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Abstract: Crop-type mapping is the foundation of grain security and digital agricultural management.
Accuracy, efficiency and large-scale scene consistency are required to perform crop classification from
remote sensing images. Many current remote-sensing crop extraction methods based on deep learning
cannot account for adaptation effects in large-scale, complex scenes. Therefore, this study proposes a
novel adaptive feature-fusion network for crop classification using single-temporal Sentinel-2 images.
The selective patch module implemented in the network can adaptively integrate the features of
different patch sizes to assess complex scenes better. TabNet was used simultaneously to extract
spectral information from the center pixels of the patches. Multitask learning was used to supervise
the extraction process to improve the weight of the spectral characteristics while mitigating the
negative impact of a small sample size. In the network, superpixel optimization was applied to
post-process the classification results to improve the crop edges. By conducting the crop classification
of peanut, rice, and corn based on Sentinel-2 images in 2022 in Henan Province, China, the novel
method proposed in this paper was more accurate, indicated by an F1 score of 96.53%, than other
mainstream methods. This indicates our model’s potential for application in crop classification in
large scenes.

Keywords: crop mapping; deep learning; feature fusion; multitask learning; Sentinel-2

1. Introduction

Despite being a basic guarantee of human life, grain security is at risk owing to
global population growth and accelerated climate change in recent years [1]. Crop type
information is fundamental for crop yield estimation [2], crop pest monitoring [3], and
growth monitoring [4], which are critical for maintaining grain security. However, the
extraction and acquisition of crop type information are difficult, largely because the manual
methods required are costly in terms of labor and resources [5], often resulting in small
sample sizes.

Remote sensing has been widely used in extracting crop-type information due to
its wide monitoring range, low cost, and high timeliness [6–8]. Vegetation indices can
be formed by combining visible and near-infrared bands of images, which can mea-
sure the condition of surface vegetation simply and effectively [9–11]. Therefore, most
mature application methods use a vegetation index for crop classification [12]. Sup-
ported by time series of Moderate Resolution Imaging Spectroradiometer (MODIS) data,
Zhang et al. [13] used the fast Fourier transform to smooth normalized difference vegeta-
tion index (NDVI) time-series curves while related parameters such as the curve’s mean,
phase, and amplitude were used to extract the spatial distribution data of crops in North
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China. Xiao et al. [14] used the NDVI, the enhanced vegetation index (EVI), and the land
surface water index (LSWI) calculated from MODIS multi-temporal images to classify rice,
water, and evergreen plants. With the recent increase in the use of algorithm iterations and
remote sensing data, a variety of machine learning methods such as support vector machine
(SVM) [15], k-means algorithm [16], maximum likelihood method [17], extreme gradient
boosting (XGBoost) [18], and random forest (RF) [12] have been successfully applied to re-
mote sensing crop classification [19]. For example, using the RF method, Markus et al. [20]
used single-temporal Sentinel-2 data to classify seven crops in Austria. They achieved
an overall accuracy of 76%, establishing the foundation for applying Sentinel-2 data in
crop extraction. Waldner et al. [21] used time-series images from Landsat 8 and SPOT-4 to
classify wheat, corn, and sunflower using artificial neural networks, achieving the highest
classification accuracy of 85%. Furthermore, Wen et al. [5] used time-series Landsat data
and limited high-quality samples to achieve large-scale corn classification mapping using
the RF method. As one of the more effective methods for crop classification, dynamic
time warping (DTW) is widely used in crop classification [22]. Belgiu et al. [23] evaluated
how a time-weighted dynamic time warping (TWDTW) method that uses Sentinel-2 time
series perform when applied to pixel-based and object-based classifications of various
crop types in three different study areas. However, the above classification methods re-
quire the manual design of crop features, which relies on expert knowledge and fixed
scenes, resulting in the insufficient generalization ability of these methods [24]. There-
fore, these methods are not dependable for large-scale intelligent crop classification with
multiple scenes.

After ten years of development, the concept of deep learning was proposed in 2006, and
it has since made breakthroughs in many remote sensing applications, such as land cover
classification [25], building change detection [26], and complex ground object detection [27].
In the field of crop classification, deep learning has become a mainstream method with
large-scale applications [28]. Compared with traditional crop classification methods, deep
learning methods can automatically mine deep features from remote sensing data; can
make full use of time, spatial, and spectral information in images; and have better anti-
noise and generalization abilities, making them the mainstream method of large-scale
crop classification [29–31].

Recurrent neural network (RNN) methods, such as long short-term memory (LSTM) [32],
gated recurrent units (GRU) [33], and Conv1D-CNN [34], originated from natural language
processing and are particularly dependable for sequential data. Thus, they have been ap-
plied to crop extraction methods based on time-series images. For example, Zhong et al. [35]
used Landsat time series data and land use survey results from Yolo County, California, to
test the classification accuracy of LSTM and Conv1D-CNN methods in a variety of summer
crops. However, obtaining complete time-series data is difficult, often resulting in cloud
occlusions or missing data. To address these limitations, some data-filling methods exist.
For example, Zhao et al. [36] classified crops from missing Sentinel-2 time series data using
the filled missing data method and GRU. However, these processes requiring multiple data
sources are complex and undependable for large-scale crop extraction. Furthermore, to
introduce the spatial information of an image, such as texture and planting structure, to
assist crop classification [37], most studies have used a specific patch size around the point
as the model input. For example, Xie et al. [38] decomposed images into patches of different
sizes as inputs in a convolutional neural network (CNN) for crop classification to compare
the effect of patch size on crop classification accuracy. Additionally, Seyd et al. [39] used
11 × 11 pixels patches for classification and designed a two-stream attention CNN network
to extract the spatial and spectral information of crops simultaneously. These methods
generally use fixed-size patches as input, but plot sizes can vary greatly in actual large-scale
scenes, lowering the model’s accuracy. Furthermore, crop samples are generally obtained
manually from the field, which can result in a small number of samples depending on
staffing and available resources. A standard solution to this issue is to use a deep network
for feature extraction followed by a machine learning method as the classifier, as demon-
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strated by Yang et al. [40], who used a combination of CNN and RF for crop classification.
However, there are significant differences in training and principles between deep neural
networks (DNNs) and machine learning methods. The direct combination of these methods
cannot fully exploit the advantages of deep learning. Limited by the spatial and spectral res-
olutions of satellite images, the spatial resolution of satellite images generally used for crop
classification is low. For example, the highest resolution of Sentinel-2 is 10 m. To improve
the boundary accuracy of crop extraction results, Kussul et al. [41] used plot vector data
to optimize crop extraction results and proposed a new voting optimization method that
could significantly improve the accuracy of the results. However, obtaining high-precision
plot vector data and applying them to large-scale crop extraction is challenging. Using the
images themselves for optimization may be a feasible method.

Above all, large-scale crop extraction still has the following problems:
(1) Due to inevitable conditions such as cloud cover and missing data, it is difficult to

obtain complete time-series images, especially for large-scale crop classification. Moreover,
there are few studies on crop extraction from single-temporal remote sensing images [42,43].

(2) Using patches as model inputs may introduce noise while introducing spatial
information. As shown in Figure 1, in mixed planting or terrace scenarios, the crops are
small, long, and narrow in the area. Therefore, the number of pixels different from the
central pixels category in a large patch exceeds half of the total redundant information may
lead to classification errors.

(3) Insufficient crop samples are usually obtained, and since deep learning methods
with more parameters are prone to overfitting, there is a risk of the model having insufficient
generalization ability and low accuracy in large-scale classification.

(4) Limited by the spatial resolution of multispectral images, the phenomenon of
mixed pixels is consequential, resulting in inaccurate crop boundaries.

Figure 1. Coverage of different patch sizes in complex scenarios. (a) Mixed planting scenario, where
crops grow in a random pattern. There are multiple crops in a small area. (b) Mountain terrace
scenario, where crops grow in valleys with smaller areas.

In response to these problems, we propose a deep neural network for large-scale crop
classification using single-temporal images named selective patches TabNet (SPTNet). The
contributions of this study are as follows.

(1) A selective patch module that can adaptively fuse the features of patches of dif-
ferent sizes is designed to improve the network’s ability to extract small crop plots in
complex scenes.

(2) TabNet [44] and multitask learning were introduced to capture the spectral and
spatial information of the central pixel to improve the weight of the central pixel during the
classification process and enhance the network’s generalization ability, which effectively
reduced the negative impact of insufficient sample numbers.

(3) Superpixel segmentation was implemented in the post-processing of classification
results to increase the boundaries of crop plots.
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(4) High classification accuracy was achieved using the above modules and insufficient
crop phenology information. A large-scale crop mapping of three major crops in 2022 in
Henan Province, China, was produced to meet the government’s demands on crop yield
estimation and agricultural insurance.

2. Materials and Methods
2.1. Study Area

Crop classification and extraction experiments were carried out in Henan Province,
China. As shown in Figure 2, Henan Province is located in central China, between 32°23′N–
36°22′N and 110°21′E–116°38′E. With a cultivated land area of 81,500 km2. Accounting for
6.05% of the total cultivated land area in China, Henan is an essential breadbasket in the
country and has continuously produced the most grain output per province in China for
many years. Located in the continental monsoon climate region of the transition from the
northern subtropical to the warm temperate zone, Henan Province has two harvest seasons
each year, in summer and autumn. Summer crops include mostly wheat, while autumn
crops mainly include corn, rice, and peanut. This study focused on the classification and
extraction of autumn crops in Henan Province in 2022.

Figure 2. Spatial distribution map of the study area. The left figure shows the location of the study
area in China, and the right figure shows the zoomed-in details of the study area.

2.2. Data and Processing
2.2.1. Remote Sensing Data

The remote sensing data used in this study were the bottom-of-atmosphere corrected
reflectance products (L2A) of Sentinel-2 images, which can be downloaded from the Euro-
pean Space Agency (ESA) (https://scihub.copernicus.eu/, accessed on 16 March 2023). As
shown in Table 1, there are 12 bands with resolutions of 10–60 m, in which the 4 vegetation
red edge bands and shortwave infrared bands are sensitive to plant characteristics and
are thus more dependable for crop classification [45]. Because the resolution of Sentinel-2
images varies between bands, the bands of 20 m and 60 m were pan-sharpened to 10 m, and
we reprojected all images to the WGS-84 coordinate system. Considering image overlap
and cloud occlusion, we processed the mosaic and standard map divisions after the cloud
mask for all images.

The entire Henan Province was completely covered by 38 Sentinel-2 images. The
phenology of corn, peanut, and rice is shown in Figure 3. Considering both crop phenology
and image cloud cover, we selected all 38 images with the minor cloud cover between 31
July and 15 August 2022 for the experiments.

https://scihub.copernicus.eu/
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Table 1. Bands Information of Sentinel-2 L2A Images.

Sentinel-2 Bands Central Wavelength (nm) Resolution (m) Description

Band 1 443.9 60 Aerosols

Band 2 496.6 10 Blue

Band 3 560.0 10 Green

Band 4 664.5 10 Red

Band 5 703.9 20 Red Edge 1

Band 6 740.2 20 Red Edge 2

Band 7 782.5 20 Red Edge 3

Band 8 835.1 10 NIR

Band 8A 864.8 20 Red Edge 4

Band 9 945.0 60 Water Vapor

Band 11 1613.7 20 SWIR 1

Band 12 2202.4 20 SWIR 2

Figure 3. Phenology of corn, peanut, and rice.

2.2.2. Reference Samples

Figure 4 shows the distribution of the sample points collected through multiple
field surveys across the study area. All field surveys were completed from August to
September 2022. Over 4000 sample points were recorded in the field using a handheld
global positioning system device (GARMIN Etrex221x; the positioning error is less than
3 m), mainly covering three crop types: corn, peanut, and rice. Additionally, a small number
of other crops, such as soybean and pepper, were also recorded simultaneously and placed
in a fourth category, titled others. In the field surveys, we abided by the following sampling
rules to ensure the representativeness of the samples:

(1) Record the coordinates of sample points when the positioning signal is strong;
(2) Select the sampling position in the center of the crop plot, away from forests, green

belts, rivers, and lakes, which easily affect the characteristics of the crops;
(3) Collect samples as evenly as possible in the experimental area to ensure samples

are in various planting scenarios;
(4) Concentrate on collecting samples in areas with complex planting structures to

increase the number of samples.
We then manually interpreted the images around the field sampling points to enrich

the number of samples and supplement other background categories, such as residential
areas, water, woodlands, and bare land, which were not covered in the field survey. As
shown in Figure 5, all pixels in the extended area were used as samples. We then randomly
divide the samples into training, validation, and test sets at a ratio of 10:1:9 to carry out the
crop classification experiments. Finally, we obtained more than 300,000 sample points of
the crop and non-crop types in Henan Province, of which peanut samples were the most
prominent and corn samples were the least (Table 2).
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Figure 4. Distribution of sample points in the study area.

Figure 5. Example of sample expansion. The point vectors are obtained through ground surveys,
and the surface vectors are obtained through manual interpretation based on the point vectors. The
expanded crop samples are assumed to be manually interpreted inside crop plots.



Remote Sens. 2023, 15, 1990 7 of 23

Table 2. The number of expended reference samples that were divided into training, validation, and
test samples at a ratio of 10:1:9.

Types Number of Field
Samples

Number of Expanded
Samples Training (50%) Validation (5%) Test (45%)

Peanut 1501 112,134 56,067 5607 50,460
Corn 1528 69,185 34,593 3459 31,133
Rice 1045 76,966 38,483 3849 34,635

Others 319 128,659 64,329 6433 57,897

Total 4392 386,945 193,471 19,349 174,125

2.3. Methods

The general workflow of crop type classification based on the proposed method is
illustrated in Figure 6. The proposed classification framework was implemented in three
main steps: (1) data and sample preparation, (2) model training and accuracy evalua-
tion, and (3) prediction and crop mapping. The details of each step are discussed in the
following subsections.

Figure 6. Overview of the proposed framework for crop mapping.

We proposed a new DNN architecture named SPTNet, depicted in Figure 7, that
is characterized by a selective patch module (SPM) that adaptively acquires multi-size
patch features, a TabNet branch that models the spectral information of the center point
separately, and multiple loss functions. Through the SPM, the input patches are fused
to select the appropriate patch size adaptively. This process balances the relationship
between the obtained spatial information and noise. To increase the weight of the spectral
information of the central pixels, we also used multitask learning to model the spectral
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information of the pixel and introduce the corresponding loss to supervise the process
directly. Finally, we introduced a superpixel segmentation method for post-processing to
improve the boundaries of crop plots and reduce the negative impact of mixed pixels on
the model’s function.

Figure 7. The proposed SPTNet’s framework for crop mapping using a novel DNN architecture.
(a) The selective patch module. (b) The branch of central pixel spectral feature extraction.

2.3.1. Selective Patch Module

Because crop plots vary in size in different scenarios, using oversized patches intro-
duces too many pixels that are not in the same category as the central pixel, which may
lead to some pixels being classified as noise. Conversely, using a too-small patch will
lead to insufficient available spatial information, making the classification inaccurate. The
above problem is similar to the receptive field problem in semantic segmentation, which
requires selection according to the target size. The difference lies in selecting an appropriate
receptive field or patch size. SK-Conv [46] automatically selects the convolutional receptive
field. Several studies have used SK-Conv, which calculates the weight of feature maps
obtained by convolution kernels of different sizes and fuses the feature maps according to
the weights to realize the adaptive selection of the convolution kernel receptive field [47,48].

Inspired by the SK-Conv method, we constructed an SPM that adaptively fuses fea-
tures of different patch sizes to solve scaling problems and obtain more accurate spatial
information. Figure 7a shows that SPM consists of three stages: split, fusion, and selection.
The division into three stages optimizes the ability to generate different patch sizes, aggre-
gate different patch information to obtain a global representation of the selection weight,
and obtain feature maps of different patch sizes based on the selection weight. First, in the
split phase, the input patch is divided into new patches P̂, P̄, and P̃ according to size. In
the study of crop classification in Henan Province, we divided the patches into the sizes of
3 × 3, 5 × 5, and 7 × 7 pixels due to the area of plots in Henan mainly being around 1 hectare.
These patches are proportionate to the land scale in Henan Province. In the fusion phase,
the patches were then convoluted twice to obtain the same size feature maps Û , Ū, and
Ũ. Next, information of different branches was fused in the fusion stage U = Û + Ū + Ũ.
Then, global average pooling Fqp is used to embed global information to generate channel
statistics for s ∈ RC. To reduce the dimensions of the channel statistics and obtain the final
channel weight z ∈ RD, the full connection layer Ff c is used. This process can be expressed
by Formula (1):

z = Ff c(Fqp(Û + Ū + Ũ)) (1)

Finally, in the selection phase, three weight matrices, Wa, Wb, and Wc, where a , b, and
c are related to different patch sizes, were generated using the final channel weight z. To
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ensure consistency, Wa, Wb, and Wc were generated by the softmax function such that the
sum of the elements at the same position in the weight matrix is 1. Then, the weight matrix
was used to weight the feature maps P̂, P̄, and P̃, and an adaptively selected spatial feature
V was obtained by adding these weighted feature maps. This process can be expressed by
Formulas (2) and (3):

Wa, Wb, Wc = Fso f tmax(z) (2)

V = Wa · Û + Wb · Ū + Wc · Ũ (3)

2.3.2. Branch of Central Pixel Spectral Feature Extraction

Limited by the method used to obtain sample points, the number of samples used in
crop classification is often insufficient, which forces the network to resist overfitting and
generalization. However, even if patches are used as the model input, the central pixels
need to be classified. Moreover, when introducing spatial information, the central pixel
and other pixels in the patch are weighted equally in the classification, which may lead to
classification errors. Therefore, increasing the weight of the central pixel features during
the classification process is necessary.

As shown in Figure 7b, we used a separate branch to extract the spectral information
for the 12 bands of the central pixel. TabNet [44], characterized by its use of a convo-
lutional network structure to simulate the RF operation process, was implemented for
feature extraction. Compared with deep learning methods, traditional machine learning
methods such as RF are more dependable when training small samples and have a better
anti-overfitting ability [49]. Therefore, we used TabNet to simulate an RF for spectral
feature extraction. Multitask learning involves designing multiple related tasks of a neural
network using prior knowledge and then accelerating the training and convergence of the
network by optimizing multiple tasks simultaneously. Multitask learning obtains more
comprehensive and controllable information from data, which can improve the ability of
the network to extract certain features [50]. Therefore, to improve the extraction of spectral
features and increase the weight of the central pixel in the classification process, we use
multitask learning alongside an auxiliary loss function to supervise the spectral information
extraction process of the central pixel. Finally, the extracted spectral features of the central
pixel and the spatial features obtained by SPM were multiplied to make full use of the
spectral information of the central pixel, thereby improving classification accuracy.

2.3.3. Loss Function

The loss function comprises two parts of the network. In this study, cross entropy loss
(CE loss) [51] was used as the loss function of the network. CE loss is the most used loss
function for multiple classification tasks because its value is only related to the probability
of the correct class and its derivation process is convenient. The formula for CE loss is:

LossCE = − 1
N

N

∑
i=1

(yilogŷi + (1− yi)(1− logŷi)) (4)

In Formula (4), yi is the probability that the ground truth is true, ŷi is the probability
that the forward propagation result is true, and N is the number of classes. The total loss
function of the network consists of two branch loss functions, which can be expressed as:

Loss = λ1 × Loss1 + λ2 × Loss2 (5)

In Formula (5), λ1 + λ2 = 1, Loss1, and Loss2 are both CE losses. The weight of the
spectral information of the central pixels during the classification process can be adjusted
by adjusting the values of λ1 and λ2.
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2.3.4. Superpixel Optimization

Due to the low spatial resolution of Sentinel-2 images, mixed pixel phenomena are
frequently observed, especially in densely distributed crops with a high variation in crop
type over short distances. For example, the characteristics of pixels at the junction of corn
and peanut are different from those of peanut and corn, which brings great difficulties in
crop classification. Superpixel segmentation is an over-segmentation technique that obtains
image objects with accurate boundaries by clustering the features of image pixels. Simple
linear iterative clustering (SLIC) [52] is a classical superpixel segmentation method that
converts the colors of an image from the RGB color space to the CIELab color space and
clusters according to the distance of pixels in the color space to obtain an accurate boundary
of image objects. To improve the boundaries of the crop plots and reduce the influence of
mixed pixels, we used SLIC to optimize our classification results.

The SLIC algorithm converts RGB images into CIELab color space and clusters pixels
based on the distance between pixels in the color space. In general, the greater the color
difference between pixels, the more accurate the crop plots edges that can be extracted by
SLIC. Sentinel-2 L2A products have 12 bands with multiple band combinations. To select
the most suitable band combination as the input of the SLIC algorithm, we first counted
the reflectance of the 12 bands in Sentinel-2 images of our sample. The results are shown in
the box diagram [53] in Figure 8, where the reflectance of the three crops is mainly different
in the four red edge bands of Band 5, Band 6, Band 7, and Band 8A and in the near-infrared
band of Band 8. In some other bands such as B4, B5, and B11, the reflectance of the three
crops is also partially different and to reduce the impact of mixed pixels, we prefer to use
the highest resolution bands, namely, Band 2, Band 3, Band 4, and Band 8, to carry out
band combination. Using our samples, we combined the above factors to calculate the
average distance of different crops in the CIELab space under different band combinations.
The band combinations used include color syntheses (Band 4, Band 3, Band 2), standard
false color synthesis (Band 8, Band 6, Band 4), and commonly used Sentinel-2 agricultural
bands (Band 8, Band 11, Band 2) [54]. We also performed a principal component analysis
(PCA) [55] to map the 12 bands of the Sentinel-2 image to three principal component bands
to calculate the distance of different crops in the CIELab space. Finally, the experimental
results are shown in Table 3.

In the experimental results, the average distances between peanut and corn and
between peanut and rice in the color space of the band combinations of Band 8, Band
11, and Band 4 were the largest at 26.5757 and 20.7087, respectively. These results have
great advantages over the second-largest distance. Under this band combination, although
the average distance between corn and rice in the CIELab color space is not the largest,
the result of 6.9893 has no obvious disadvantage compared with the maximum of 7.8800.
Therefore, when using the SLIC algorithm for post-processing, we used an RGB image
composed of Band 8, Band 11, and Band 4 as input.

Table 3. The average distance of three crops (corn, peanut, and rice) in CIELab Color Space under
different band combinations. The optimal accuracies are boldened, and the sub-optimal accuracies
are underlined. The last row of the table features the PCA results. B1 represents Band 1 in the table.

Band Combination Peanut–Corn Peanut–Rice Corn–Rice

B4, B3, B2 10.6995 3.7830 7.8800
B8, B4, B3 14.2403 7.2344 7.7433
B8, B5, B4 6.6000 13.1003 9.2887
B8, B6, B4 10.5776 14.3992 7.8531
B8, B7, B4 6.7159 5.3856 3.0826
B8, B9, B4 5.1530 4.2164 3.9393
B8, B11, B4 26.5757 20.7087 6.9893

PCA 13.5527 9.1596 2.9907
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Figure 8. Reflectance of corn, peanut, and rice in different bands of Sentinel-2 images. Red represents
corn, yellow represents peanut, and blue represents rice.

As shown in Figure 9, we used the RGB false color image formed by by Band 8, Band
11, and Band 4 of the Sentinel-2 image after performing image enhancement operations,
such as image stretching, as input to the SLIC to obtain superpixel segmentation blocks
of the image. Then, each superpixel segmentation block was traversed to calculate the
area proportion of each class of pixels. If the proportion of a certain class of pixels exceeds
threshold θ, all pixels in the superpixel block were modified to this category. Otherwise,
the category of each pixel remained unchanged.

Figure 9. Schematic of the superpixel optimization process. (a) Enhanced Band 8, Band 11, Band
4 false color image. (b) SLIC extraction results. (c) Band 8, Band 11, Band 4 false color synthesis of the
Sentinel-2 image. (d) Classified result. (e) Optimized result.

2.3.5. Evaluation Metrics

To evaluate the classification results, we used a confusion matrix. The confusion
matrix is a standard format for evaluating crop classification accuracy. In the confusion
matrix, the number of rows, N, represents the number of categories to be evaluated. The
elements Pi,j of i rows and j columns represent the number of pixels that are actually
class i but are predicted to be class j. Through the confusion matrix, we mainly used
four types of accuracy evaluation metrics. First, we used producer accuracy (PA) metrics,
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which is the proportion of the number of pixels correctly classified into the class to the
total number of pixels in the class. Second, we used user accuracy (UA) metrics, which
refers to the proportion of pixels correctly classified into the class and the total number
of pixels classified into the class. Using PA and UA, we can analyze the classification
ability of each type of crop and explore the reasons for the change in accuracy. The overall
accuracy (OA) refers to the proportion of all correctly classified pixels in the total number
of pixels. Finally, the kappa coefficient (KC) is an indicator of consistency and can also be
used to measure the effect of classification. The kappa coefficient is shown to be a more
discerning statistical tool for assessing the classification accuracy of different classifiers
and has the added advantage of being statistically testable against the standard normal
distribution [56]. In the classification problem, consistency refers to whether the model
prediction results are consistent with the actual classification results.At the same time, we
We also used the F1 score as an evaluation metric because the classification process focuses
on more than just the recall or accuracy rates. The F1 score, which considers the accuracy
and recall rate, is a commonly used evaluation index to evaluate classification accuracy
better. The F1 score can be regarded as the harmonic mean of the model’s accuracy and
recall. The relevant formulas are as follows:

Precision =
TP

TP + FP
(6)

Recall =
TP

TP + FN
(7)

F1 = 2× Precision× Recall
Precision + Recall

(8)

In Formulas (6)–(8), true positive (TP) represents pixels correctly classified as positive
pixels. False positives (FP) are pixels incorrectly classified as a positive pixel. False negatives
(FN) are pixels incorrectly classified as negative.

2.4. Train Details

We used the PyTorch deep learning framework to build all deep learning models used
in this experiment. All training and validation samples were used in the training phase.
We trained our network using one NVIDIA TITAN XP GPU (12 GB of memory). In terms
of the the training parameters, the batch size was set to 256, Adam [57] was used as the
optimizer, the initial learning rate was set to 0.001, and cosine annealing [58] was used
to reduce the learning rate gradually. In addition, a drop rate of 0.4 was added. For the
hyperparameter setting of the loss function, we set the value of λ1 to 0.7 and λ2 to 0.3. In
the post-processing process to balance superpixel segmentation and crop extraction, we set
the hyperparameter θ in the superpixel optimization to 0.6.

3. Results
3.1. Comparing Methods

We conducted quantitative and qualitative comparisons of the Henan crop dataset
obtained using other mainstream crop classification methods, such as RF [12], XGBoost [18],
CNN [38], CNN-RF [40], and S3ANet [59]. RF and XGBoost are commonly used machine
learning classification methods in crop classification mapping. However, they only use
the spectral information of pixels for classification. In our experiments, the input of these
two methods was a 1 × 12 vector of 12 band values for a single pixel. The CNN is the
most basic deep learning classification network. The combined CNN-RF first extracts
feature through a CNN and then uses RF for classification, which can improve the model’s
generalization ability by leveraging the advantages of the two methods. For fairness of
comparison, the CNN network depths of these two methods are the same as those in our
method. S3ANet uses various attention methods to weight spatial, scale, and spectral
information to improve crop classification accuracy. All deep learning methods in the
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experiment used a 7 × 7 × 12 vector as the input, which is a patch with a central pixel
size of 7. The other parameter settings of all deep learning methods are the same as those
described in Section 2.4. Machine learning methods were constructed in the Scikit-learn
python library.

3.1.1. Quantitative Comparisons

Our comparison results are shown in Tables 4 and 5. As shown in Table 4, SPTNet
has achieved competitive overall and single-crop accuracy results. Our method also has
advantages in terms of the parameters and inference time. Regarding the non-deep learning
algorithms, the performance of RF alone was insufficient, with an F1 score of 0.8501. In
contrast, XGBoost obtained a slightly higher F1 score of 0.8741, which is close to the
accuracy of the deep learning method CNN-RF. Additionally, using the deep learning
method, CNN achieves an F1 score of 0.8217, which is the lowest accuracy among all of
the methods and can be attributed to the many false detections of the background. It may
also be due to the lack of attention to spectral information in the CNN, so some minor crop
plots or backgrounds may have been missed. The accuracy of CNN-RF is significantly
improved compared with that of CNN, which may be because the overfitting of CNN is
reduced after classification using RF. However, it also leads to a significant increase in the
number of parameters and the inference time. S3ANet, which uses a variety of attentions
for information extraction, has achieved sub-optimal accuracy in multiple metrics. Our
method provides the highest classification accuracy, with an F1 score and KC of 0.9653 and
0.9531, respectively.

Table 4. The quantitative comparison between the proposed method and the mainstream method
in the accuracy evaluation index on the Henan crop dataset. The optimal accuracy is bolded. The
inference time is obtained by averaging the inference time of each Sentinel-2 image.

Method Others Peanut Corn Rice mF1 KC OA
Parameters Inference Time

(kb) (mins)

RF 0.7246 0.8719 0.9562 0.8076 0.8401 0.8199 0.8521 158,851 43
XGBoost 0.8050 0.9587 0.9230 0.7950 0.8704 0.8234 0.8741 12,456 39

CNN 0.6037 0.9131 0.7051 0.8862 0.7770 0.8217 0.7221 3581 20
CNN-RF 0.8162 0.9703 0.8199 0.9068 0.8774 0.8936 0.8801 738,547 78
S3ANet 0.9109 0.9599 0.9329 0.9182 0.9305 0.9358 0.9305 24,250 52
SPTNet 0.9624 0.9730 0.9664 0.9590 0.9652 0.9531 0.9656 9731 45

Table 5. The quantitative comparison between the proposed method and the mainstream method in
the PA and UA values. The optimal accuracy is bolded.

Method Metrics Others Peanut Corn Rice

RF PA 0.6074 0.9452 0.9705 0.8851
UA 0.8980 0.8092 0.9424 0.7426

XGBoost PA 0.7395 0.9646 0.9397 0.8831
UA 0.8833 0.9530 0.9069 0.7229

CNN PA 0.4428 0.9667 0.9653 0.9510
UA 0.9484 0.8653 0.5554 0.8298

CNN-RF PA 0.6974 0.9729 0.9662 0.9728
UA 0.9734 0.9678 0.7121 0.8493

S3ANet
PA 0.8845 0.9376 0.9533 0.9756
UA 0.9391 0.9834 0.9135 0.8672

SPTNet PA 0.9639 0.9689 0.9696 0.9599
UA 0.9610 0.9773 0.9634 0.9582
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3.1.2. Visualization Results

A comparison of the visualization results is shown in Figure 10. Specifically, many
small objects are in the first and second rows of Figure 10. The difference is that the first
row is a typical mixed planting area of corn and peanut, where the crop plots are small
and broken. In the second row, although the distribution of crops was more concentrated,
many roads shuttled through the field. The features of these roads are not as obvious as
those of large-area crops. RF and XGBoost use only the spectral information of pixels and
cannot accurately distinguish between different crops, leading to confusion around the
classification of peanut and corn in their results. Other deep learning methods directly use
7 × 7 pixels patches, which are too large compared to the crop plots in these scenarios. For
this reason, they have poor extraction effects on small crop plots and other small surface
features such as roads and greenhouses, resulting in categorical confusion when classifying
crop plots and background erosion. Our method uses SPM to adaptively fuse the features
of different patch sizes for specific scenarios, which can improve the extraction ability of
small surface features. Therefore, our model could accurately classify roads in fields and
small crop plots. There were small and alternately planted corn and peanut where the first
row was marked. Our method was able to accurately distinguish between them accurately,
whereas the extraction results of other methods have obvious misclassifications. In the area
marked in the second row, small roads were misclassified by most other methods, but our
method accurately distinguished these roads from crops because of the better extraction
of small features. Moreover, after using SLIC for post-processing, the crop plots are more
regular. Other methods could not distinguish the mixed pixels, which is manifested in the
images where the connected parts of different crops are classified as the background, and
the extraction results of some main roads are too wide. These conditions were reduced in
our results because of the use of the SLIC. In the lower-left marker of the third row, there
is a river in the lower left part of the image, which is covered by aquatic plants such as
cyanobacterial blooms. The image characteristics of these cyanobacterial blooms are similar
to rice. Since this scenario is not common, such negative samples do not exist in our dataset.
Without such negative samples, most methods misclassify them as rice. Our method is
more sensitive to the spectral information of pixels because it uses TabNet and multitask
learning to model and supervise the spectral information of pixels separately. The unique
structure of TabNet can enhance the generalization ability of the network. Therefore, our
method had the lowest number of false classifications in this scenario. In the last row,
rice is scattered owing to the influence of terrain. Rice is difficult to classify because of
the presence of similar grasslands and woodlands on the hills. However, compared with
other methods, our method distinguished rice better from the surrounding grassland or
woodland with the lowest number of false detections, and it extracted slender paddy fields
between hills.

In summary, SPTNet can effectively reduce the number of missed or incorrect detec-
tions in the crop extraction results, whether in the plain where crops are mixed or in small
hilly lands. Overall, RF and XGBoost based on single-pixel results exhibited obvious salt
and pepper noise and could not distinguish different crop categories well, indicating that
deep learning methods are not necessarily superior to traditional methods. Many details of
the image appear to be embodied in small crop plots, and some road classification errors
are observed because CNN uses convolution operations and lacks restrictions. The other
three deep learning methods performed better than the first three methods due to crop
classification improvements.

3.2. Ablation Study

Ablation experiments were conducted on the Henan crop dataset to verify the contribu-
tion of the proposed module to crop classification. We used a CNN network with the same
depth as that in our model as the baseline. We then changed or added parts of the structure
to our proposed modules. We divided them into the following experiments according to
the different modules added: Experiment 1: Test baseline. Experiment 2: Replace the first
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four layers of the Baseline with SPM. Experiment 3: Add a TabNet branch to extract the
spectral features of the central pixels. Experiment 4: Use a multitask learning strategy to
supervise the TabNet branch. Experiment 5: Add the SLIC algorithm for post-processing.

Figure 10. Some examples of the results on the dataset. From left to right: (a) Band 8, Band 11, Band
4 false color synthesis of Sentinel-2 image; (b) RF; (c) XGBoost; (d) CNN; (e) CNN-RF; (f) S3ANet;
(g) SPTNet.

3.2.1. Quantitative Comparisons

The ablation results are summarized in Tables 6 and 7. The CNN’s lack of attention to
spectral information and small crop plots resulted in many false positives and a fairly low
F1 score of 0.8217. After adding the SPM module, the experimental accuracy is significantly
improved to 0.8989 because SPM can adaptively fuse the features of patches of different
sizes for specific scenes. Therefore, a better extraction ability for small objects was obtained,
and the extraction accuracy of small crop plots or roads was higher. From the quantitative
results, most PA and UA values of categories increased after applying SPM. Only the
peanut’s PA and the background’s UA decreased slightly (0.9667 − 0.9552, 0.9484 − 0.9115).
This result shows that using the SPM module can effectively reduce errors and missed
detection in the crop classification process. After adding the TabNet branch to extract the
spectral features of the central pixel, we obtained an F1 score of 0.9456. With the addition of
the TabNet network, the PA of crops decreased while the UA of crops increased compared
with the results of the baseline CNN and the results after adding the SPM. The network
is more sensitive to the spectral information of the center point, and the UA of various
crops increases, thereby enhancing the direct extraction of spectral information. Despite
this, more constraints are consequently added to the crop classification process, resulting
in a decrease in the PA of various crops. Furthermore, we used multitask learning to
supervise the TabNet, which was implemented to optimize the central pixel spectral feature
extraction process in Experiment 3. After optimizing the multitask learning strategy, the
UA and PA of various crops could be balanced to improve the classification accuracy of
the network. The classification accuracy of Experiment 3 reached an F1 score of 0.9523.
In the last experiment, we added the SLIC algorithm for post-processing. The results in
Tables 6 and 7 show that the superpixel segmentation optimization strategy improves the
UA and PA of various crops. The final network accuracy has an F1 score of 0.9653 because
of superpixel segmentation’s more accurate boundary information.
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Table 6. Ablation experiments for the network design. The optimal accuracy value in each is bolded.

Baseline SPM TabNet Multitask SLIC Others Peanut Corn Rice mF1 KC OA

X 0.6037 0.9131 0.7051 0.8862 0.7770 0.8217 0.7891
X X 0.8274 0.9369 0.9675 0.8723 0.9010 0.8836 0.9256
X X X 0.9332 0.9525 0.9492 0.9434 0.9446 0.9226 0.9435
X X X X 0.9411 0.9698 0.9562 0.9409 0.9520 0.9530 0.9522
X X X X X 0.9624 0.9730 0.9664 0.9590 0.9652 0.9531 0.9656

Table 7. Ablation experiments for the network design evaluate in the PA and UA values. The optimal
accuracy is bolded.

Baseline SPM TabNet Multitask SLIC Metrics Others Peanut Corn Rice

X
PA 0.4428 0.9667 0.9653 0.9510
UA 0.9484 0.8653 0.5554 0.8298

X X
PA 0.7576 0.9552 0.9705 0.9551
UA 0.9115 0.9194 0.9646 0.8028

X X
PA 0.9790 0.9303 0.9230 0.9217
UA 0.8916 0.9758 0.9771 0.9663

X X X
PA 0.9236 0.9541 0.9624 0.9639
UA 0.9694 9708 0.9433 0.9228

X X X X X
PA 0.9639 0.9689 0.9696 0.9599
UA 0.9610 0.9773 0.9634 0.9582

3.2.2. Visualization Results

To qualitatively compare the contribution of the proposed modules, the visualization
results of some ablation experiments are shown in Figure 11, which shows that the extrac-
tion results using all proposed modules are optimal and the proposed modules achieve the
anticipated visualization results.

The first row of Figure 11 shows waterweeds that are easily confused with rice since
many tiny roads and small crop plots travel between fields. The baseline CNN incorrectly
classified some waterweeds as rice because the small crop plots could not be accurately
distinguished and the roads were not successfully extracted. The SPM structure can
improve the model’s ability to extract small objects; therefore, some roads and other crops
covered by large areas of crops can be classified. However, the model still made false
detections, and more waterweeds were classified as rice, indicating that using only the
patch’s spatial information is insufficient to accurately classify crops. After adding TabNet
to model the spectral information of the central pixels and applying multitask learning for
supervision, false detection was greatly reduced. In the results, water plants were correctly
classified as the background, and more roads were extracted. Finally, SLIC was used for
post-processing because the superpixel segmentation algorithm can obtain more accurate
edges. In the final extraction results, the shape of the crop plots was more regular, and
the road results were more accurate. The difference in the classification of roads in each
experiment is more obvious in the second row wherein the crops are densely distributed.
There are several obvious roads in the upper right part of the image, but they are spread
over large areas of peanut. In this case, the main class of pixels in the road patch is peanut
in this case. Hence, the baseline CNN completely ignored them and misclassified them
as peanut. After adding SPM, however, the network’s ability to extract small objects was
improved. Despite this, owing to the mixed pixels in the image, the road in the peanut
image shows different characteristics from those of the pure road pixels. Although the
network could distinguish them after SPM was added, they were still misclassified as
corn. After using TabNet to extract the spectral features of the central pixels separately, the
classification ability of the ground objects was improved, and some roads were extracted.
The weight of the central pixels’ spectral information increased after using multitask
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learning for supervision. Although more roads were extracted, some were still classified as
corn. However, SLIC could extract the road into a superpixel block. Therefore, after SLIC
post-processing, the more complete roads are distinguished. In the last row, rice is scattered
owing to the influence of terrain. With the gradual addition of the proposed module, the
surrounding grassland or woodland misclassified as rice was obviously reduced. Finally,
our method accurately extracted the rice between hills, and the edges of the crop plots were
more accurate.

Figure 11. Some examples of crop classification ablation experiments. From left to right: (a) Band 8,
Band 11, Band 4 false color synthesis of Sentinel-2 image; (b) baseline; (c) Experiment 1; (d) Experi-
ment 2; (e) Experiment 3; (f) Experiment 4.

3.3. Crop Mapping in Henan Province

We used the proposed network structure to complete the mapping of 10 m plots of
principal crops, including corn, peanut, and rice, in Henan Province, China, in 2022, and
the results are shown in Figure 12.

Figure 12. Mapping results of corn, peanut, and rice from Sentinel-2 images in Henan Province,
China, obtained by the proposed SPTNet method.



Remote Sens. 2023, 15, 1990 18 of 23

4. Discussion
4.1. The Split Strategy Selection of SPM

In the split stage of the SK-Conv structure, the feature maps were processed using
convolution kernels of different sizes to obtain the features of different receptive fields.
However, our method differs from that of SK-Conv. Using our method, in the split stage,
patches of different sizes were used for splitting rather than the sizes of the convolution
kernels. Using the size of the convolution kernel in the split stage can obtain multi-scale
receptive fields, whereas using patches can balance spatial information and noise. We
conducted experiments to verify the advantages and disadvantages of these two methods.
To ensure the fairness of the comparison, other structures and parameter settings of the
network were consistently used across methods. The results are presented in Table 8.

The results show that the F1 score using convolutional kernel sizes in the split stage is
0.9480, which is less than that using patch sizes in the split stage. The scale of the input
vector is too small to provide a multi-scale receptive field because the input of the model
is a patch of 7 × 7 pixels. This eliminates the advantage of using convolutional kernels
for splitting. Furthermore, using patches of the same size as the input in each branch of
SPM introduces more noise, which may also be responsible for the reduced accuracy. The
method of using patch sizes in the split stage introduces prior information, which can better
adapt to different sizes of crop plots in complex scenes. Therefore, we used different patch
sizes for the split stage in the structure.

Table 8. Ablation experiments for the network design.

Split with
Others Peanut Corn Rice mF1 KC OA

Convolutional Kernel Size Patch Size

X 0.9341 0.9572 0.9535 0.9470 0.9480 0.9290 0.9475
X 0.9624 0.9730 0.9664 0.9590 0.9653 0.9531 0.9656

4.2. The Contribution of Different Sizes of Patches to Crop Extraction

In this section, we describe the experiments conducted to explore the contribution of
different patch sizes to crop extraction. Specifically, in Figure 7a, we removed the structure
of one patch and retained only the other two patches. To ensure fairness in the experiment,
the other parameter settings remained consistent across methods. The qualitative results
of the experiments are presented in Table 9. Regardless of which patch is removed, the
classification accuracy decreases. It shows that these three different patch sizes contribute
to improving classification accuracy. In the case of removing the 3 × 3 pixel patches, the
classification accuracy decreased the most, whereas the classification accuracy decreased
the least when removing the 5 × 5 pixel patches. This shows that the 3 × 3 pixel patches
have the smallest contribution. The 5 × 5 pixel patches have the largest contribution in the
classification process, possibly because the overall plot size in Henan was more proportional
to 5 × 5 pixel patches. Of note, the classification accuracy of rice decreased significantly in
the case of removing 3 × 3 pixel patches, which may be because rice is mostly planted in
smaller hilly areas.

Table 9. Experimental results for exploring the contribution of different size of patches across
experiments where one plot size is removed.

3 × 3 Pixel
Patch

5 × 5 Pixel
Patch

7 × 7 Pixel
Patch Others Peanut Corn Rice mF1 KC OA

X X 0.9286 0.9634 0.9534 0.9283 0.9549 0.9312 0.9502
X X 0.9452 0.9667 0.9638 0.9375 0.9534 0.9374 0.9537
X X 0.9332 0.9525 0.9492 0.9434 0.9556 0.9226 0.9535
X X X 0.9624 0.9730 0.9664 0.9590 0.9653 0.9531 0.9656
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4.3. Advantages and Limitations

This study proposes a dependable network for large-scale crop extraction and achieves
satisfactory classification accuracy using only single-temporal Sentinel-2 images. First, the
proposed structure can adaptively select and fuse the spatial information of the image
according to the size of the plot in the actual scene, thereby improving its ability to extract
small features. Second, the proposed structure uses TabNet and a multitask learning
strategy to extract the spectral features and improve the stability of the network while
modeling the spectral information of the central pixels separately. TabNet, which has a
similar strcuture to a decision tree, can enhance the network’s generalization ability and
alleviate the overfitting problem caused by small sample sizes. Using multitask learning
strategies can enhance the weight of the spectral features of pixels and further improve
classification accuracy. Finally, the application of an SLIC algorithm to post-process the
extraction results could improve the accuracy of the classification result boundary.

The SPTNet obtained the highest extraction accuracy than other methods, regardless of
the crop. In the qualitative comparison, the SPTNet greatly improved the extraction ability
of small crop plots, and the edge of crops has also been ameliorated. These comparisons
prove the advantages of our method.

Although our method has obvious advantages for Henan crop extraction, there are
still some problems. To avoid the problem of missing time-series images, we used single-
temporal images as data sources, for which the extraction accuracy of staple crops, such as
corn, peanut, and rice, is generally high. However, the classification of certain characteristic
economic crops in the absence of crop phenology information remains a limiting factor.
The spectral characteristics of some economic crops, such as soybeans and grapeseed,
are relatively similar. Thus, using only single-temporal images to distinguish them is a
challenge. Furthermore, it is difficult to overcome image resolution limitations, evidenced
by the fact that the classification accuracy did not significantly improve after applying the
SLIC algorithm, a superpixel segmentation method based on pixel spectral features.

In future research, we will attempt to use time-series remote sensing images for crop
classification. To ensure the integrity of the data and make full use of the high-precision,
single-temporal extraction method proposed in this paper, we will attempt to extract the key
time points of crop phenology and classify crops under the premise of using the shortest
time series data. We will also attempt to combine Sentinel-2 images with high-resolution
data for crop extraction. Sentinel-2 images with high spectral resolution were used for
crop extraction, and high-resolution images with high spatial resolution were used for plot
boundary extraction. We hope to optimize the boundaries of the crop extraction results
through high-spatial-resolution plot extraction results, which can improve the overall
accuracy of crop classification. Finally, we will try to add SAR data for crop classification.
SAR satellites can image in any weather condition, which can make up for the lack of optical
data. Furthermore, it is difficult to overcome image resolution limitations, evidenced by the
fact that the classification accuracy did not significantly improve after applying the SLIC
algorithm, a superpixel segmentation method based on pixel spectral features.

5. Conclusions

Large-scale crop extraction is essential for grain security and sustainable agriculture.
This paper proposes a crop classification method using single-temporal sentinel images to
better assess large-scale and high-precision crop extraction, which has been successfully
applied to three main autumn crops in Henan Province: corn, peanut, and rice. To improve
the extraction ability of small crop plots in complex scenes and mitigate the negative impact
of insufficient samples, this paper proposes SPM, which can adaptively fuse the features
of different patch sizes. In addition, to improving the classification ability of the central
pixels, we used the TabNet network to extract spectral features and improve the stability
of the network. Furthermore, we use multitask learning to introduce auxiliary loss and
increase the weight of the central pixels’ spectral information in the classification process.
Finally, we introduce the SLIC superpixel segmentation method for post-processing to
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reduce the impact of mixed pixels and ameliorate the boundaries of crop plots. Qualitative
and quantitative analysis shows that compared with different mainstream classification
methods, SPTNet achieves state-of-the-art performance with F1 scores of 96.53% on our
Henan crop classification dataset, which indicates that our proposed structure effectively
improves the large-scale crop classification process. Large-scale crop classification mapping
of corn, peanut, and rice in Henan Province also proves the effectiveness of our method in
practical application.

In future work, we will attempt to use high-resolution and Sentinel-2 images for crop
classification and combine the advantages of these two images to obtain finer crop extraction
results. We will also attempt to incorporate phenological information at a minimum cost to
enhance the extraction of more crop varieties.
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Abbreviations
The following abbreviations are used in this manuscript:

CE cross entropy
CNN convolutional neural network
DNN deep neural network
EVI enhanced vegetation index
FN false negative
FP false positive
GRU gated recurrent unit
KC kappa coefficient
LSTM long short-term memory
LSWI land surface water index
NDVI normalized difference vegetation index
PA producer accuracy
PCA principal component analysis
RF random forest
RNN recurrent neural network
SLIC simple linear iterative clustering
SPM selective patch module
TP true positive
UA user accuracy
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