blanch, X.; Abellan, A.; Guinau, M. Point Cloud Stacking: A Workflow to Enhance 3D Monitoring Capabilities Using Time-Lapse Cameras. Remote Sens. 2020, 12, 1240. [Google Scholar] [CrossRef]
- Blanch, X.; Eltner, A.; Guinau, M.; Abellan, A. Multi-Epoch and Multi-Imagery (MEMI) Photogrammetric Workflow for Enhanced Change Detection Using Time-Lapse Cameras. Remote Sens. 2021, 13, 1460. [Google Scholar] [CrossRef]
- Prades-Valls, A.; Corominas, J.; Lantada, N.; Matas, G.; Núñez-Andrés, M.A. Capturing rockfall kinematic and fragmentation parameters using high-speed camera system. Eng. Geol. 2022, 302, 106629. [Google Scholar] [CrossRef]
- Jaboyedoff, M.; Choanji, T.; Derron, M.-H.; Fei, L.; Gutierrez, A.; Loiotine, L.; Noel, F.; Sun, C.; Wyser, E.; Wolff, C. Introducing Uncertainty in Risk Calculation along Roads Using a Simple Stochastic Approach. Geosciences 2021, 11, 143. [Google Scholar] [CrossRef]
- Giacomini, A.; Thoeni, K.; Santise, M.; Diotri, F.; Booth, S.; Fityus, S.; Roncella, R. Temporal-Spatial Frequency Rockfall Data from Open-Pit Highwalls Using a Low-Cost Monitoring System. Remote Sens. 2020, 12, 2459. [Google Scholar] [CrossRef]
- Ge, Y.; Tang, H.; Xia, D.; Wang, L.; Zhao, B.; Teaway, J.W.; Chen, H.; Zhou, T. Automated measurements of discontinuity geometric properties from a 3D-point cloud based on a modified region growing algorithm. Eng. Geol. 2018, 242, 44–54. [Google Scholar] [CrossRef]
- Dussauge, C.; Grasso, J.-R.; Helmstetter, A. Statistical analysis of rockfall volume distributions: Implications for rockfall dynamics. J. Geophys. Res. Solid Earth 2003, 108, 2286. [Google Scholar] [CrossRef] [Green Version]
- Wieczorek, G.F.; Morrissey, M.M.; Iovine, G.; Godt, J.W. Rock-Fall Hazards in the Yosemite Valley, California; Open-File Report 98-467; USGS: Reston, VA, USA, 1998. Available online: http://pubs.usgs.gov/of/1998/ofr-98-0467/ (accessed on 4 February 2023).
- Hantz, D.; Dussauge-Peisser, C.; Jeannin, M.; Vengeon, J. Rock Fall Hazard Assessment: From Qualitative to Quantitative Failure Probability. In Fast Slope Movements; Patron Editore: Bologna, Italy, 2003; pp. 263–267. [Google Scholar]
- Barlow, J.; Lim, M.; Rosser, N.; Petley, D.; Brain, M.; Norman, E.; Geer, M. Modeling cliff erosion using negative power law scaling of rockfalls. Geomorphology 2012, 139–140, 416–424. [Google Scholar] [CrossRef]
- Santana, D.; Corominas, J.; Mavrouli, O.; Garcia-Sellés, D. Magnitude–frequency relation for rockfall scars using a Terrestrial Laser Scanner. Eng. Geol. 2012, 145–146, 50–64. [Google Scholar] [CrossRef]
- Corominas, J.; Mavrouli, O.; Ruiz-Carulla, R. Magnitude and frequency relations: Are there geological constraints to the rockfall size? Landslides 2018, 15, 829–845. [Google Scholar] [CrossRef] [Green Version]
- D’Amato, J.; Guerin, A.; Hantz, D.; Rossetti, J.; Jaboyedoff, M. Terrestrial Laser Scanner study of rockfall frequency and failure configurations. In Proceedings of the Jag 2013—Troisièmes Journées Aléas Gravitaires, Grenoble, France, 17–18 September 2013. [Google Scholar]
- Williams, J.G.; Rosser, N.J.; Hardy, R.J.; Brain, M.J. The Importance of Monitoring Interval for Rockfall Magnitude-Frequency Estimation. J. Geophys. Res. Earth Surf. 2019, 124, 2841–2853. [Google Scholar] [CrossRef] [Green Version]
- Malamud, B.D.; Turcotte, D.L.; Guzzetti, F.; Reichenbach, P. Landslide inventories and their statistical properties. Earth Surf. Process. Landforms 2004, 29, 687–711. [Google Scholar] [CrossRef]
- Van Veen, M.; Hutchinson, D.J.; Kromer, R.; Lato, M.; Edwards, T. Effects of sampling interval on the frequency—Magnitude relationship of rockfalls detected from terrestrial laser scanning using semi-automated methods. Landslides 2017, 14, 1579–1592. [Google Scholar] [CrossRef]
- Strunden, J.; Ehlers, T.A.; Brehm, D.; Nettesheim, M. Spatial and temporal variations in rockfall determined from TLS measurements in a deglaciated valley, Switzerland. J. Geophys. Res. Earth Surf. 2015, 120, 1251–1273. [Google Scholar] [CrossRef] [Green Version]
- Jacobs, B.; Huber, F.; Krautblatter, M. A complete rockfall inventory across twelve orders of magnitude. In Proceedings of the EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022. [Google Scholar] [CrossRef]
- López-Blanco, M. Stratigraphic and tectonosedimentary development of the Eocene Sant Llorenç del Munt and Montserrat fan-delta complexes (Southeast Ebro basin margin, Northeast Spain). Contrib. Sci. 2006, 3, 125–148. [Google Scholar] [CrossRef]
- Palau, J.; Janeras, M.; Prat, E.; Pons, J.; Ripoll, J.; Martínez, P.; Comellas, J. Preliminary assessment of rockfall risk mitigation in access infrastructures to Montserrat. In Second World Landslide Forum; Springer: Berlin/Heidelberg, Germany, 2011. [Google Scholar]
- Alvioli, M.; Marchesini, I.; Reichenbach, P.; Rossi, M.; Ardizzone, F.; Fiorucci, F.; Guzzetti, F. Automatic delineation of geomorphological slope units with r.slopeunits v1.0 and their optimization for landslide susceptibility modeling. Geosci. Model Dev. 2016, 9, 3975–3991. [Google Scholar] [CrossRef] [Green Version]
- Loye, A.; Jaboyedoff, M.; Pedrazzini, A. Identification of potential rockfall source areas at a regional scale using a DEM-based geomorphometric analysis. Nat. Hazards Earth Syst. Sci. 2009, 9, 1643–1653. [Google Scholar] [CrossRef]
- Abellán, A.; Vilaplana, J.M.; Calvet, J.; García-Sellés, D.; Asensio, E. Rockfall monitoring by Terrestrial Laser Scanning—Case study of the basaltic rock face at Castellfollit de la Roca (Catalonia, Spain). Nat. Hazards Earth Syst. Sci. 2011, 11, 829–841. [Google Scholar] [CrossRef] [Green Version]
- Abellán, A. Improvements in Our Understanding of Rockfall Phenomenon by Terrestrial Laser Scanning: Emphasis on Change Detection and Its Application to Spatial Prediction. Ph.D. Thesis, Universitat de Barcelona, Barcelona, Spain, 2009. [Google Scholar] [CrossRef]
- Royán, M.J. Caracterización y Predicción de Desprendimientos de Rocas Mediante LiDAR Terrestre. Ph.D. Thesis, Universitat de Barcelona, Barcelona, Spain, 2015. (In Spanish). [Google Scholar]
- Blanch Górriz, X. Anàlisi Estructural i Detecció de Despreniments Rocosos a Partir de Dades LiDAR a la Muntanya de Montserrat. Bachelor’s Thesis, Universitat Politècnica de Catalunya, Barcelona, Spain, 2016. (In Catalan). [Google Scholar] [CrossRef]
- Garcia Badal, M. Millora Metodològica per a La Detecció i Caracterització de Despreniments Amb Dades de LiDAR Terrestre a La Muntanya de Montserrat. Master’s Thesis, Universitat de Barcelona, Barcelona, Spain, 2018. (In Catalan). [Google Scholar]
- Blanco, L. Afloraments Fracturats Digitalitzats. Avaluació de Les Tècniques Remotes En Models DFN i Aplicació de Machine Learning. Ph.D. Thesis, Universitat de Barcelona, Barcelona, Spain, 2023. (In Catalan). [Google Scholar]
- Schovanec, H.; Walton, G.; Kromer, R.; Malsam, A. Development of Improved Semi-Automated Processing Algorithms for the Creation of Rockfall Databases. Remote Sens. 2021, 13, 1479. [Google Scholar] [CrossRef]
- Zoumpekas, T.; Puig, A.; Salamó, M.; García-Sellés, D.; Nuñez, L.B.; Guinau, M. An intelligent framework for end-to-end rockfall detection. Int. J. Intell. Syst. 2021, 36, 6471–6502. [Google Scholar] [CrossRef]
- Farmakis, I.; DiFrancesco, P.-M.; Hutchinson, D.J.; Vlachopoulos, N. Rockfall detection using LiDAR and deep learning. Eng. Geol. 2022, 309, 106836. [Google Scholar] [CrossRef]
- Pedraza, O.; Aronés, Á.P.; Puig, C.; Janeras, M.; Gili, J.A. Rockfall monitoring: Comparing several strategies for surveying detached blocks and their volume, from TLS point clouds and GigaPan pictures. In Proceedings of the 5th Joint International Symposium on Deformation Monitoring (JISDM), Valencia, Spain, 20–22 June 2022. [Google Scholar]
- DiFrancesco, P.-M.; Bonneau, D.; Hutchinson, D.J. The Implications of M3C2 Projection Diameter on 3D Semi-Automated Rockfall Extraction from Sequential Terrestrial Laser Scanning Point Clouds. Remote Sens. 2020, 12, 1885. [Google Scholar] [CrossRef]
- Walton, G.; Weidner, L. Accuracy of Rockfall Volume Reconstruction from Point Cloud Data—Evaluating the Influences of Data Quality and Filtering. Remote Sens. 2022, 15, 165. [Google Scholar] [CrossRef]
- Melzner, S.; Rossi, M.; Guzzetti, F. Impact of mapping strategies on rockfall frequency-size distributions. Eng. Geol. 2020, 272, 105639. [Google Scholar] [CrossRef]
- Bornaetxea, T.; Marchesini, I.; Kumar, S.; Karmakar, R.; Mondini, A. Terrain visibility impact on the preparation of landslide inventories: A practical example in Darjeeling district (India). Nat. Hazards Earth Syst. Sci. 2022, 22, 2929–2941. [Google Scholar] [CrossRef]
- Pelletier, J.D.; Malamud, B.D.; Blodgett, T.; Turcotte, D.L. Scale-invariance of soil moisture variability and its implications for the frequency-size distribution of landslides. Eng. Geol. 1997, 48, 255–268. [Google Scholar] [CrossRef]
- Hungr, O.; McDougall, S.; Wise, M.; Cullen, M. Magnitude–frequency relationships of debris flows and debris avalanches in relation to slope relief. Geomorphology 2008, 96, 355–365. [Google Scholar] [CrossRef]
- Janeras, M.; Gili, J.A.; Guinau, M.; Vilaplana, J.M.; Buxó, P.; Palau, J. Lessons learned from Degotalls rock wall monitoring in the Montserrat Massif (Catalonia, NE Spain). In Proceedings of the 4th RSS Rock Slope Stability Symposium (RSS-2018), Chambéry, France, 13–15 November 2018. [Google Scholar]
- Carrea, D.; Abellan, A.; Derron, M.H.; Jaboyedoff, M. Automatic Rockfalls Volume Estimation Based on Terrestrial Laser Scanning Data. In Engineering Geology for Society and Territory—Volume 2: Landslide Processes; Lollino, G., Ed.; Springer International Publishing: Cham, Switzerland, 2015; pp. 425–428. [Google Scholar] [CrossRef] [Green Version]
- Straub, D.; Schubert, M. Modeling and managing uncertainties in rock-fall hazards. Georisk Assess. Manag. Risk Eng. Syst. Geohazards 2008, 2, 1–15. [Google Scholar] [CrossRef]
- De Biagi, V.; Napoli, M.L.; Barbero, M.; Peila, D. Estimation of the return period of rockfall blocks according to their size. Nat. Hazards Earth Syst. Sci. 2017, 17, 103–113. [Google Scholar] [CrossRef] [Green Version]
- Mavrouli, O.; Corominas, J. Evaluation of Maximum Rockfall Dimensions Based on Probabilistic Assessment of the Penetration of the Sliding Planes into the Slope. Rock Mech. Rock Eng. 2020, 53, 2301–2312. [Google Scholar] [CrossRef] [Green Version]
- Guerin, A.; Stock, G.M.; Radue, M.J.; Jaboyedoff, M.; Collins, B.D.; Matasci, B.; Avdievitch, N.; Derron, M.-H. Quantifying 40 years of rockfall activity in Yosemite Valley with historical Structure-from-Motion photogrammetry and terrestrial laser scanning. Geomorphology 2020, 356, 107069. [Google Scholar] [CrossRef]
- Stock, G.M.; Collins, B.D.; Santaniello, D.J.; Zimmer, V.L.; Wieczorek, G.F.; Snyder, J. Summary Narratives to Accompany Data Series 746. Historical Rockfalls in Yosemite National Park, California (1857–2011); US Geological Survey: Reston, VA, USA, 2013.
- Bichler, A.; Stelzer, G.; Hamberger, M. Technical Protection against Rockfall—Design, Monitoring and Maintenance according to the Austrian Guideline ONR 24810. GeoResources 2017, 4, 16–21. [Google Scholar]
- Williams, J.G.; Rosser, N.J.; Hardy, R.J.; Brain, M.J.; Afana, A.A. Optimising 4-D surface change detection: An approach for capturing rockfall magnitude–frequency. Earth Surf. Dyn. 2018, 6, 101–119. [Google Scholar] [CrossRef] [Green Version]
- Birien, T.; Gauthier, F. Assessing the relationship between weather conditions and rockfall using terrestrial laser scanning to improve risk management. Nat. Hazards Earth Syst. Sci. 2023, 23, 343–360. [Google Scholar] [CrossRef]
- Weidner, L.; Walton, G. Monitoring the Effects of Slope Hazard Mitigation and Weather on Rockfall along a Colorado Highway Using Terrestrial Laser Scanning. Remote Sens. 2021, 13, 4584. [Google Scholar] [CrossRef]
- van Veen, M.; Lato, M.; Hutchinson, D.J.; Kromer, R.A. The role of survey design in developing rock fall frequency- magnitude relationships using Terrestrial Laser Scanning: A case study from the CN Railway at White Canyon, BC. In Proceedings of the 3rd North American Symposium on Landslides, Roanoke, VA, USA, 4–8 June 2017. [Google Scholar]
- Rowe, E.; Hutchinson, D.J.; Kromer, R.A. An analysis of failure mechanism constraints on pre-failure rock block deformation using TLS and roto-translation methods. Landslides 2017, 15, 409–421. [Google Scholar] [CrossRef]
Manufacturer | Model | Maximum Range | Range Accuracy | Scan Rate | Mean Spacing | Spot Diameter |
---|---|---|---|---|---|---|
(Name) | (Name) | (m) | (mm @100 m) | (Hz) | (mm @100 m) | (mm @100 m) |
Optech | ILRIS-3D | 1500 | 7 | 2 × 103 | 30 | 29.0 |
Leica | ScanStation P50 | 570 | 4 | up to 1 × 106 | 8/16/31/63 | 26.5 |
Station | First Survey | Last Survey | Surveyed Period | Surveys | Surface | SE | Rockfalls | Mean Activity |
---|---|---|---|---|---|---|---|---|
(Name) | (Date) | (Date) | (Years) | (Number) | (hm2) | (hm2·Year) | (Number) | (hm−2·Year−1) |
Degotalls N | 2007-05-11 | 2020-11-24 | 13.55 | 26 | 1.73 | 23.44 | 225 | 9.60 |
Degotalls E | 2007-05-11 | 2020-11-24 | 13.55 | 26 | 1.33 | 18.02 | 140 | 7.77 |
Monastery | 2011-02-15 | 2020-11-24 | 9.78 | 25 | 3.57 | 34.29 | 170 | 4.56 |
Guilleumes | 2016-07-22 | 2020-11-25 | 4.35 | 10 | 0.83 | 3.61 | 11 | 3.05 |
Sant Benet | 2016-07-22 | 2020-11-25 | 4.35 | 10 | 1.00 | 4.35 | 12 | 2.76 |
Collbató | 2015-07-07 | 2020-12-01 | 5.41 | 7 | 1.03 | 5.57 | 21 | 3.77 |
Can Jorba | 2016-07-19 | 2020-12-01 | 4.37 | 8 | 1.29 | 5.64 | 13 | 2.30 |
min | max | weighted | sum | sum | sum | sum | weighted | |
Total | 2007-05-11 | 2020-12-01 | 8.86 | 112 | 10.78 | 95.55 | 592 | 6.20 |
Station | First Survey | Last Survey | Surveyed Period | Surveys | Surface | SE | Rockfalls | Mean Activity |
---|---|---|---|---|---|---|---|---|
(Name) | (Date) | (Date) | (Years) | (Number) | (hm2) | (hm2·Year) | (Number) | (hm−2·Year−1) |
River path | 2008-01-18 | 2020-11-23 | 12.86 | 8 | 1.92 | 24.69 | 192 | 7.78 |
River parking | 2011-05-17 | 2020-11-23 | 9.53 | 8 | 0.24 | 2.29 | 93 | 40.67 |
Kitchen garden | 2008-01-18 | 2020-11-23 | 12.86 | 8 | 0.48 | 6.17 | 13 | 2.11 |
min | max | weighted | sum | sum | sum | sum | weighted | |
Total | 2008-01-18 | 2020-11-23 | 12.55 | 8 | 2.64 | 33.14 | 298 | 8.99 |
Volume | Domains | 205 | 206 | 207 | 208 | 209 | 210 | 211 | 220 | 221 | 222 | 223 | 224 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
V (m3) | Source area (hm2) | 1.35 | 0.41 | 2.02 | 2.26 | 0.23 | 0.26 | 2.88 | 1.67 | 0.90 | 0.90 | 0.45 | 2.35 |
0.001 | 2.5 | N | N | N | Y | Y | N | N | N | N | N | N | N |
0.003 | 3.8 | Y | N | N | Y | Y | N | N | N | N | N | N | N |
0.01 | 4.1 | Y | N | N | Y | Y | Y | N | N | N | N | N | N |
0.03 | 6.1 | Y | N | Y | Y | Y | Y | N | N | N | N | N | N |
0.1 | 6.5 | Y | Y | Y | Y | Y | Y | N | N | N | N | N | N |
0.3 | 9.4 | Y | Y | Y | Y | Y | Y | Y | N | N | N | N | N |
1 | 9.4 | Y | Y | Y | Y | Y | Y | Y | N | N | N | N | N |
3 | 13.3 | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | N |
10 | 15.7 | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y |
30 | 15.7 | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y |
100 | 15.7 | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y |
300 | 15.7 | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y |
1000 | 15.7 | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y |
3000 | 13.9 | Y | Y | Y | Y | Y | Y | Y | Y | N | N | Y | Y |
10,000 | 11.5 | Y | Y | Y | Y | N | Y | Y | N | N | N | N | Y |
Sample | ||||||||
---|---|---|---|---|---|---|---|---|
(Name) | (m3) | (m3) | (hm−2·Year−1) | (--) | (--) | (--) | (m3) | (--) |
TLS Station | ||||||||
Degotalls N | 3.0 × 10−3 | 5.0 × 101 | 0.593 | 0.478 | 0.993 | 13.90 | 0.426 | 0.547 |
Degotalls E | 3.0 × 10−3 | 2.5 × 10−1 | 0.061 | 0.846 | 0.982 | 1.11 | 0.201 | 0.210 |
Monastery | 5.2 × 10−3 | 4.8 × 10−1 | 0.041 | 0.879 | 0.983 | 1.44 | 0.171 | 0.177 |
Guilleumes | 2.0 × 10−3 | 2.2 × 10−1 | 0.189 | 0.461 | 0.962 | 0.68 | 0.188 | 0.245 |
Sant Benet | 1.6 × 10−3 | 4.8 × 10−1 | 0.132 | 0.454 | 0.965 | 0.57 | 0.144 | 0.189 |
Collbató road | 4.0 × 10−4 | 1.7 × 10−1 | 0.091 | 0.483 | 0.977 | 0.51 | 0.121 | 0.155 |
Can Jorba | 1.5 × 10−3 | 1.0 × 10−1 | 0.057 | 0.570 | 0.952 | 0.32 | 0.113 | 0.135 |
Region | ||||||||
Monastery | 5.2 × 10−3 | 4.8 × 10−1 | 0.041 | 0.879 | 0.983 | 1.44 | 0.171 | 0.177 |
Parking | 3.0 × 10−3 | 5.0 × 101 | 0.339 | 0.555 | 0.991 | 14.04 | 0.341 | 0.413 |
Railway | 1.6 × 10−3 | 4.8 × 10−1 | 0.113 | 0.510 | 0.982 | 0.90 | 0.151 | 0.189 |
Collbató | 1.0 × 10−3 | 1.1 × 10−1 | 0.070 | 0.518 | 0.978 | 0.78 | 0.112 | 0.140 |
Massif | ||||||||
Montserrat | 3.0 × 10−3 | 5.0 × 10+1 | 0.163 | 0.621 | 0.991 | 15.57 | 0.243 | 0.282 |
Analysis | Region | Monastery | Parking | Rack Railway | Collbató Caves | Northern Road | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
0.023 | 0.119 | 0.029 | 0.139 | 0.060 | ||||||||
0.635 | 0.579 | 0.781 | 0.593 | 0.796 | ||||||||
0.966 | 0.960 | 0.990 | 0.803 | 0.948 | ||||||||
to merge all partial samples of the inventory into a global one | ||||||||||||
m3 | # | hm2·year | # | hm2·year | # | hm2·year | # | hm2·year | # | hm2·year | # | hm2·year |
0.01 | 71 | 264 | 8 | 41 | 18 | 55 | 6 | 61 | 31 | 44 | 8 | 64 |
0.03 | 61 | 289 | 7 | 61 | 15 | 55 | 6 | 61 | 26 | 44 | 7 | 68 |
0.1 | 48 | 391 | 5 | 65 | 13 | 55 | 3 | 118 | 19 | 44 | 8 | 110 |
0.3 | 37 | 459 | 5 | 94 | 7 | 55 | 4 | 152 | 14 | 48 | 7 | 111 |
1 | 40 | 1080 | 7 | 197 | 9 | 118 | 10 | 518 | 10 | 58 | 4 | 188 |
3 | 23 | 1420 | 4 | 280 | 6 | 182 | 5 | 570 | 6 | 153 | 2 | 235 |
10 | 14 | 2921 | 0 | 329 | 6 | 348 | 3 | 907 | 0 | 213 | 5 | 1125 |
30 | 7 | 3413 | 0 | 329 | 4 | 348 | 2 | 907 | 0 | 213 | 1 | 1616 |
100 | 8 | 4995 | 0 | 329 | 3 | 348 | 1 | 900 | 0 | 196 | 4 | 3222 |
300 | 5 | 4978 | 0 | 329 | 2 | 348 | 1 | 897 | 0 | 196 | 2 | 3208 |
1000 | 2 | 4978 | 0 | 329 | 0 | 348 | 1 | 897 | 0 | 196 | 1 | 3208 |
0.026 | 0.029 | 0.061 | 0.014 | 0.118 | 0.015 | |||||||
Global | 0.603 | 0.422 | 0.436 | 0.446 | 0.461 | 0.580 | ||||||
0.983 | 0.971 | 0.978 | 0.958 | 0.861 | 0.950 |
Sample | Minimum Volume | Maximum Volume | ||||||
---|---|---|---|---|---|---|---|---|
Name | m3 | m3 | hm−2·Year−1 | -- | -- | -- | m3 | -- |
TLS-Station | ||||||||
River path | 2.1 × 10−3 | 3.7 × 100 | 0.403 | 0.447 | 0.981 | 9.94 | 0.306 | 0.404 |
River parking | 2.0 × 10−3 | 3.8 × 100 | 0.826 | 0.591 | 0.994 | 1.89 | 0.637 | 0.752 |
Kitchen garden | 7.1 × 10−3 | 1.1 × 100 | 0.382 | 0.363 | 0.911 | 2.36 | 0.235 | 0.340 |
Level | ||||||||
Upper lava flow | 2.1 × 10−3 | 3.7 × 100 | 0.373 | 0.443 | 0.990 | 11.51 | 0.287 | 0.381 |
Lower lava flow | 2.0 × 10−3 | 3.8 × 100 | 0.826 | 0.591 | 0.994 | 1.89 | 0.637 | 0.752 |
Cliff | ||||||||
Castellfollit | 2.0 × 10−3 | 3.7 × 100 | 0.389 | 0.479 | 0.994 | 12.90 | 0.321 | 0.412 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Janeras, M.; Lantada, N.; Núñez-Andrés, M.A.; Hantz, D.; Pedraza, O.; Cornejo, R.; Guinau, M.; García-Sellés, D.; Blanco, L.; Gili, J.A.; et al. Rockfall Magnitude-Frequency Relationship Based on Multi-Source Data from Monitoring and Inventory. Remote Sens. 2023, 15, 1981. https://doi.org/10.3390/rs15081981
Janeras M, Lantada N, Núñez-Andrés MA, Hantz D, Pedraza O, Cornejo R, Guinau M, García-Sellés D, Blanco L, Gili JA, et al. Rockfall Magnitude-Frequency Relationship Based on Multi-Source Data from Monitoring and Inventory. Remote Sensing. 2023; 15(8):1981. https://doi.org/10.3390/rs15081981
Chicago/Turabian StyleJaneras, Marc, Nieves Lantada, M. Amparo Núñez-Andrés, Didier Hantz, Oriol Pedraza, Rocío Cornejo, Marta Guinau, David García-Sellés, Laura Blanco, Josep A. Gili, and et al. 2023. "Rockfall Magnitude-Frequency Relationship Based on Multi-Source Data from Monitoring and Inventory" Remote Sensing 15, no. 8: 1981. https://doi.org/10.3390/rs15081981
APA StyleJaneras, M., Lantada, N., Núñez-Andrés, M. A., Hantz, D., Pedraza, O., Cornejo, R., Guinau, M., García-Sellés, D., Blanco, L., Gili, J. A., & Palau, J. (2023). Rockfall Magnitude-Frequency Relationship Based on Multi-Source Data from Monitoring and Inventory. Remote Sensing, 15(8), 1981. https://doi.org/10.3390/rs15081981