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Abstract: Soil moisture content (SMC) plays a critical role in soil science via its influences on agri-
culture, water resources management, and climate conditions. There is broad interest in finding
relationships between groundwater recharge, soil characteristics, and plant properties for the quan-
tification of SMC. The objective of this study was to assess the potential of optical satellite imagery
for estimating the SMC over cropland areas. For this purpose, we collected 394 soil samples as
targets in Gonbad-e Kavus in the Golestan province in the north of Iran, where a variety of crop types
are cultivated. As input data, we first computed several spectral indices from Sentinel 2 (S2) and
Landsat 8 (L8) images, such as the Normalized Difference Water Index (NDWI), Modified Normal-
ized Difference Water Index (MNDWI), and Normalized Difference Salinity Index (NDSI), and then
analyzed their relationships with surveyed SMC using four machine learning regression algorithms:
random forests (RFs), XGBoost, extra tree decision (EDT), and support vector machine (SVM). Results
revealed a high and rather similar correlation between the spectral indices and measured SMC values
for both S2 and L8 data. The EDT regression algorithm yielded the highest accuracy, with an R2 = 0.82,
MAE = 3.74, and RMSE = 1.08 for S2 and R2 = 0.88, RMSE = 2.42, and MAE = 1.08 for L8 images.
Results also revealed that MNDWI, NDWI, and NDSI responded most sensitively to SMC estimation.

Keywords: soil moisture content (SMC); cropland; optical remote sensing; machine learning regression

1. Introduction

The total amount of water on the surface of the land and in the subsurface is known
as terrestrial water storage. In addition to groundwater, snow, ice, water trapped in
the plants, river, and lake water, it also comprises surface soil moisture and in the root
zone [1]. Surface soil moisture is the water that is in the upper 10 cm of soil, whereas
root zone soil moisture is the water that is available to plants—generally considered to
be in the upper 200 cm of soil. Soil moisture content (SMC) refers to both the surface
and root zone, although the surface is more commonly targeted. SMC plays an essential
role in agricultural operations, hydrological processes, and the complex cycles of water,
energy, and carbon [2,3]. SMC is one of the main factors influencing plant growth and
climate conditions by governing temperature and water budgets between the surface and
atmosphere [4,5]. SMC is a significant environmental stressor in areas with low soil water
contents, poor soil drainage, or high water table fluctuations [6]. SMC also serves as a key
indicator of water stress, making it essential for assessing agricultural drought, planting
dates, and harvest times [7,8].
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Although, SMC is not only a vital component of the Earth’s ecosystem, it also provides
a critical relationship between the land surface and the atmosphere [9]. Accurate SMC
estimation is essential in hydrological and agricultural applications, since the hydric state
of the soil is a primary parameter in the rainfall–runoff process [10]. Soil surface moisture
changes rapidly under the influence of environmental conditions such as sunlight, rainfall,
and evapotranspiration. Changes in topography also cause the Earth’s surface to alter the
SMC [9]. While the estimation of the SMC can be achieved in multiple ways, they can be
generalized into two groups: direct and indirect methods [11,12]. In direct methods, the
mass of water divided by the mass of the soil is calculated. In indirect methods, the SMC
is estimated by sensors and other variables closely related to the SMC [13]. Traditionally,
direct methods such as weighting methods, neutron meter radiological methods, and soil–
water dielectrics tend to be more reliable and provide more accurate SMC determinations
than indirect methods such as tensiometers, gypsum blocks, neutron probes, pressure
plates, and the pressure membrane apparatus [14]. The drawback of conventional direct
methods is that, despite their simplicity, they are not applicable at large spatial and temporal
scales [15]. Instead, indirect measurements of the SMC became common practice in the
recent decade.

SMC is one of the fundamental factors of environmental biology that has a range
of direct effects on plants, animal life, and microorganisms. Therefore, spatiotemporal
awareness is essential in hydrological studies, soil sciences, environment, meteorology,
irrigation, and drainage to improve water consumption efficiency [16]. While a range of
on-site and laboratory methods can be applied for spatially explicit SMC measurement,
each of them has disadvantages and advantages. For instance, laboratory methods are time-
consuming, and soil sampling disturbs soil structure and can cover only a limited size of
area. Moreover, in situ measurements of the SMC go along with pedoturbation [17]. Optical
RS data became an attractive source of information to estimate different soil properties,
such as the SMC [18,19]. Alternatively, satellite data can supply near real-time spatial–
temporal observations over a vast area, which is hard to achieve using common field
measurements [20]. Among the powerful RS techniques for precise estimation of this
variable are data-driven models.

Nowadays, machine learning techniques offer flexible regression models for quanti-
fying surface cover properties. They became mainstream algorithms in image processing
and have also been successfully applied for estimating the SMC [21]. For instance, a recent
study demonstrated that the XGBoost algorithm is significantly more effective than random
forest (RF) using Landsat 8 (L8) to estimate the SMC [22]. Machine learning techniques are
increasingly widely used for predicting soil moisture using remote sensing data [23,24].
For instance, in a semiarid region of Iran, the SMC was estimated using machine learning
algorithms [25]. The results revealed that the RF model outperformed the other models in
the validation of soil moisture estimation. Other machine learning algorithms were also
evaluated in the context of SMC estimation [26].

According to several studies, RF models predict soil properties much more accurately
than other regression techniques [27,28]. However, a systematic evaluation based on the
most commonly used satellite images, i.e., Sentinel-2 and Landsat, and four powerful
machine learning algorithms in the context of SMC estimation is still missing. Given all this,
the objectives of this study were to: (i) investigate the effectiveness of different machine
learning models for predicting the SMC in the crop fields in the north of Iran and (ii) identify
the key predictor variables affecting SMC prediction using machine learning approaches.

2. Materials and Methods
2.1. Study Area

The study area covers approximately 34,330 ha of Gonbad-e Kavus in the Golestan
Province in northern Iran and is located between 55◦10′ and 55◦22′E longitudes and 37◦15′

and 37◦25′N latitudes (Figure 1). This vast region is divided into two physiographic units:
alluvial plains and plains over Gorgan River traces, all with sediments of loess origin
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covering some Caspian Sea formations after the retreat. According to the Ombrothermic
Diagram, the climate of this region is hot, semiarid, or moderate. Most rainfall occurs in
the cold season; the summer is hot and dry. The hottest month of the year is August, and
the coldest one is February; the average annual rainfall is 461 mm, and the total evapotran-
spiration potential is 1270 mm per year according to the Penman–Monteith method. Soil
types were classified as typical Mollisols based on the USDA Soil Classification System.
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Figure 1. Map of the study area in Golestan, Gonbad-e Kavus.

Wheat and barley are cultivated in November and harvested in June in this area.
Cotton, tomato, or watermelon are planted afterward and harvested before planting wheat
and barley. These summer crops need irrigation, but wheat and barley are usually grown
rain-fed. Some farmers may irrigate them once or twice in March and April. The pipe
drainage system is used in this area for salinity control.

2.2. Field Sampling

In May 2020, 394 surface soil samples (0–10 cm depth) were collected. The following
criteria are considered for in-field sampling:

1. Predetermined points were identified on the ground by a hand-held GPS receiver.
Eight random 10 cm deep core soil samples were obtained from 10 m diameter circles
that were centered at the above-mentioned points. Eight samples from each point
were mixed and combined into one sample.

2. Soil samples were collected near the dates of the S2 and L8 acquisitions
3. Fields had sparse crop cover at the time of sampling.

We deployed a direct method for SMC sampling, which is a volumetric SMC deter-
mination procedure. The soil samples were collected using the soil sampling ring from
a depth of 10 cm, and these soil samples were packed in bags. Soil samples were trans-
ported to the laboratory, and soil weight was measured using a digital scale. Subsequently,
samples were oven-dried at 105 ◦C for 24 h [29]. After complete drying of the samples, the
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difference in weight between the wet and dried samples was calculated, and according to
Equations (1)–(3), the volumetric SMC was calculated:

θm =
Mw

Ms
× 100 (1)

where θm is the gravimetric soil moisture, Mw is the weight of wet soil, and Ms is the weight
of dry soil. So, the bulk density of the soil, Pb, is defined as:

Pb =
Ms

Vt
(2)

where Vt is the volume of the soil sample ring. Therefore, the volumetric water content, θv,
is defined as Equation (3):

θv= Pb × θm × 100 (3)

2.3. Methods

One of the prominent aspects of this study is that the SMC mapping is entirely based on
free, open-source cloud computing platform resources provided by Google, including the
Google Earth Engine (GEE) and Google Collaboratory (COLAB), ensuring full transparency
and applicability to other regions. The COLAB programming environment is establishing
itself as one of the most popular platforms for scientific computing. Furthermore, prepro-
cessing steps such as simple noniterative clustering (SNIC) segmentation [30] are carried
out within the GEE platform. A flowchart illustrating the steps for SMC prediction using
satellite data is given in Figure 2. Other processing steps, including the regression analysis,
hyperparameter tuning, etc., were realized within COLAB. Regarding the used satellite
imagery, the multispectral bands recorded by each of the sensors L8 and S2 are given in
Table 1.
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Table 1. Corresponding Landsat 8 (L8) and Sentinel 2 (S2) bands and spatial resolution.

Satellite Sensor Bands Wavelength Spatial
Resolution (m)

L8
Operational
Land Imager

(OLI)

Band1-Coastal aerosol 0.43–0.45 µm 30
Band2-Blue 0.45–0.51 µm 30

Band3-Green 0.53–0.59 µm 30
Band4-Red 0.64–0.67 µm 30
Band5-NIR 0.85–0.88 µm 30

Band6-SWIR 1 1.57–1.65 µm 30
Band7-SWIR 2 2.11–2.29 µm 30

Band8-Panchromatic 0.5–0.68 µm 15
Band9-Cirrus 1.36–1.38 µm 30
Band10-TIRS1 10.60–11.19 µm 100
Band11-TIRS2 11.50–12.51 µm 100

S2
Multispectral
Imager (MSI)

Band1-Coastal aerosol 443 nm 60
Band2-Blue 490 nm 10

Band3-Green 560 nm 10
Band4-Red 665 nm 10

Band5-VNIR 705 nm 20
Band6-VNIR 740 nm 20
Band7-VNIR 783 nm 20
Band8-VNIR 842 nm 20

Band8Aa-VNIR 865 nm 10
Band9-SWIR 940 nm 20
Band10-SWIR 1375 nm 60
Band11-SWIR 1610 nm 20
Band12-SWIR 2190 nm 20

2.4. Preprocessing

Imagery data from the L8 and S2 are used as provided by GEE. The data do not require
preprocessing or initial correction (geometric, radiometric, etc.) and are readily available
for processing. In GEE, L8 and S2 can be called with any processing level. Atmospheric
correction images of the L8 OLI Surface Reflectance Tier 1 and S2-A MSI (L2A) are used.
S2 and L8 satellite images were imported over the study site and were clipped with a
study area shapefile. Both the images were filtered by date from April to July 2020 and
were used as input for SMC estimation through the running of the trained regression
models. The imported images were then filtered to mask cloud images. These data have
been atmospherically corrected using GEE. Masking clouds and cloud shadows in S2
surface reflectance data using COLAB. The S2 image was filtered for clouds with the
metadata CLOUD_PIXEL_PERCENTAGE for a cloud pixel percentage of less than 10%.
In the case of L8, the metadata CLOUD_COVER of 5% was applied to mask the clouds.
The following satellite bands were selected for the regression analysis: eleven S2 bands
(2,3,4,5,6,7,8,8a,9,10,11) and six L8 bands (2,4,3,5,6,7). Widely used indices, such as water-
based, vegetation-based, and salinity-based, were derived for analysis in the regression
algorithms, as shown in Table 2.

2.5. Feature Collection: Spectral Indices

The feature extraction was carried out in COLAB based on the data measurements.
Then, independent and dependent (i.e., SMC) variables were selected. For the independent
variables, 11 spectral indices were selected. In our regression analysis, we evaluated
the correlation coefficient between SMC measurements, vegetation indices, and salinity
indices. Moreover, the accuracy of the model for SMC estimation was improved using
feature-selected methods, which reduce feature set redundancy [17].
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Table 2. Indices used to L8 and S2 data.

Indices Formula References

Salinity index—S1 SI1 = sqrt (Green2 + Red2) [31]

Salinity index—S2 SI2 = sqrt (Green × Red) [32]

Salinity index—S3 SI3 = (Blue × Red) [33]

Salinity index—S4 SI4 = (Red × NIR)/Green [34]

Salinity index—S5 SI5 = Blue/Red [34]

NDSI NDSI = (Red − NIR)/(Red + NIR) [33]

NDVI NDVI = (NIR − Red)/(Red + NIR) [35]

SAVI (L = 0.5) SAVI = (1 + L) × (NIR − Red)/(L + NIR + Red) [36]

Vegetation soil salinity index (VSSI) VSSI = 2 × Green − 5 × (Red + NIR) [37]

NDWI NDWI = (SWIR − NIR)/(SWIR + NIR) [38]

Extended EVI 2.5 × (NIR + SWIR1-Red)/[NIR + 2.5 × (SWIR1 +
6 × NIR + Red 7.5 × SWIR1 − Red) × Blue + 1 [39]

MNDWI MNDWI = (−SWIR)/(Green + SWIR) [40]

2.5.1. Vegetation Index

The normalized difference vegetation index (NDVI) is the most common index used
to assess crop greenness directly and crop–water relationships indirectly. The NDVI is
calculated by standardizing the difference between the near-infrared (NIR) band and red
band (RED) reflectance bands [41]. The normalization results in NDVI ranges between 1
and −1, where negative values indicate a lack of vegetation and positive values a presence
of vegetation. The equation is given below:

NDVI =
NIR− RED
RED + NIR

(4)

2.5.2. Soil Indices

Huete [42] introduced the soil-adjusted vegetation index (SAVI) to compensate for
bare soil damage. These vegetation indices are used specifically for various applications.
This index can minimize the soil brightness correction factor in regions where vegetative
cover is low. NIR and Red refer to the bands related to those wavelengths, and an L value
equal to 0.5 is recommended in previous reports [42]. SAVI is defined below:

SAVI =
(1 + L)× (NIR − Red)

(L + NIR + Red)
(5)

2.5.3. Water Indices

The normalized difference water index delineates open water properties in a satellite
image, allowing a water body to stand out against the soil and vegetation. It makes use
of the NIR and short-wave infrared (SWIR) reflectance to increase the presence of such
features while removing the presence of soil and vegetation properties. Equations are
given below:

NDWI =
NIR− SWIR
RED + SWIR

(6)

The modified normalized difference water index (MNDWI) uses green and SWIR
bands to enhance open water features. The MNDWI is not only more suitable for enhancing
and extracting water, but it also has an advantage in reducing noise over the NDWI. The
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MNDWI can enhance open water features while effectively repressing and even eliminating
land noise as well as vegetation and soil noise [38].

MNDWI =
Green− SWIR
Green + SWIR

(7)

2.5.4. Salinity Indices

NDSI is a measure of the relative magnitude of the reflectance differentiation within
visible (green) and SWIR [43]. The salinity index indicates the salt content of soils. One of
the most frequent causes of land degradation is soil salinity, particularly in areas where
precipitation exceeds evaporation. Low values denote lower salinity, whereas high values
denote higher salinity. Several soil salinity indices have been developed [32], and their
different types have been described in Table 2.

2.6. Segmentation

Object-oriented segmentation is a beneficial process for high-resolution image pro-
cessing. The advantage is that the pixels cannot be interpreted alone, and in addition,
in the case of high-resolution images, the classification of the pixels leads to decreased
noise. Segmentation means a group of neighboring pixels within an area where similar-
ities such as numerical value and texture are the most important standard features. The
segmentation of an image can be used to enhance the performance and be less noisy in
optical data, object-based analysis, and ground surface investigation. A multiresolution
segmentation method was used for extracting a map to show the nature of variations.
To achieve a balance between segment indices, spectral and structural specifications of
landscapes are considered, because proper indices for segmentation by the multiresolution
method are selected by trial and error and segmentation is required to be repeated with
different indices and combinations of their different weights. Accuracy in segmentation
from the viewpoint of spatial conformations with landscape positions affects final accuracy
in imagery classification and identification.

The optimal levels of segmentation were identified given the current data based on
the available spectral and spatial resolution, using trial and error at different levels. For this
purpose, multiple segmentations were achieved by using S2 and L8 images and also numer-
ical contour maps, slope maps, geological maps, and soil base maps as main layers, their
geocoding processing with trial and error, and then producing a combination of effective
parameters of different weights on segmentation such as scale, shape, and compactness.

In GEE and in interaction with COLAB, training soil samples were first identified on
the segmented images, and different indices with respect to each object (relevant to the
training samples) were analyzed for the selection of the best indices. Then, classification
was processed using selected indices and predetermined thresholds for each index. Finally,
experimental samples were used for the evaluation of the accuracy of each index for
classification and the introduction of semiautonomous modeling for evaluating SMC. The
parameters and characteristics of mean and standard deviation for S2 bands B3, B8, B12,
and L8 bands B3, B5, B7, perimeter, area, NDWI, and NDVI indices, etc., are used to
improve the results of the algorithm’s nearest neighbor object-oriented method.

SNIC was used for segmentation. As opposed to other superpixel algorithms, SNIC
has the advantages of not only easy calculation, low memory consumption, and high speed,
but also without subsequent area connection operations, no multiple iterations, lower
pixel accesses, and distance calculations [44]. SNIC is calculated as follows (Equation (8)).
Assuming the spatial position is a and the color value is b, the distance formula from the
j-th candidate pixel to the k-th superpixel centroid [30]:

aj,k=

√(
da

S

)2
+

(
db
m

)2
(8)
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where da and db are the spatial and color distances between the candidate point and the
cluster center, and sequentially the calculation formula is as follows:

da=‖ aj − ak ‖ (9)

db= ‖bj − bk‖ (10)

where ai and ak represent the positions of candidate points and cluster centers, bi and bk
represent their colors, and s and m represent the normalization factors for spatial and color
distances. For an image of N pixels and K superpixels, the value of s is p (N/K). The value
of m, commonly known as the density factor, is set by the user [30].

2.7. Machine Learning Regression Algorithms

Random forest (RF) [45], XGBoost [46,47], extra tree decision (ETD) [48], and support
vector machine (SVR) [49] are among the popular shallow machine learning methods in RS
applications. These algorithms are briefly outlined below.

SVR is one of the most prevalent supervised machine learning algorithms. Although
SRV is mainly used in classification tasks, it is also appropriate for regression tasks. SVR
involves the optimization of two essential parameters of support vector machines, which
are C and gamma [49].

RF is a machine learning algorithm with usability and is more accessible than other
algorithms that often deliver excellent results even without adjusting their hyperparameters.
Due to its simplicity and usability, this algorithm is the most commonly used machine
learning algorithm for both classification and regression [45,50]. RF is flexible and easy to
use because only a few parameters need to be set by the user.

The XGBoost is a supervised learning algorithm that aims to accurately predict a
target variable by compounding an ensemble of estimates from a set of more superficial
and weaker models, and has become a powerful algorithm [51]. The influence of the
system has been extensively documented in a number of machine learning and data mining
challenges [46].

ETD and RF are related regression tree algorithms. RF makes use of bootstrap replicas
and subsamples the input data with substitution, while ETD uses samples without replace-
ment of the entire main sample. RF chooses the optimum split versus ETD, which chooses
it randomly [48].

2.8. Train and Test Dataset Partitioning

This study splits the dataset into 70% training data and 30% testing data. Then, models
are trained and tested on the volumetric SM data. We collected 394 soil samples for model
building and validation. In these, 269 samples (70%) were used as calibration data and
125 samples (30%) as validation data.

2.9. Implementation Platform

Google Earth Engine (GEE) is a planetary-scale web portal offered by Google. GEE
uses Google’s cloud-based computing and approachable, open-access remote sensing
datasets. GEE has the ability to provide and process big geodata that eases the scientific
discovery process by giving users free access to large remotely sensed datasets [52]. The
outstanding feature of this GEE is that it is free. It provides access to the databases of
European and American space agencies, as well as other databases. For instance, regarding
optical data, both raw radiance products and atmospherically corrected surface reflectance
products are provided. At the same time, the Google Colaboratory (Colab) is a free cloud
notebook environment that has free access and is automatically saved to Google Drive
on graphics processing units (GPUs). The benefit is that COLAB can easily access GEE
and supports a diversity of machine learning libraries, which can be quickly loaded into a
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notebook (Figure 3). Codes for the machine learning algorithms utilized in this paper are
accessible at scikit-learn.org.
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2.10. Hyperparameters Tuning

Hyperparameter tuning is the process of determining the appropriate set of hyper-
parameters that optimize the machine learning parameters. Setting the suitable mix of
hyperparameters enables to extract the maximum performance models. Hyperparameters
are essential in building robust and precise models. Hyperparameter tuning helps find the
equilibrium between bias and variance. Therefore, it prevents the model from overfitting
or underfitting. Concerning the tuning of the hyperparameters in estimating SMC, it is nec-
essary to understand their role in achieving accurate and robust models. Machine learning
has a different adjustment of hyperparameters that govern the learning model [53].

One of the well-known methods for optimizing hyperparameters is grid search. By
identifying the best combination of hyperparameter values, it can improve model perfor-
mance and hence significantly decrease the parameter optimization time [54]. The data was
split into 70% training and 30% testing. Grid search and 10-fold or 5-fold cross-validation
on the training dataset were used to discover the most suitable regression parameters. The
test dataset was used to make an estimate of the performance of the chosen model.

The RF algorithm has a few hyperparameters to tune [55]. The 10-fold cross-validation
method was used in conjunction with a grid search to improve model performance. Table 3
shows the RF hyperparameter ranges and the optimized values identified by the grid search.

Table 3. Grid search hyperparameters for RF.

Parameters Range Optimum Value

n_estimators 70 to 150 100
Max feature (Auto, SQRT, Log2) log2
Max depth 1 to 10 3

min_samples_spli (2, 4, 8) 2
bootstrap (True, False) False

To determine the suitable kernel function and the C parameter for the SVR algorithm,
grid search was used, and the gamma parameter was set to its default value. Hyperpa-
rameters, with the great results acquired with regression c = 15, gamma = scaler, and
kernel = RBF, have been tested (Table 4).
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Table 4. SVR grid search parameters.

Parameters Range Optimum Value

C (1, 5, 10, 15, 20, 25, 35, 40) 15
Gamma (scale, auto) scaler
Kernel (linear, poly, rbf, sigmoid) rbf

Regarding XGBoost, similar to RF, the algorithm is tuned using multiple hyperparam-
eters. A grid search on hyperparameters with 10-fold cross-validation was implemented to
discover the great model according to R2 metrics (Table 5).

Table 5. The grid search XGBoost regression modeling hyperparameters.

Parameters Range Optimum Value

n_estimators 70 to 500 200
Max depth 1 to 10 8

gamma 0.1–1 0.1
min_child_weight 3 to 10 5

The grid search from ETD regression modeling hyperparameters is shown in
Table 6. Hyperparameters, with the best optimum value obtained with regression max
feature = auto, n_estimator = 300, max depth = 5, min_samples_split = 2, and without
bootstrap, have been tested (Table 6).

Table 6. ETD regression modeling hyperparameters from the grid search.

Parameters Range Optimum Value

n_estimators 150 300
Max feature (Auto, Sqrt, Log2) auto
Max depth 1 to 10 5

min_samples_split (2, 4, 8) 2
bootstrap (True, False) False

The parameters used for segmentation in this research are size = 3, compactness = 5,
connectivity = 8, neighborhood = 25. [56] reported that object-oriented classification of
image parameters, such as image type, segmentation scale, accuracy assessment type,
selected algorithms in classification, educational places, input data, and target classes, are
important (Table 7).

2.11. Accuracy Assessments

Evaluation of the efficiency machine learning models goodness-of-fit metrics, includ-
ing the coefficient of determination (R2), mean absolute error (MAE), root mean square error
(RMSE), and Nash–Sutcliffe model efficiency coefficient (NSE), Akaike information criterion
(AIC), and Bayesian information criterion (BIC), were used and calculated according to the
following equations:

R2 = 1− ∑n
i=1(Qi − pi)

2

∑n
i=1
(
Q−Q

)2 (11)

RMSE =

√
1
n ∑n

i=1(Qi − pi)
2 (12)

MAE =
1
n ∑n

i=1 |Qi − pi| (13)

AIC = 2 k − 2 ln(L) (14)
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BIC = kln(n)− 2 ln(L) (15)

NS = 1− ∑n
i=1(Qi − Pi)

2

∑n
i=1(Qi − Pi)

2 (16)

where Qi is the measured value, Pi is that evaluated by the spatial estimation method,
and O and M are the averages of the measured and evaluated SMC. Here, n indicates the
number of data points.

The RMSE and MAE values should be closer to zero for optimal prediction, and the
R2 and NASH-Sutcliffe efficiency values should approach one. The NSE in theory differs
in the range −∞ to 1, and higher values of the NSE illustrate well the agreement between
predicted values and observations.

Table 7. Determination of optimum segmentation parameter values for study area.

Argument Type Details

Image Image The input image for clustering.

Size Integer, default: 3
The distance between superpixel seeds,

measured in pixels. No grid is created if a
‘seeds’ image is provided.

Compactness Float, default: 5

Compactness factor. Clusters get increasingly
compact as values increase (square). Spatial
distance weighting is disabled when this is

set to 0.

Connectivity Integer, default: 8 Connectivity. Either 4 or 8.

Neighborhood size Integer, default: 25 Size of the tile neighborhood (to avoid tile
boundary artifacts). Defaults to 2× size.

Seeds Image, default: null

Any nonzero-valued pixels are used as seed
locations if they are present. As determined

by “connectivity,” pixels that touch are
regarded as belonging to the same cluster.

2.12. Uncertainty

In this study, k-fold cross-validation was employed to reduce the degree of uncertainty
in the modeling outputs. In the k-fold cross-validation, in our case k = 5, the training data
were randomly divided into five equal-sized subsets, of which all but one were used for
training the predictive model. The procedure is repeated five times and the evaluation
criteria are averaged to obtain the final performance.

3. Results
3.1. Model Performance with L8 and S2

As shown in Table 8, four machine learning models for predicting the SMC without
segmentation perform well in terms of evaluation metrics. In these statistical results, we
presented the results of the RF, XGBoost, ETD, and SVR models for four input combinations
in two datasets, L8 and S2. These results are briefly addressed below.

L8: SMC estimation using L8 data with and without segmentation revealed a slight
difference. SVR with an R2 of 0.74, MAE of 1.42, and RMSE of 5.35 and ETD with an R2 of
0.75, MAE of 1.41, and RMSE of 5.57 have the best model performances, whereas SMC was
poorly estimated by the XGBoost model. The EDT outperformed all other models and was
therefore selected as the best predictor of the SMC.
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Table 8. Four machine learning methods (RF, XGBoost, ETD, and SVM) used without segmentation
to predict SMC. Best validation results are bolded.

Machine Learning
Methods

Landsat 8
Dataset R2 RMSE MEA AIC BIC NSH

Calibration 0.88 1.58 0.85 136 154 0.88

RF Validation 0.67 6.64 1.28 233 247 0.67

XGBoost
calibration 0.78 3.13 1.25 323 341 0.78

Validation 0.64 7.38 1.61 255 283 0.64

ETD
calibration 0.75 5.17 1.22 478 506 0.63

Validation 0.63 5.57 1.41 222 252 0.75

SVR
calibration 0.59 5.82 1.16 494 516 0.59

Validation 0.74 5.35 1.42 209 226 0.74

Sentinel 2

RF
calibration 0.86 1.90 0.86 186 204 0.86

Validation 0.76 4.76 1.14 194 208 0.76

XGBoost
Calibration 0.93 0.89 0.73 −3 43 0.93

Validation 0.79 4.24 1.08 196 232 0.80

ETD
calibration 0.90 1.40 0.68 120 166 0.90

Validation 0.84 3.24 1.11 164 200 0.84

SVR
calibration 0.64 5.11 1.12 457 475 0.64

Validation 0.83 3.40 1.19 154 168 0.83

S2: In the absence of segmentation, all the machine learning algorithms were tested
and found to be capable of predicting the SMC from the S2 data with high accuracy.
The ETD and SVM algorithms, although they had a bit better R2 with an MAE of lower
than 5% SMC performance, have also been the most common algorithms to predict
the SMC volumetric cause to solve the nonlinear relation between input and output
with a good degree of precision. In this method, XGBoost yielded competitive results
(RMSE = 4.24, RME = 1.08, R2 = 0.93–0.79). RF models had better performance with these
values (RMSE = 4.76, RME = 1.14, R2 = 0.76–0.86).

Subsequently, we address the L8 and S2 goodness-of-fit results of four machine learn-
ing models for predicting SMC with segmentation in Table 9.

L8: The tested machine learning algorithms were capable of predicting the SMC with
high precision. The highest R2 and NS throughout the training phase were for RF and ETD,
whereas XGBoost and SVR performed alike. The good performance had RMAE values of
fewer than 5% for all algorithms. The ETD model outperformed the other models based on
its lowest RMSE value of 2.42 and higher R2 value of 0.97. So, the ETD was evaluated as
the best method to predict volumetric SMC. After the ETD model, RF, SVR, and XGBoost
performed well based on the RMSE (2.66, 4.39, and 5.36), MAE (1.11, 1.78, and 1.13), and R2

(0.87, 0.78, and 0.74) values, respectively. Both ETD and RF models, however, yielded good
performances for predicting volumetric SMC.

S2: Based on the evaluation of the results shown in Table 9, it can be observed that
the ETD consistently outperformed all other models in estimating SMC, not only for L8
(RMSE = 2.42, RME = 1.08, R2 = 0.97–0.88), but also for S2 (RMSE = 3.24, RME = 1.11,
R2 = 0.97–0.84). The RF (RMSE = 4.62, MAE 1.19, R2 = 0.78–0.91) ended up the second-best
model for estimating SMC. The XGBoost model (RMSE = 8.55, MAE =1.43, R2 = 0.92–0.59)
estimated that the SMC had a lower R2 than during the validation. In contrast, model SVR
(RMSE = 4.82, MAE =1.14, R2 = 0.77–0.83) was more than the XGBoost model for estimated
SMC in S2. The numerical value shows that the performed ETD regression can control
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the SMC data by estimating a valuable fitness standard. Based on the results, SMC was
predicted with medium accuracy for the ETD (R2 = 0.88), whereas the XGBoost led to the
poorest estimation accuracy. The SVR had a significant amount of R2, while the L8 had a
smaller value.

Table 9. Four machine learning methods (RF, XGBoost, extra tree decision, and SVM) used for
segmentation to predict SMC. Best validation results are bolded.

Machine Learning
Methods

Regression Landsat8
R2 RMSE MEA AIC BIC NSH

RF
Calibration 0.91 1.27 0.80 82.18 111.09 0.91

Validation 0.87 2.66 1.11 131.67 153.84 0.87

XGBoost
calibration 0.90 1.41 0.77 105.15 123.21 0.90

Validation 0.74 5.36 1.13 208.32 222.17 0.74

ETD
Calibration 0.97 0.42 0.50 −224.23 −206.16 0.97

Validation 0.88 2.42 1.08 114.52 128.37 0.88

SVR
Calibration 0.68 4.53 1.06 435 475 0.68

Validation 0.78 4.39 1.37 196 227 0.78

Regression Sentinel 2

RF
Calibration 0.91 1.28 0.78 87 120 0.91

Validation 0.79 4.30 1.19 190 215 0.79

XGBoost
Calibration 0.92 1.01 0.71 21 50 0.71

Validation 0.59 8.55 1.43 294 316 0.59

ETD
Calibration 0.97 0.34 0.45 −245 −274 0.97

Validation 0.84 3.24 1.11 171 194 0.84

SVR
Calibration 0.83 2.41 0.69 261 297 0.83

Validation 0.78 4.60 1.32 200 227 0.77

Altogether, Tables 8 and 9 reveal that the predicted SMC values differed significantly
between the model type and the input combinations. As shown in Table 8, XGBoost had
a higher R2 in L8, whereas it had a smaller R2 in S2. Models are contrasted according to
the AIC and BIC measures. The Akaike information criterion (AIC) is a measure of the
comparative quality of statistical models for a given collection of data. The AIC evaluates
the well-being of each model relative to each of the other models. Thus, the AIC provides
a means for model choice. BIC is a criterion for model choice among a limited number
of models, and the model with the lowest BIC is selected. It is based on the probability
function, which is similarly associated with the AIC. The EDT model indicates the most
negligible compounds of the AIC and BIC. Therefore, it is evaluated as the most suitable
model for L8 and S2.

The 1:1 scatterplots of the actual vs. predicted SMC using the four ML algorithms
with two satellite are shown in Figures 4 and 5. It could be seen that each four models (RF,
ETD, XGBoost-SVR) had satisfactory goodness-of-fit to the training set. The highest fit was
found for the ETD model followed by the RF model. The XGBoost model had a low fit to
the test set.
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3.2. Uncertainty Analysis of Prediction Soil Moisture Based on Machine Learning

In predicting soil properties, uncertainty is an important concern. There are two pri-
mary types of uncertainty in this study: the first is the uncertainty of the model parameters
and the second is the uncertainty of the technology used to acquire the satellite data.

In Table 10, the uncertainty results for four models are presented, and the results
of both Landsat 8 and Sentinel 2 random forest satellites, compared to support vector
machine regression, XGBoost, and EDT, have better efficiency in determining uncertainty.
Soil moisture nose in the study area. The better performance of RF can be attributed to its
ability to model large databases and scale many inputs without change. After the random
forest model, the EDT had a better performance for soil moisture, and the support vector
machine also had a good performance for uncertainty, while the XGBoost had the lowest
performance with mutual evaluation uncertainty of all the algorithms, with a value R2

closer to 1, indicating that it has less uncertainty. Although Landsat 8 and Sentinel 2 satellite
data are geometrically and atmospherically corrected, they are affected by ground and
shadow conditions.

Table 10. Uncertainty with k-fold cross-validation.

Machine Learning
Methods

Regression
Landsat 8

R2 (mean ± std) RMSE MEA

RF
Calibration 0.79 ± 0.09 1.67 ± 0.24 2.84 ± 0.79

Validation 0.64 ± 0.24 1.87 ± 1.13 2.27 ± 1.28

XGBoost
calibration 0.69 ± 0.45 1.98 ± 0.20 3.24 ± 0.1

Validation 0.58 ± 22 2.91 ± 1.16 2.41 ± 3.04

ETD
Calibration 0.77 ± 0.49 1.98 ± 1.26 0.50 ± 1.54

Validation 0.62 ± 0.87 2.42 ± 1.12 1.08 ± 2.86

SVR
Calibration 0.68 ± 1.02 2.64 ± 0.69 2.63 ± 1.37

Validation 0.56 ± 1.64 3.39 ± 1.39 3.16 ± 1.96

Sentinel 2

RF
Calibration 0.82 ± 0.10 3.18 ± 0.53 1.77 ± 0.15

Validation 0.76 ± 0.89 2.26 ± 1.02 2.79 ± 1.42

XGBoost
Calibration 0.74 ± 0.14 3.11 ± 0.55 1.75 ± 0.18

Validation 0.60 ± 0.91 2.65 ± 1.16 2.68 ± 1.31

ETD
Calibration 0.77 ± 0.15 1.68 ± 0.16 2.78 ± 0.58

Validation 0.60 ± 0.29 2.75 ± 0.91 3.06 ± 2.32

SVR
Calibration 0.73 ± 1.26 3.05 ± 1.62 2.86 ± 1.15

Validation 0.58 ± 1.34 4.26 ± 1.54 3.98 ± 1.86

We did not use land attributes in our investigation, which may also lead to potential
uncertainties. It is recommended that land attributes be used in future studies to diminish
the uncertainty in soil moisture estimation.

3.3. Feature Importance with L8 and S2

We evaluated the performance of 12 indices and 6 bands as auxiliary features in the
models. These selected features not only contribute to the modeling, but also expand the
complexity of the model. The ETD, RF, and XGBoost possess the benefit of being capable
of grading a predictor variable’s relative significance. As such, we implemented a feature
importance evaluation to identify and remove useless features. The feature importance
bar graph plot according to these algorithms is displayed in Figure 6A–C. The features are
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sorted based on their importance. The models measure variable importance based on the
percent increase in RMSE and decrease in the p-value.
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According to Figure 6A, the NDSI with RF had the highest importance score (0.20),
followed by NDWI (0.17), MNDWI (0.16), B5 (0.12), NDWI-STD (0.8), NDSI-STD (0.10), and
MNDWI-STD (0.10). In the XGBoost regression, the most important feature was related
to the MNDWI index (Figure 6B). According to Figure 6C, with the ETD, the NDSI (0.17)
index had the highest importance score. The relative importance of the other indices was
as follows: MNDWI (0.16), NDWI (0.11), MNDWI_std (0.07), NDSI_std (0.06), B5 (0.08),
S4-std (0.08), S1-std (0.08), NDVI (0.06), SAVI (0.06), EVI (0.06), and NDWI_std (0.04). The
L8 dataset was the most important.

In Figure 6, the independent variables with higher RMSE values are illustrated as
being more important in predicting the SMC. It was found that soil moisture volumetric
prediction relies heavily on water indices in three models (RF, XGBoost, and ETD). Our
study also revealed that variables for salinity (S1, S2, S3, S4, S5) expressed lower importance
to predict the SMC with machine learning algorithms. The coefficient only works for a
linear kernel, while for the RBF, the data space is no longer limited (or, at least, it changes).
The NIR and SWIR bands were found to be the most essential of all reflectance bands.

The feature importance score for the S2 data is shown in Figure 7. The several spectral
indices we tested were found to be necessary. The low importance of red contrast to the
NIR band in evaluating SMC is surprising given the higher sensitivity of the NIR band.

According to Figure 7A, The RF model for prediction of SMC identified the most
important covariates as: MNDWI (38%), NDSI (32%), NDWI (22%), B8 (10%).

Results in Figure 7B show that the feature importance, with the XGBoost being most
important, was most related to the MNDWI indices B8 and NDVI.

The NDSI (0.30) indices had the highest importance score, and MNDWI was more
important with a score of 0.26; there was no difference between B8 and NDVI with similar
scores, and S1 and S4 were significant (Figure 7C). Reflectance in the NIR band was the
most essential of all the reflectance bands in S2. It can be observed that MNDWI, NDSI,
and NDWI indices impact the prediction of the SMC by both the S2 and L8 datasets.

3.4. Generating SMC Map from L8 and S2 Images

The mandatory processing steps of satellite images and field and laboratory work were
employed to obtain the SMC. Based on the obtained results, among the sixteen predictor
variables of the first and second groups, bands L8 and S2 (B3, B5, B8, B7, and B12) involved
in the validation, nine variables, NDWI, MNDWI, NDVI, NDSI, EVI, SI, SAVI, Band 8, and
Band 3 changes in humidity variables, are responsive. After confirming the absence of
outliers, the normality and correlation of the data were determined, and then the most
appropriate effective variables were determined. In the next stage, moisture indices (NDWI
and MNDWI), the vegetation index, salinity index, and B3, B8, and B12 were selected
to create the final SMC maps. This index has the strongest correlation with the SMC. In
Google COLAB, we pip install packages needed for making maps. After the calling and
segmentation of images in the COLAB environment, the SMC map was estimated with
four machine learning algorithms and applied to L8 and S2 imagery (Figures 8 and 9).

In the region, the parts that were drained had more moisture than the areas that were
not drained; moreover, the highest SMC was observed in the drainage outlet areas, which
may be due to the relatively low water level while the agricultural lands had a low SMC. In
each figure, the four SMC maps are based on the four machine learning algorithms. The RF
algorithm is the best algorithm for the surface SMC map. The RF algorithm appeared to be
the most suitable algorithm for the surface soil moisture map. Additionally, the decision
tree also estimated the better accuracy of the SMC map, which is supported by the SVR
model for partial moisture changes. There was a lot of soil moisture at the outlet drainage,
which is shown in light blue. It should be kept in mind that the SMC not only increases
the amount of absorption by water molecules but also darkens the color of the soil and
reduces the reflection from the soil when it gets wet, and usually wet soil is darker than dry
soil (in the visible spectrum) because its spectral reflectance decreases. The cause of this
darkness is considered to be the water film around the soil particles and its effects. In the



Remote Sens. 2023, 15, 2155 18 of 25

drained areas, the soil moisture range was between 10 and 12%; in the nondrained areas,
it was between 6 and 10%; in the downstream part, which is near the forest area, the soil
moisture was between 10 and 12%. In general, the SMC is variable parameter, and weather
conditions, soil texture, and type of crop have an effect on the estimation.
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importance with ETD.
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Additionally, the decision tree also estimated the better accuracy of the moisture map,
which is supported by the vector machine algorithm for partial moisture changes. There
was greater SMC at the outlet drainage, which is shown in light blue. It should be kept in
mind that soil moisture not only increases the amount of absorption by water molecules
but also darkens the color of the soil and reduces the reflection from the soil when it gets
wet, and usually wet soil is darker than dry soil (in the range of the visible spectrum)
because its spectral reflectance decreases and the cause of this darkness is considered to
be the water film around the soil particles and its effects. In the drained areas, the SMC
range was between 10 and 12%; in the nondrained areas, it was between 6 and 10%; in the
downstream part, which is near the forest area, the soil moisture was between 10 and 12%.
In general, the SMC is a variable parameter, and weather conditions, soil texture, and type
of crop have an effect on the estimation.

3.5. Discussion

This research used the machine learning algorithms RF, SVR, ETD, and XGBoost to
determine the importance of predictors and predict SMC content and reached the best
performance in terms of model accuracy and spatial patterns. Our results revealed a
close agreement between the RF and ETD models in estimating SMC. Earlier studies
showed that RF models were acceptable compared to those from other models for testing
datasets. So, RF was selected as a promising method to predict SMC [25]. The relatively
good performance of EDT and RF models is in agreement with earlier studies that found
decision-tree-based regression models outperformed other machine learning algorithms,
particularly in terrain and soil spatial predictions [21,57]. A previous study demonstrated
that due to the hydraulic behavior of water in unsaturated sand, a decrease in spectral
reflectance occurs [58]. Soil reflectance correlates nonlinearly with SMC, which correlates
well with a curved exponential model between 1100 and 2500 nm [16]. Even though green
and red wavelengths have a nonlinear relationship with SMC, the Pearson correlation
coefficient represents a fairly weak negative relationship between visible wavelengths and
SMC. Several authors earlier studied relationship between optical remote sensing data
and SMC with statistical analysis [25,31,59]. The studies reported that the RF process
supplied the highest Nash–Sutcliffe efficiency value (0.73) for SMC retrieval covered by
the various land-use types. Therefore, RF has been chosen as an excellent method to
predict soil moisture [25]. Ref. [50] stated that RF is flexible and easy to use because only
a few parameters need to be set by the user. The amount of surface soil moisture was
evaluated using remote sensing data. Similarly, the results as reported in [60] showed that
machine learning models such as RF, extended trees and SVR perform superior than neural
network models, multiple linear regression and classification and regression trees. (CART).
This issue is probably due to the optimization algorithms for the selected parameters
having different accuracy for training the models. The superiority of RF and SVR over
other models has also been reported in various studies [61,62]. In the results presented
by [20], two developed tree algorithms and a RFt with a MAE value less than 4% of soil
moisture had better performance, which is consistent with other studies, and underlines
that regression models based on decision trees work better than other machine learning
algorithms. Encouraging results were obtained for the possibility of estimating soil moisture
with the research method. Indices (MNDWI, NDWI, NDVI, BT, and LST) were calculated
with the help of a combination of two series of telemetry data, including SMOS microwave
data and short infrared and near infrared data from the MODIS sensor, to estimate soil
surface moisture in the region.The result of this study led to an acceptable relationship
between SMC and remote sensing data [63]. The results of that research also indicate the
effect of NDWI on the estimation of humidity from satellite data, which is comparable
with the results of the research [63]. The results of this research confirm the possibility
of using the reflection and thermal data of the L8 satellite as an indirect method with
acceptable accuracy to estimate soil surface moisture and regular 16-day monitoring of
this important hydrological parameter. The results agree with the findings of [64–66].
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Higher values of the NDVI index indicate higher vegetation density [67,68]. The model
XGBoost MNDWI is a more sensitive index than NDWI for estimating SMC, similar to
results achieved in other studies [69]. Previous studies have shown that SMC has a positive
and significant relationship with the NDVI index [70–72]. Ref. [73] stated that auxiliary
data and optical data have a high impact on SMC estimation. optical remote sensing can
only capture canopy reflectance and has limited ability to penetrate crops, which means
that it obtains information on crops rather than soil in croplands. However, it is possible to
estimate soil moisture from optical satellite imagery through the physical mechanism of
vegetation response to soil moisture. Vegetation responds to changes in soil moisture by
altering its biophysical properties, such as leaf area index, canopy cover, and vegetation
water content. This leads to changes in the reflectance of different spectral bands captured
by optical sensors. For instance, in the near-infrared (NIR) spectral region, vegetation
reflectance decreases as soil moisture increases due to increased canopy cover and water
absorption. Conversely, in the shortwave infrared (SWIR) spectral region, vegetation
reflectance increases as soil moisture increases due to increased water content in the leaves.
By using machine learning algorithms that take into account the relationships between
vegetation biophysical properties and soil moisture, it is possible to estimate soil moisture
from optical satellite imagery. However, it is important to note that the accuracy of these
estimates may be affected by factors such as scan time, atmospheric conditions, and the
type of vegetation and soil present in the study area. It is also worth mentioning the high
impact of vegetation index from feature importance analysis. As mentioned in the paper,
Section 2.2, the fields had sparse crop cover at the time of sampling, which might have
lessened the impact of active evapotranspiration on the soil moisture retrievals. However,
it is still important to note that acquisition time can affect the thermal equilibrium and
therefore impact the accuracy of soil moisture retrievals, especially in areas with denser
vegetation cover.

It has several limitations, including:

a. The study only focuses on a specific region, i.e., Golestan province, north of Iran,
which may limit the generalizability of the findings to other regions with different
soil and vegetation characteristics.

b. The study used only optical satellite imagery, which may not be optimal for estimating
soil moisture content, especially in areas with dense vegetation cover or cloud cover.
Other types of satellite imagery, such as microwave or thermal infrared, could provide
complementary information and improve the accuracy of soil moisture estimates.

c. The study used a limited number of machine learning algorithms and feature se-
lection techniques, which may not capture the full complexity of the soil moisture
estimation problem.

d. The study did not consider the irrigation practices, or other factors that could affect
soil moisture dynamics in the region.

e. To minimize the impact of active evapotranspiration on the soil moisture retrievals,
this study conducted sampling in cropland areas when fields had sparse crop cover,
and utilized the relevant satellite data. While this approach was suitable for the goal
of studying the impact of drainage, it may not be recommended for temporal studies,
particularly when the crop cover is dense.

Overall, while the study provides useful insights into the potential of satellite-based
soil moisture estimation in croplands, it is important to consider the limitations and un-
certainties associated with the findings. Further research is needed to validate the results
and explore the potential of other satellite imagery and machine learning techniques in
improving the accuracy and generalizability of soil moisture estimates.

4. Conclusions

SMC varies spatially and temporally and plays an important role in the climatic,
agricultural, and hydrological sectors. This study sought to find a relationship between
the L8 and S2 satellite reflectance data and the SMC. To estimate the SMC from space, the
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correlation between satellite data and the SMC obtained by field sampling in July was
investigated. Based on the obtained results, among the sixteen predictor variables of the
first and second groups, B3, B5, B8, B7, and B12 involved in the validation, nine variables
(NDWI, MNDWI, NDVI, NDSI, EVI, SI, SAVI, B8, B3 changes in humidity variables) are
most responsive. Our results demonstrate a high and rather similar correlation between the
spectral indices and the measured SMC values for both S2 and L8 data. The EDT regression
algorithm yielded the highest accuracy with an R2 = 0.82, MAE = 3.74, and RMSE = 1.08 for
S2, and an R2 = 0.88, RMSE = 2.42, and MAE = 1.08 for L8, respectively. The results also
revealed that the moisture indices MNDWI and NDWI are the most sensitive predictor
variables for predicting the SMC. Moisture indices led to the highest correlation in the four
investigated regression algorithms (RF, SVR, XGBoost, and ETD). Finally, this degree of
correlation between surface SMC data and satellite images reveals sufficient accuracy and
confirms the utility of using such indicators for SMC mapping applications with extensive
spatial coverage. After the development of the final regression model, it is possible to
process satellite imagery and obtain SMC maps over larger areas.
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