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Abstract: Convolutional neural-network-based autoencoders, which can integrate the spatial correla-
tion between pixels well, have been broadly used for hyperspectral unmixing and obtained excellent
performance. Nevertheless, these methods are hindered in their performance by the fact that they
treat all spectral bands and spatial information equally in the unmixing procedure. In this article,
we propose an adaptive spectral–spatial attention autoencoder network, called SSANet, to solve
the mixing pixel problem of the hyperspectral image. First, we design an adaptive spectral–spatial
attention module, which refines spectral–spatial features by sequentially superimposing the spectral
attention module and spatial attention module. The spectral attention module is built to select useful
spectral bands, and the spatial attention module is designed to filter spatial information. Second,
SSANet exploits the geometric properties of endmembers in the hyperspectral image while con-
sidering abundance sparsity. We significantly improve the endmember and abundance results by
introducing minimum volume and sparsity regularization terms into the loss function. We evaluate
the proposed SSANet on one synthetic dataset and four real hyperspectral scenes, i.e., Samson, Jasper
Ridge, Houston, and Urban. The results indicate that the proposed SSANet achieved competitive
unmixing results compared with several conventional and advanced unmixing approaches with
respect to the root mean square error and spectral angle distance.

Keywords: hyperspectral unmixing; spectral–spatial attention mechanism; deep learning; autoencoder

1. Introduction

Hyperspectral image (HSI) analysis has attracted a large amount of attention in the
domain of remote sensing because of the rich content information contained in HSI [1,2].
Despite this, because of the inadequate spatial resolution of satellite sensors, atmospheric
mixed effects, and complex ground targets, a pixel in an HSI typically includes multiple
spectral features. Such pixels are known as “mixed pixels”. The presence of a large quantity
of mixed pixels causes serious issues for further research on HSI [3–5]. Hyperspectral
unmixing (HU) aims to separate the mixed pixels into a set of pure spectral signatures
(endmembers) and relative mixing coefficients (abundances) [6–8].

Recently, with its impressive learning ability and data fitting capability, deep learn-
ing (DL) has undergone rapid development in the HU domain [9,10]. The autoencoder
(AE), which is a typical representation of unsupervised DL, has been extensively applied
to HU tasks. The AE framework is mainly divided into two parts: the encoder, which
aims to automatically learn the low-dimensional embeddings (i.e., abundances) of input
pixels, and the decoder, which aims to reconstruct input pixels with the associated basis
(i.e., endmembers) [11,12]. Moreover, to achieve satisfying unmixing performance, numer-
ous refinements have been made to the existing AE-based unmixing framework. For exam-
ple, Qu and Qi [13] developed a sparse denoising AE unmixing network that introduces
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denoising constraints and sparsity constraints to the encoder and decoder, respectively.
Zhao et al. [14] presented an AE network that uses two constraints to optimize the spectral
unmixing task. Min et al. [12] designed a joint metric AE framework, which uses the Wasser-
stein distance and feature matching as constraints in the objective function. Jin et al. [15]
designed a two-stream AE architecture, which introduces a stream to solve the problem
of lacking effective guidance for the endmembers. A deep matrix factorization model
was developed in [16], which constructs a multilayer nonlinear structure and employs a
self-supervised constraint. Ozkan et al. [17] proposed a two-staged AE architecture that
combines spectral angle distance (SAD) with multiple regularizers as the final objective.
Su et al. adopted stacked AEs to handle outliers and noise, and employed a variational
AE to pose the proper constraint on abundances. An end-to-end unmixing framework
was proposed in [18,19], which combines the benefits of learning-based and model-based
approaches. However, these methods, which receive one mixed pixel at a time during train-
ing, only use the spectral information in an HSI, thereby ignoring the spatial correlation
between neighboring pixels.

Importantly, an HSI contains both rich spectral feature information and a degree
of spatial information [6]. Incorporating spatial correlation in the unmixing process has
been confirmed to significantly improve unmixing performance [20,21]. Therefore, many
researchers have introduced convolutional neural networks (CNN) into the traditional AE
structure to compensate for the absence of spatial features. For instance, Hong et al. [22]
proposed a self-supervised spatial–spectral unmixing method, which incorporates an ex-
tra sub-network to guide the endmember information to obtain good unmixing results.
Gao et al. [23] developed a cycle-consistency unmixing architecture and designed a self-
perception loss to refine the detailed information. Rasti et al. [24] proposed a minimum
simplex CNN unmixing approach that incorporates the spatial contextual structure and
exploits the geometric properties of endmembers. Ayed et al. [25] presented an approach
that uses extended morphological profiles, which combines the spatial correlation be-
tween pixels. In [26], a Bayesian fully convolutional framework was developed, which
considers the noise, endmembers, and spatial information. Most recently, a perceptual
loss-constrained adversarial AE was designed in [27], which takes into account factors
such as reconstruction errors and spatial information. Hadi et al. [28] presented a hybrid
3-D and 2-D architecture to leverage the spectral and spatial features. A dual branch AE
framework was constructed in [29] to incorporate spatial–contextual information.

Although the above CNN-based AE achieves satisfactory unmixing results, how to
adaptively adjust the weights of spectral and spatial features that influence the unmixing
performance is a new challenge. Humans can distribute their finite resources to the parts
that are most significant, informative, or salient. Inspired by visual attention mechanisms,
we propose a spectral–spatial attention AE network for HU and introduce a spectral–spatial
attention module (SSAM) to strengthen useful information and suppress information that
is unnecessary. Additionally, the absence of both abundance sparsity and endmember
geometric information are also responsible for limiting unmixing performance. Thus,
we combine a minimum volume constraint and sparsity constraint in the loss function.
Specifically, the primary contributions of our proposed SSANet are as follows:

1. We design an unsupervised unmixing network, which is based on a combination
of a learnable SSAM and convolutional AE. The SSAM plays two roles. First, the
spectral attention module (SEAM) adaptively learns the weights of spectral bands in
input data to enhance the representation of spectral information. Second, the spatial
attention module (SAAM) adaptively yields the attention weight assigned to each
adjacent pixel to derive useful spatial information.

2. We combine the prior knowledge that two regularizers (minimum volume regular-
ization and sparsity regularization) are applied to endmembers and abundances,
respectively. Additionally, to acquire high-quality endmember spectra, we design a
new minimum volume constraint.
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3. We apply the proposed unmixing network to one synthetic dataset and four real
hyperspectral scenes—i.e., Samson, Jasper Ridge, Houston, and Urban—and compare
it with several classical and advanced approaches. Furthermore, we investigate
the performance gain of SSANet with ablation experiments, involving the objective
functions and network modules.

The remainder of this paper is structured as follows: In Section 2, we describe the
theoretical knowledge of the AE-based unmixing approach simply. In Section 3, we explain
the SSANet method in detail. In Section 4, we evaluate SSANet using synthetic and real
datasets. In Section 5, we summarize the study.

2. AE-Based Unmixing Model

In the linear mixing model (LMM) [30], the observed spectral reflectance can be given by

Y = EA + N (1)

where Y = {yi|i = 1, 2, ..., P} ∈ RB×P denotes the observed HSI with B bands and P
pixels, and yi denotes the ith pixel. N ∈ RB×P denotes an additive noise matrix. E =
{ek|k = 1, 2, ..., R} ∈ RB×R denotes the endmember matrix with R endmember signatures
and needs to satisfy the nonnegative constraint. A = {ai|i = 1, 2, ..., P} ∈ RR×P is the
corresponding abundance matrix, where ai denotes the abundance percentage of the
ith pixel, and should be subjected to the abundance nonnegative constraint (ANC) and
abundance sum-to-one constraint (ASC)—that is,

ai ≥ 0
R
∑

k=1
aki = 1

(2)

The fundamental workflow of classic AE unmixing is shown in Figure 1 and is mainly
divided into two parts.
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(1) An encoder En(·) transforms the input data {yi}
P
i=1 ∈ RB into a hidden represen-

tation hi, which can be described as

hi = En(yi) = f (W(e)Tyi + b(e)) (3)

where W(e) and b(e) denote the weight and bias of the eth encoder layer, respectively. f (·)
denotes the nonlinear activation function.

(2) A decoder De(·) reconstructs the data {ŷi}
P
i=1 ∈ RB using hi, which is formalized as

ŷi = De(hi) = W(d)Thi (4)
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where W(d) is a matrix that denotes the weights of the hidden and output layers.
Because of the characteristic of Equation (4), the output of the En(·) result is considered

as the predicted abundance vector, that is, âi ← hi , and the estimated endmember is repre-
sented by the weights of De(·), that is, Ê←W(d) . In this framework, the reconstruction
loss of the training process is mathematically formulated as

LossAE =
1
P

P

∑
i=1
‖ŷi − yi‖

2 (5)

3. Spectral–Spatial Attention Unmixing Network

To leverage the spectral and spatial information in HSI, we first divide the HSI Y into
a set of 3-D neighboring patches M = {mi|i = 1, 2, ..., P} ∈ Rs×s×B, where s is the width of
patches. In SSANet, each patch mi in M is fed into the proposed network. In each patch mi,
the central pixel yi is the target pixel to be unmixed. The framework of SSANet is shown in
Figure 2. Its structure consists of three core components: the SSAM, encoder, and decoder.
The SSAM, which aims to provide meaningful spectral–spatial priors, helps to solidify
feature extraction at later stages. The encoder is designed to extract features and reduce
dimensionality. The role of the decoder is to reconstruct the learned features according to
the LMM. We provide details on the aforementioned components in Section 3.1, Section 3.2,
and Section 3.3, respectively.
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3.1. Spectral–Spatial Attention Module

The SSAM contains two core modules—that is, the SEAM and SAAM—which are
arranged sequentially to perform the selection of spectral bands and spatial features in the
HSI, respectively. We describe the SEAM and SAAM in the following.

3.1.1. Spectral Attention Module

The SEAM [31] is introduced into the SSANet, aiming to adaptively learn the weights
of spectral bands in the HSI in an end-to-end manner. It generates a spectral weight vector
that reflects the significance of different spectral bands. The spectral bands modulated by
this vector can significantly improve unmixing performance. The framework of the SEAM
is shown in Figure 3.

Given the input mi ∈ Rs×s×B, first, global max pooling (GMP) and global average
pooling (GAP) are used to acquire spectral feature vectors αi ∈ R1×1×B and βi ∈ R1×1×B,
respectively. Next, the corresponding weight vectors γi ∈ R1×1×B and δi ∈ R1×1×B can be
derived using a multilayer perceptron (MLP) that can extract the weight information of each
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band. γi and δi are then summed, and the sigmoid function is applied to obtain the spectral
weight coefficients vi ∈ R1×1×B. The spectral attention formulation can be defined as

vi = σ(MLP(GMP(mi)) + MLP(GAP(mi))) (6)

where σ(·) denotes the sigmoid function. Finally, the output of SEAM m′i is calculated by
the following equation:

m′i = vi
⊗

mi (7)
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3.1.2. Spatial Attention Module

In this part, we design the SAAM to evaluate the adjacent dependence between pixels.
Similar to the SEAM, the SAAM also learns in an end-to-end manner and adaptively
selects spatial features from the pixels in the neighborhood. The module generates a spatial
weight matrix that expresses the importance of adjacent pixels. The recalibration of spatial
features using this matrix leads to an obvious improvement in the unmixing accuracy. The
framework of the SAAM is shown in Figure 4.
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Specifically, given the input m′i ∈ Rs×s×B, in order to facilitate the calculation of the
similarity between neighboring pixels and the central pixel, the input m′i is reshaped into
gi ∈ Rss×B(ss = s× s). The center pixel gcenter ∈ R1×1×B is extracted from the center of m’

i;
then, gcenter is reshaped into gtag ∈ R1×B. Next, both gi and gtag are fed into the scoring
function ρ(·) to compute the spatial similarity scores between them. The ρ(·) is produced
as follows:

ρ(hi) = ϕ

(
ss

∑
i=1

hiW

)
(8)

hi = exp(− 1
B

∥∥∥gi − gtag

∥∥∥2

2
) (9)
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where hi is used to compute the correlation between gi and gtag. ρ(·) is implemented by a
full connection layer, parameterized by a weight matrix W ∈ Rss×ss. The spatial similarity
scores are derived by multiplying all the hi with W and the results are activated by a
rectified linear unit (ReLU) function ϕ(·). Subsequently, a sigmoid function is adopted
to compute the spatial weight matrix ωi ∈ Rs×s×1. Finally, we perform elementwise
multiplication of ωi with m′i to implement the recalibration of spatial information:

m′′i = ωi
⊗

m′i (10)

where m′′i represents the output of SAAM.

3.2. Encoder

As shown in Figure 2, the encoder consists of four convolutional layers, and the
number of convolution kernels diminishes with the depth of the layer, which can be
formulated as

En
(

m’’
i

)
= so f tmax(W 4 ~ LR(BN(W3 ~ LR(BN(W

2
~ LR(DO(BN(W1 ~ m’’

i + b1))) + b2)) + b3)) + b4) (11)

where We and be denote the weights and biases, respectively, at the eth level of the encoder
for e = 1, 2, 3, 4. ~ denotes the convolution operation. BN(·) represents batch normaliza-
tion, which is used to enhance the performance and stability of the network, and speed up
the learning of the network. LR(·) denotes the leaky ReLU (LReLU) function, which aims
to promote nonlinearity. DO(·) represents the dropout function, which is currently the key
technique for preventing network overfitting. The purpose of the softmax function is to
satisfy two physical constraints on abundance: ANC and ASC.

3.3. Decoder

The decoder contains a 1× 1 convolutional layer and uses LReLU as the activation
function. It is formulated as

De
(

En
(

m’’
i

))
= LR

(
W ~ En

(
m’’

i

)
+ b
)

(12)

where W and b denote the weights and biases of the decoder, respectively. It should be noted
that, in our experiments, to help the training of the decoder, we used the endmembers extracted
using the vertex component analysis (VCA) [32] approach to initialize the weights W.

3.4. Objective Functions

The overall loss function of SSANet consists of the following three terms.
Numerous AE-based works have adopted the SAD with the scale invariance as the

reconstruction loss [33,34]. Therefore, we apply the SAD measurement as the reconstruction
loss of SSANet, which is denoted as follows:

LossAE =
1
P

P

∑
i=1

arccos(
ŷT

i yi
‖ŷi‖2‖yi‖2

) (13)

The softmax function does not yield sparse abundance maps. Qian et al. [35] demonstrated
that using the l1/2 norm yields more accurate and sparser abundance results than using the l1
norm. We apply the l1/2 norm to the abundance vector âik, which is formulated as

LossSp =
P

∑
i=1

R

∑
k=1

√
|âik| (14)

where âik represents the reference abundance fractional proportion of the kth endmember
at the ith pixel in the HSI.
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The minimum volume regularizer has already been proven to be beneficial for extract-
ing endmembers [36]. Moreover, to make the estimated endmembers close to the observed
spectrum, we design a more reasonable minimum volume constraint, denoted by

LossMv =
1

BR

R

∑
k=1

∥∥∥êk −
−
e
∥∥∥2

2
(15)

where
−
e = (1/R)∑R

k=1 ek denotes the centroid vector. A geometrical explanation of this
concept is shown in Figure 5. During each iteration, by minimizing LossMv, the endmem-
bers are pulled from the initial values (i.e., the vertices of the initial data simplex) to the
vertices of the real data simplex.
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To summarize, the overall loss function of SSANet is expressed as

Loss = LossAE + λ1LossSp + λ2LossMv (16)

where λ1 and λ2 represent the regularization parameters.

4. Experiments

To validate the accuracy and validity of SSANet for HU, we conducted experiments
using one synthetic data [26] and four widely used real hyperspectral scenes (Samson [37],
Jasper Ridge [38], Houston [39], and Urban [40]), as shown in Figure 6. We chose seven
representative unmixing methods (including classical methods and the most advanced
methods) for comparison: VCA-FCLS [32,41], SGCNMF [42], DAEU [43], MTAEU [44],
CNNAEU [45], CyCU-Net [23], and MiSiCNet [24]. VCA-FCLS is a baseline method,
SGCNMF is based on non-negative matrix factorization, and the others are AE-based
methods. DAEU uses only spectral information, whereas MTAEU, CNNAEU, CyCU-Net,
and MiSiCNet use spectral–spatial information.
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4.1. Dataset Description
4.1.1. Synthetic Data

We created simulated data according to the approach adopted by Fang et al. [39]. Its
size was 104× 104 pixels, distributed over 200 spectral bands, with four endmembers. Each
pixel in this image was a mixture that consisted of four endmembers. We generated these
mixed pixels by multiplying four endmembers and four abundance maps according to the
LMM. First, we created abundance maps that we decomposed into 8 × 8 homogeneous
blocks, which we randomly chose as one of the endmember categories. Then, we degraded
blocks by adopting a spatial low-pass filter of 9 × 9. Next, we added zero-mean Gaussian
noise with various signal-to-noise ratios (SNRs) to the obtained synthetic dataset. Because
of the different noise variances in different bands, we assigned different SNR values to
different bands and obtained band-related SNR values from the baseline Indian Pines image.
We assumed that the obtained SNR vector s was centralized and normalized; then, we
could acquire the synthetic SNR n based on the rule n = βs + r, where β is the fluctuation
amplitude of band-related SNR values and r is the center value that defines the total SNR
of all bands. To investigate the robustness of our approach to various noise levels, we
simulated three datasets with various noise values (SNR = 20, 30, 40 dB) by fixing β = 5
and varying r.

4.1.2. Samson Data

Samson data have three constituent materials: soil, trees, and water. This dataset was
captured by the Samson sensor. The image contains 156 spectral channels ranging from
0.4–0.9 µm. Because the original image is large, we selected a subimage of the original data
with a size of 95 × 95 pixels.

4.1.3. Jasper Ridge Data

Jasper Ridge data have four main materials: trees, water, soil, and roads. This dataset
was obtained by the AVIRIS sensor. The original HSI covers 512 × 614 pixels in size and
is spread over 224 spectral channels, covering wavelengths from 0.38 to 2.5 µm. It has
a spatial resolution of 20 m/pixel. We selected an area of interest of 100 × 100 pixels
and removed bands (1–3, 108–112, 154–166, and 220–224) to alleviate the influences of the
atmosphere and water vapor. Finally, the Jasper Ridge dataset had 198 remaining bands.

4.1.4. Houston Data

Houston data have four dominant materials: parking lot 1, running track, healthy
grass, and parking lot 2. The data were originally used in the 2013 IEEE GRSS data fusion
competition. The original HSI contains 349 × 1905 pixels, distributed over 144 channels
ranging from 0.35 to 1.05 µm. Its spatial resolution is 2.5 m/pixel. We selected a subimage
containing 170 × 170 pixels. The subimage is centered on Robertson Stadium on the
Houston campus.

4.1.5. Urban Data

Urban data have four constituent materials: asphalt, grass, tree, and roof. This dataset,
collected by the HYDICE sensor, is characterized by a complex distribution. Its pixel
resolution is 307 × 307, and there are 210 spectral bands ranging from 0.4 to 2.5 µm. It
has a spatial resolution of 2 m/pixel. After we removed the contaminated bands, 162
bands remained.

4.2. Experimental Settings
4.2.1. Evaluation Metrics

We selected two commonly used evaluation metrics, the root mean square error
(RMSE) and SAD, to assess the proposed method. These two indices are defined as



Remote Sens. 2023, 15, 2070 9 of 21

RMSE(âi, ai) =

√√√√ 1
P

P

∑
i=1
‖âi − ai‖2

2 (17)

SAD(êk, ek) = arccos(
êT

k ek

‖êk‖2‖ek‖2
) (18)

where ek and êk are the real endmember and extracted endmember, respectively, and ai and
âi are the real abundance and predicted abundance, respectively.

For both evaluation metrics, the lower the value, the better the corresponding unmix-
ing results.

4.2.2. Hyperparameter Settings

In our experiments, we assumed that the number of endmembers R was known in
advance, as determined by HySime [46]. In the training phase, we initialized the decoder
with the endmembers extracted by VCA. We implemented our proposed SSANet in the
environment of PyTorch 1.6 with an i7-8550U CPU. We applied the Adam optimizer to
optimize the parameters. The selection of specific parameters for the proposed SSANet
is displayed in Table 1. Figure 7 shows the convergence curves of the proposed SSANet
during the learning process.

Table 1. Hyperparameter settings for the proposed SSANet.

Parameter λ1 λ2 Epoch Batch Size Encoder
Learning Rate

Decoder
Learning Rate

Synthetic data 1 × 10−2 1 × 10−2 50 32 1 × 10−5 1 × 10−5

Samson 5 × 10−2 0.5 50 128 1 × 10−3 1 × 10−3

Jasper Ridge 5 × 10−2 0.5 50 128 1 × 10−3 1 × 10−3

Houston 5 × 10−2 0.5 50 256 1 × 10−4 1 × 10−5

Urban 5 × 10−2 0.5 50 64 1 × 10−3 1 × 10−3
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4.3. Comparison of SSANet with Other Methods
4.3.1. Experiments with Synthetic Data

To study the robustness of SSANet to noise, we added zero-mean Gaussian noise
with SNRs of 20, 30, and 40 dB to the synthetic dataset. Figure 8 shows the quantitative
analysis results with varying SNR levels. Generally, SSANet achieved better (i.e., lower)
SAD and RMSE results than the other methods, at both a low and high SNR. SGSNMF
performed well when the noise intensity was relatively low. At high noise levels, the
performance of SGSNMF deteriorated severely. CNNAEU and CyCU-Net could not obtain
the desired performance at various noise levels. The reason is that, despite the introduction
of spatial information, CNNAEU and CyCU-Net led to a noise-sensitivity problem because
of insufficient spectral feature representation capability. For MiSiCNet, the image prior
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aimed to solve the degradation problem. As a result, MiSiCNet achieved relatively good
results under low noise conditions. Other methods, such as DAEU and MTAEU, often
obtained satisfactory results because of the introduction of abundance sparsity and spectral–
spatial priors, respectively. The performance of SSANet did not degrade severely as noise
levels increased. The overall performance at various noise levels verified the robustness
of SSANet to noise, which mainly resulted from the advantage of the combination of the
attention mechanism and associated physical properties. The visualization results of the
abundances and endmembers for the synthetic data (SNR 40 dB) are shown in Figures 9
and 10, respectively. The experimental results indicated that our method successfully
obtained relatively good results.
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(b) SGCNMF. (c) DAEU. (d) MTAEU. (e) CNNAEU. (f) CyCU-Net. (g) MiSiCNet. (h) SSANet.

4.3.2. Experiments with Samson Data

The quantitative results for Samson are shown in Tables 2 and 3. Notably, our proposed
SSANet outperformed the other methods in terms of the mean SAD and mean RMSE.
Additionally, compared with the suboptimal results, these two metrics lowered by 16%
and 69%, respectively. Figures 11 and 12 show the abundances and endmembers estimated
by all the methods. Figure 11 shows that VCA-FCLS and SGCNMF performed relatively
poorly, confusing soil and trees. By contrast, the DL-based methods confused nothing
and distinguished each material more accurately, which demonstrates the advantage of
the DL methods. However, the abundance results of these methods at the junction of two
different materials were not ideal, whereas our method retained rich edge information
and appeared much clearer visually. This may be the result of a moderate application of
sparsity regularization, in addition to spatial attention. As shown by Figure 12, all methods
achieved good performance. However, because SSANet took into account the geometric
information of endmembers, in addition to the utilization of spectral attention to enhance
the effective spectral bands, it made the extracted water endmember greatly superior to that
of the competing methods. The superior performance further validated the effectiveness
and reliability of SSANet.

Table 2. RMSE (×100) and mean RMSE (×100) of abundances acquired by various unmixing
approaches on Samson data. Annotation: bold red text indicates the best results and bold blue text
indicates the suboptimal results.

Methods VCA-FCLS SGCNMF DAEU MTAEU CNNAEU CyCU-Net MiSiCNet SSANet

RMSE
Soil 26.50 17.86 11.02 13.36 19.9 18.27 18.18 4.06
Tree 25.11 24.49 9.89 9.49 25.01 19.19 17.91 3.41

Water 42.35 35.77 10.71 7.08 27.91 15.78 31.31 1.90

Mean RMSE 31.32 26.04 10.54 9.98 24.27 17.75 22.47 3.12
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Table 3. SAD (×100) and mean SAD (×100) of endmembers acquired by various unmixing ap-
proaches on Samson data. Annotation: bold red text indicates the best results and bold blue text
indicates the suboptimal results.

Methods VCA-FCLS SGCNMF DAEU MTAEU CNNAEU CyCU-Net MiSiCNet SSANet

SAD
Soil 2.36 0.98 1.53 3.20 6.13 1.06 1.03 0.92
Tree 4.33 4.60 4.52 6.21 4.01 2.50 3.54 3.55

Water 15.04 22.97 3.39 4.98 16.09 5.37 40.08 2.96

Mean SAD 7.24 9.51 3.15 4.80 8.74 2.97 14.88 2.48

Remote Sens. 2023, 15, x FOR PEER REVIEW 12 of 22 
 

 

4.3.2. Experiments with Samson Data 
The quantitative results for Samson are shown in Tables 2 and 3. Notably, our pro-

posed SSANet outperformed the other methods in terms of the mean SAD and mean 
RMSE. Additionally, compared with the suboptimal results, these two metrics lowered by 
16% and 69%, respectively. Figures 11 and 12 show the abundances and endmembers es-
timated by all the methods. Figure 11 shows that VCA-FCLS and SGCNMF performed 
relatively poorly, confusing soil and trees. By contrast, the DL-based methods confused 
nothing and distinguished each material more accurately, which demonstrates the ad-
vantage of the DL methods. However, the abundance results of these methods at the junc-
tion of two different materials were not ideal, whereas our method retained rich edge in-
formation and appeared much clearer visually. This may be the result of a moderate ap-
plication of sparsity regularization, in addition to spatial attention. As shown by Figure 
12, all methods achieved good performance. However, because SSANet took into account 
the geometric information of endmembers, in addition to the utilization of spectral atten-
tion to enhance the effective spectral bands, it made the extracted water endmember 
greatly superior to that of the competing methods. The superior performance further val-
idated the effectiveness and reliability of SSANet. 

Table 2. RMSE (×100) and mean RMSE (×100) of abundances acquired by various unmixing ap-
proaches on Samson data. Annotation: bold red text indicates the best results and bold blue text 
indicates the suboptimal results. 

Methods VCA-FCLS SGCNMF DAEU MTAEU CNNAEU CyCU-Net MiSiCNet SSANet 

RMSE 
Soil 26.50 17.86 11.02 13.36 19.9 18.27 18.18 4.06 
Tree 25.11 24.49 9.89 9.49 25.01 19.19 17.91 3.41 

Water 42.35 35.77 10.71 7.08 27.91 15.78 31.31 1.90 
Mean RMSE 31.32 26.04 10.54 9.98 24.27 17.75 22.47 3.12 

Table 3. SAD (×100) and mean SAD (×100) of endmembers acquired by various unmixing ap-
proaches on Samson data. Annotation: bold red text indicates the best results and bold blue text 
indicates the suboptimal results. 

Methods VCA-FCLS SGCNMF DAEU MTAEU CNNAEU CyCU-Net MiSiCNet SSANet 

SAD 
Soil 2.36 0.98 1.53 3.20 6.13 1.06 1.03 0.92 
Tree 4.33 4.60 4.52 6.21 4.01 2.50 3.54 3.55 

Water 15.04 22.97 3.39 4.98 16.09 5.37 40.08 2.96 
Mean SAD 7.24 9.51 3.15 4.80 8.74 2.97 14.88 2.48 

 
Figure 11. Visualization results of the abundances of Samson data. (a) VCA-FCLS. (b) SGCNMF. (c) 
DAEU. (d) MTAEU. (e) CNNAEU. (f) CyCU-Net. (g) MiSiCNet. (h) SSANet. (i) GT. 
Figure 11. Visualization results of the abundances of Samson data. (a) VCA-FCLS. (b) SGCNMF.
(c) DAEU. (d) MTAEU. (e) CNNAEU. (f) CyCU-Net. (g) MiSiCNet. (h) SSANet. (i) GT.
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4.3.3. Experiments with Jasper Ridge Data

Tables 4 and 5 show the quantitative results for Jasper Ridge. The visualization results
of abundances and endmembers are presented in Figures 13 and 14, respectively. As shown
in Table 4, for RMSE of each material, our SSANet lowered by 56%, 51%, 45%, and 57%,
respectively, compared with the suboptimal results. Table 5 shows that although SSANet
did not achieve the best results for each material, it ranked first with respect to the mean
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SAD. Figure 14 also shows that the endmembers obtained by SSANet were close to the
GT. In Figure 13, the abundance maps generated by SSANet look much sharper. In the
Jasper dataset, roads occupy a small portion of the scene. For material roads, estimating
the abundances and endmembers is more challenging than for other materials because of
the complex distribution. Numerous methods estimate unsatisfactory abundances and fail
to completely separate roads, whereas SSANet separated roads more accurately because
of the application of the abundance sparsity and the geometric feature of endmembers.
Additionally, in both a heavily mixed area (soil) and homogeneous area (water), SSANet
obtained superior separation results because of its powerful learning capability that fully
integrated useful spectral and spatial information.

Table 4. RMSE (×100) and mean RMSE (×100) of abundances acquired by various unmixing
approaches on Jasper Ridge data. Annotation: bold red text indicates the best results and bold blue
text indicates the suboptimal results.

Methods VCA-FCLS SGCNMF DAEU MTAEU CNNAEU CyCU-Net MiSiCNet SSANet

RMSE

Road 14.48 11.99 19.03 20.83 44.82 11.75 24.94 5.11
Soil 12.69 14.82 15.90 26.99 37.48 14.09 22.13 6.18
Tree 15.63 15.80 16.32 21.75 23.64 9.66 9.60 5.27

Water 18.73 26.27 8.05 5.19 30.65 10.04 11.42 2.25

Mean RMSE 15.39 17.22 14.95 18.69 34.15 11.38 17.02 4.70

Table 5. SAD (×100) and mean SAD (×100) of endmembers acquired by various unmixing ap-
proaches on Jasper Ridge data. Annotation: bold red text indicates the best results and bold blue text
indicates the suboptimal results.

Methods VCA-FCLS SGCNMF DAEU MTAEU CNNAEU CyCU-Net MiSiCNet SSANet

SAD

Road 9.01 14.39 29.57 11.64 15.07 3.85 32.97 2.10
Soil 22.34 22.45 6.03 15.80 9.52 3.70 6.63 7.52
Tree 14.81 20.76 3.20 4.61 9.17 3.23 4.32 6.56

Water 54.59 27.79 3.40 7.06 3.51 15.40 29.04 4.06

Mean SAD 25.19 21.35 10.55 9.78 9.32 6.44 18.24 5.06
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4.3.4. Experiments with Houston Data

The qualitative analysis results for the Houston dataset are shown in Tables 6 and 7.
Figures 15 and 16 show the qualitative analysis results of the abundance maps and endmem-
bers acquired, respectively. Clearly, with respect to both the RMSE and SAD, the results
obtained by methods based on spectral–spatial information (MTAEU, MiSiCNet, and SSANet)
were better than those obtained by methods that used only spectral information (DAEU and
CyCU-Net). These results provide further confirmation that the full utilization of spectral–
spatial features is advantageous for enhancing the precision of HU. Although SSANet did
not acquire the best SAD results for each endmember, its mean SAD was the optimal result.
Moreover, SSANet achieved the best results for all abundances with respect to the RMSE. Im-
portantly, Figure 15 shows that all other methods performed poorly in terms of distinguishing
similar materials (i.e., parking lot1 and parking lot2); however, it was relatively easier for
our method to distinguish spectrally similar materials, which was facilitated by the attention
mechanism selecting useful spectral–spatial features and suppressing useless features. In
conclusion, we demonstrated the good performance of SSANet in real scenes with similar
substances based on the combined RMSE and SAD evaluation.

Table 6. RMSE (×100) and mean RMSE (×100) of abundances acquired by various unmixing
approaches on Houston data. Annotation: bold red text indicates the best results and bold blue text
indicates the suboptimal results.

Methods VCA-FCLS SGCNMF DAEU MTAEU CNNAEU CyCU-Net MiSiCNet SSANet

RMSE

Running Track 7.74 9.47 15.19 21.45 14.33 40.12 10.36 5.96
Grass Healthy 12.66 7.02 15.52 6.84 16.23 13.18 5.99 9.24
Parking Lot1 24.76 23.86 30.66 22.05 43.68 25.07 14.21 12.49
Parking Lot2 25.68 25.60 15.81 22.04 43.46 47.64 16.77 14.62

Mean RMSE 17.71 16.49 19.29 18.09 29.42 31.50 11.83 10.58
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Table 7. SAD (×100) and mean SAD (×100) of endmembers acquired by various unmixing ap-
proaches on Houston data. Annotation: bold red text indicates the best results and bold blue text
indicates the suboptimal results.

Methods VCA-FCLS SGCNMF DAEU MTAEU CNNAEU CyCU-Net MiSiCNet SSANet

SAD

Running Track 16.34 36.79 20.56 23.39 42.56 33.73 7.24 15.23
Grass Healthy 11.85 12.54 7.00 4.19 0.97 7.30 9.05 8.48
Parking Lot1 2.59 4.06 2.73 4.17 7.46 2.55 1.10 3.00
Parking Lot2 26.64 12.49 5.90 6.82 3.14 10.50 19.40 9.39

Mean SAD 14.35 16.47 9.05 9.64 13.53 13.52 9.20 9.02Remote Sens. 2023, 15, x FOR PEER REVIEW 16 of 22 
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4.3.5. Experiments with Urban Data

Tables 8 and 9 show the quantitative metric comparisons for the Urban dataset.
Figures 17 and 18 visualize the results of the abundances and endmembers, respectively. A
feature of this dataset is its complex distribution, and mixed pixels are broadly distributed
in this scene. It is worth noting that SSANet had the finest mean and individual RMSE,
and the mean RMSE was 11% lower than that of the suboptimal method. Additionally,
the individual SAD obtained by SSANet was also competitive. Figure 17 shows that the
endmember mixed phenomenon appeared for VCA-FCLS and SGCNMF, which resulted
in poor results. CyCU-Net and MiSiCNet achieved poor qualitative and quantitative
performance. Although DAEU, MTAEU, and CNNAEU were able to distinguish each
material, there were some errors in the details, which were related to the absence of useful
adjacency information and a sparsity prior. Therefore, SSANet adopted a spatial attention
that assigned weights to neighboring pixels, in addition to the sparsity regularizer to make
the abundance maps look smooth and realistic. Figure 18 shows that the proposed SSANet
acquired similar visual endmember maps to GT. However, because the roof endmember
accounted for a small percentage of this large-scale scene, there were some gaps in the roof
endmember obtained by SSANet; however, the overall results remained competitive. The
superior unmixing results confirmed the reliability of SSANet in highly mixed scenes.
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Table 8. RMSE (×100) and mean RMSE (×100) of abundances acquired by various unmixing
approaches on Urban data. Annotation: bold red text indicates the best results and bold blue text
indicates the suboptimal results.

Methods VCA-FCLS SGCNMF DAEU MTAEU CNNAEU CyCU-Net MiSiCNet SSANet

RMSE

Asphalt 27.54 39.26 16.59 15.35 23.56 33.41 37.70 13.73
Grass 40.10 33.83 15.21 15.06 29.81 44.90 31.64 13.51
Tree 45.85 25.48 11.19 9.39 20.08 39.59 24.53 7.58
Roof 17.08 18.93 8.68 8.55 13.70 15.15 15.64 8.23

Mean RMSE 32.64 29.37 12.92 12.09 21.79 33.27 27.38 10.76

Table 9. SAD (×100) and mean SAD (×100) of endmembers acquired by different unmixing ap-
proaches on Urban data. Annotation: bold red text indicates the best results and bold blue text
indicates the suboptimal results.

Methods VCA-FCLS SGCNMF DAEU MTAEU CNNAEU CyCU-Net MiSiCNet SSANet

SAD

Asphalt 20.95 102.34 11.48 8.13 6.02 20.66 76.25 7.51
Grass 26.03 44.42 6.85 5.06 10.05 34.99 39.12 3.69
Tree 34.59 9.28 3.39 6.95 13.99 20.88 9.88 3.80
Roof 82.28 16.45 30.91 14.83 6.29 9.86 4.52 26.31

Mean SAD 40.96 43.12 13.16 8.74 9.09 21.60 32.45 10.33
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4.4. Discussion

Through the qualitative and quantitative analysis of four real hyperspectral scenes,
our SSANet vastly improved the unmixing performance. Because the distribution of real
scenes may not have fulfilled the prior distribution assumption, VCA-FCLS and SGCNMF
performed relatively poorly on real datasets compared with the DL-based methods, which
also indicates the advantage of using the DL methods for the unmixing task. DAEU is an
AE framework that does not contain spatial information; therefore, the overall performance
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of DAEU was not favorable; however, DAEU obtained satisfactory results in the abundance
estimation because its special design took advantage of abundance sparsity in the form
of adaptive thresholds. Additionally, the lack of ASC led to the poor performance of
CyCU-Net in the reconstruction process. MTAEU and CNNAEU used spatial correlation,
but their objective functions simply used the SAD reconstruction term and did not impose
regularizers on endmembers and abundances, which led to greater variances in endmem-
ber extraction and abundance estimation. MiSiCNet considered spatial information and
used the geometric information of endmembers. The utilization of geometric properties
allowed MiSiCNet to achieve competitive performance in endmember estimation, but it
did not leverage the relevant properties of abundance, thus limiting unmixing performance.
Although MTAEU, CNNAEU, and MiSiCNet combined spectral–spatial priors to make
the unmixing performance relatively good, their limited performance can be attributed to
their inability to combine useful spectral–spatial priors and the failure to consider both the
geometric property of the endmember and the abundance sparsity. For the aforementioned
problem, in our approach, we used SSAM to enhance useful information and weaken
useless information, in addition to imposing a minimum volume regularizer and sparse
regularizer on the endmembers and abundances, respectively. Therefore, our unmixing
method obtained good unmixing accuracy. In conclusion, the overall experimental perfor-
mance on four real-world HSIs illustrated the effectiveness and superior performance of
our method.

4.5. Ablation Experiments
4.5.1. Ablation Study on Objective Functions

We selected the Jasper Ridge scene as an example to evaluate the contribution of
the various parts of the objective function. Table 10 shows the results of the quantitative
analysis of the ablation study. We observed that using the SAD reconstruction loss solely
ensured the fulfillment of the HU task, but with limited accuracy. Incorporating appropriate
regularization greatly improved the unmixing performance. Using the sparsity term
exploited an inherent property of real scenes and guaranteed the sparsity of the abundance
results. Moreover, we introduced the minimum simplex volume constraint to exploit the
geometric information of the HSI. This term was beneficial for endmember extraction. To
summarize, all these regularizations appear to be associated with achieving the best results,
and the optimal performance was obtained by combining all of them.

Table 10. Mean RMSE (×100) and mean SAD (×100) results of ablation experiments with various
losses. Annotation: bold black text indicates the best results.

LossAE LossAE + LossSp LossAE + LossMv LossAE + LossSp + LossMv

Mean RMSE 14.53 6.27 9.54 4.70

Mean SAD 23.58 6.75 14.96 5.06

4.5.2. Ablation Study on Network Modules

In order to test whether both SSAM and SEAM improve the results, ablation exper-
iments in the Jasper Ridge scene are shown in this section. We compared SSANet with
SSANet without SSAM (SSANet-None), SSANet only with SEAM (SSANet-SEAM), and
SSANet only with SAAM (SSANet-SAAM). The results are shown in Table 11. It can be
seen from Table 11 that the SSANet after removing SEAM and SAAM yielded the worst
unmixing performance. By introducing either SEAM or SAAM into the proposed AE
model, the integrated SSANet had a certain improvement in the estimation of endmembers
and abundances. Consequently, it was necessary to combine SEAM and SAAM to achieve
superior performance.
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Table 11. Mean RMSE (×100) and mean SAD (×100) results of ablation experiments with various
network modules. Annotation: bold black text indicates the best results.

None SEAM SAAM SEAM + SAAM

Mean RMSE 6.87 6.48 5.46 4.70

Mean SAD 5.91 5.37 5.24 5.06

4.6. Processing Time

Table 12 shows the consumption time of all the unmixing approaches applied to the
Jasper Ridge dataset in seconds. We ran all the experiments on a computer with a 3.6 GHz
Intel Core i7-7820X CPU and NVIDIA GeForce RTX 1080 16GB GPU. We implemented VCA-
FCLS and SGCNMF in MATLAB R2016a; implemented DAEU, MTAEU, and CNNAEU
on the TensorFlow platform; and implemented CyCU-Net, MiSiCNet, and SSANet on the
PyTorch platform. The proposed SSANet is not the quickest, but its time consumption was
relatively satisfactory.

Table 12. Consumption time (in seconds) for all the unmixing approaches.

Methods VCA-FCLS SGCNMF DAEU MTAEU CNNAEU CyCU-Net MiSiCNet SSANet

Time(s) 1.75 26.82 15.35 23.26 1152.97 23.74 92.39 71.53

5. Conclusions

In this article, we present a convolutional AE unmixing network called SSANet, which
effectively uses spectral–spatial information in HSIs. First, we propose a learnable SSAM,
which refines spectral–spatial features by sequentially overlaying the SEAM and SAAM.
This module strengthens high-information features and weakens low-information features
by weighting the learning of features. Second, we use the sparsity of abundances and the
geometric properties of endmembers by adding a sparsity constraint term and a minimum
volume constraint term to the loss function to achieve sparse abundance results and accurate
endmembers. We verify the effectiveness and robustness of SSANet in experiments by
comparing it with several classical and advanced HU approaches in synthetic and real scenes.
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