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Abstract: In recent years, advancements in remote and proximal sensing technology have driven
innovation in environmental and land surveys. The integration of various geomatics devices, such
as reflex and UAVs equipped with RGB cameras and mobile laser scanners (MLS), allows detailed
and precise surveys of monumental trees. With these data fusion method, we reconstructed three
monumental 3D tree models, allowing the computation of tree metric variables such as diameter
at breast height (DBH), total height (TH), crown basal area (CBA), crown volume (CV) and wood
volume (WV), even providing information on the tree shape and its overall conditions. We processed
the point clouds in software such as CloudCompare, 3D Forest, R and MATLAB, whereas the
photogrammetric processing was conducted with Agisoft Metashape. Three-dimensional tree models
enhance accessibility to the data and allow for a wide range of potential applications, including the
development of a tree information model (TIM), providing detailed data for monitoring tree health,
growth, biomass and carbon sequestration. The encouraging results provide a basis for extending the
virtualization of these monumental trees to a larger scale for conservation and monitoring.

Keywords: data fusion; mobile laser scanner; UAV; photogrammetry; monumental tree; tree metrics;
3D chestnut models; LiDAR

1. Introduction

Over the past two decades, innovation played a major role in the evolution of envi-
ronmental and land surveys due to the fast advancement in both devices and processing
technology [1]. The new techniques involve both remote and proximal sensing. On the
one hand, remote sensing allows researchers to gather data from afar, avoiding physical
access to the site. This permits affordable surveys even in locations with limited or no
accessibility [2]. Furthermore, remote applications allow for the retrieval of data across var-
ious spatial scales, from local sizes [3,4] to entire regions [5] and even global surveys [6,7].
On the other hand, proximal sensing devices are placed directly on or closely to the area
being surveyed, allowing researchers to gather highly detailed and accurate data to be
used to monitor changes over time. The combination of such technologies has promoted
more comprehensive surveys, opening new opportunities and perspectives for integrated
research activities.

All the data fusion methods combine data from multiple sources to produce a more
comprehensive view of a scene, attempting to overcome measurement and sampling
processes which impose limitations on the amount of information that can be extracted
from a specific dataset [8]. Geomatic data fusion techniques allow the development of
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new effective conservation and management strategies enhancing the understanding of
the processes affecting the biotic components of ecosystems. A combination of Light
Detection and Ranging (LiDAR) outputs and optical imagery was applied in different
areas, including but not limited to registration, generation of orthophotographs, image
pan-sharpening, classification, 3D reconstruction, forest inventory and land use/land cover
classification [9,10].

A synergy between forestry and geomatics can shed new light in the comprehension
of partially unrevealed natural dynamics. Data fusion among the various outputs of LiDAR
and photogrammetry technologies allows researchers to observe plot-level forest structure
alterations and attributes (i.e., mean DBH, individual height, stem density, basal area,
volume) [11,12] and can be even used to monitor phenological changes such as the growth
of branches and leaves on single trees [13]. For instance, a study estimated the forest
above-ground biomass integrating airborne and terrestrial laser scanners (ALS and TLS)
with multispectral images [14], while others used the ALS in combination with mobile laser
scanners (MLS) to explore the impacts of canopy cover on tree attribute estimation [15].
A recent study demonstrated the integration of geomatic devices for assessing the effect
of vegetation burning, exploring how the combined use of ALS and MLS can provide
post-fire forest structure assessment [16]. Other studies reported that it is possible to predict
tree-specific wood quality indicators [17] or estimate above-ground biomass [18] fusing
ALS and TLS. Nowadays, several tools are available to process point cloud data in the
forestry field; R and MATLAB are dedicated to statistical inferences and validations, 3D
Forest is a suite for tree parameters extraction; and CloudCompare or Agisoft Metashape
are designed for the management and processing of 3D point clouds [19].

The use of these technologies has greatly improved the ability to understand and moni-
tor the dynamics of forests and individual trees and widened the spectrum of opportunities
for forest analysis and management. MLS uses a LiDAR unit to generate detailed point
clouds of the surveyed area, with the position of each point in the cloud being recorded
according to the device’s relative reference system. Moreover, these devices are usually
lightweight, providing new opportunities in the field of forestry. Due to their compactness,
easy handling and friendly operating in various environments, MLSs are a useful tool for
collecting detailed and accurate data on the structure of trees and forests, especially in
areas with difficult access or where traditional survey techniques may not be practical [20].
The laser beam shot below the tree canopies is often concealed in summer by leaves and
it does not allow the accurate detection of the tops of individual trees [21], making the
tree height estimation uncertain. Therefore, it is advisable to fuse different acquisition
procedures to overcome the devices’ limitations and to take advantage of their strengths.
Some authors used aerial photogrammetry to enhance forest inventory data content and to
update the forest inventory frameworks, being cost-effective and providing different data
if compared with other laser devices [22,23]. Indeed, through an unmanned aerial vehicle
(UAV) equipped with cameras, it is possible to capture high-resolution images of the upper
part of the canopy and generate it through photogrammetry, obtaining an UAV dense cloud.
The combination of UAV dense clouds with MLS point clouds results in a complete 3D tree
model used to extract tree metric data, such as diameter at breast height (DBH), total height
(TH), crown basal area (CBA), crown volume (CV) and wood volume (WV). Furthermore,
to provide a virtual preservation method, the 3D tree model is also integrated with trunk
reconstruction performed with Structure from Motion (SfM) techniques with a close-range
device, a single-lens reflex (SLR) camera that provided a colored SLR dense cloud of the
trunk. Finally, the 3D tree model is obtained from the fusion of UAV and SLR dense clouds
and the MLS point cloud.

According to the national law, monumental trees may be defined upon distinct criteria
such as: exceptional shape or large size, old age, cultural heritage value and genius
loci [24,25]. Monumental trees may have exceptional conservation value and notable
cultural, botanical or ecological importance [26–28], and need to be monitored and studied
thoroughly, being threatened by climate change and related disturbances [29–31]. Some
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of these trees in the Marche region (Central Italy) occur in traditional chestnut groves, a
staple of the rural/mountain landscape and local economy, providing edible fruits and
many other non-wood forest products for centuries. Here, we describe a successful fusion
approach with MLS and SfM outputs for the analysis and monitoring of monumental trees
for their valorization and long-term conservation in the framework of ongoing regional and
national networks (AMI, Italian Monumental Trees). In order to efficiently plan inventories
or monitoring, it is important to collect these data [32,33] throughout the years, providing
useful information about their health status and to ensure a proper management. The
possibility of using new methodologies such as the one proposed here, which limit the
operators’ subjectivity, allows for 3D tree models, providing useful information to estimate,
for instance, the tree carbon sequestration potential [34]. This innovative approach makes
the field measurements more objective and replicable, with the aim of the conservation of
monumental trees. There is indeed growing interest on the assessment of ecosystem services
and their payment (PES) provided by agro-silvo-pastoral elements and landscapes [24,35].
This is true in particular for monumental trees, given their high ecological and socio-cultural
value [36–38].

In this paper, we aimed to generate 3D tree models of three monumental chestnut trees
(Castanea sativa Mill.) through a geomatic data fusion approach, in both leaf-on and leaf-off
phenological phases, to estimate their main structural parameters through the computation
of tree metric data.

2. Materials and Methods
2.1. Monumental Tree Locations and Features

The monumental chestnut trees (MT1, MT2, MT3) selected for our experiment are
located within a traditional chestnut orchard in the southern Marche region (Central Italy)
(Figure 1). All trees have a DBH greater than 143 cm, the minimum legal threshold to
consider chestnuts monumental trees [36].
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Figure 1. Study area location and a view of the three monumental chestnut trees in the winter season.

Traditional chestnut orchards usually have a low tree density to favor fruit production,
and the target trees were selected both for their architecture and accessibility. These
monumental trees are located at a suitable distance from other trees, making the complex
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architecture (trunk, limbs and branches) detectable with most of the instruments used.
They were first mapped and then measured both during the summer, when the trees were
in full vigor with foliage on, and in winter without foliage, with their wood framework
better detectable by the geomatic devices used.

2.2. Geomatic Devices Surveys

We conducted the surveys in both seasons on all trees using the same data acquisition
methods. We applied an ad hoc workflow to generate our 3D tree models including
field data collection, followed by processing and georeferencing of the devices’ outputs in
separate software programs, enabling us to merge the resulting files (Figure 2).
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Figure 2. Complete workflow of the experiment; the data collection with passive (images) and
active sensors (LiDAR) and georeferencing with GNSS or Total Station coordinates. The data pro-
cessing with dedicated software produced the 3D tree models that allowed us to estimate main
structural parameters (DBH = diameter at breast heigh, WV = wood volume, H = total tree height,
CV = crown volume).

For the summer surveys, we used a Total Station (TOPCON GPT 7000) to acquire
several ground control points (GCPs) in a local reference system within the chestnut grove
when the trees were in full vigor and canopy and the satellite signals were not in touch
with the GNSS system. In the winter, with leaf-off trees, the satellite signal used by a GNSS
system was not reduced and we could also obtain georeferenced GCPs. The coordinates
were collected in WGS 84 UTM 33N, utilizing the HiPer VR Topcon GNSS antenna with
RTK method, with 1 cm of accuracy (https://www.topconpositioning.com/, accessed on
11 April 2023).

https://www.topconpositioning.com/
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Kaarta Stencil-2 is an MLS instrument equipped with a LiDAR unit (Velodyne VLP-
16) used to obtain the point clouds of our target trees. The Velodyne VLP-16 sensor is
equipped with multiple lasers, allowing us to scan a wide field of view (vertical field
of view of 30◦ and a horizontal field of view of 360◦) in a single pass. Kaarta Stencil-2
has an inertial motion unit which measures the acceleration and angular velocity of the
MLS instrument, allowing to accurately track its movement during the scan. An internal
processor was also used to process and analyze the data collected. The integration of
these three components permits a real-time localization [39] of the instrument during the
mapping of the surrounding environment, speeding up the survey time [40]. Kaarta Stencil-
2 belongs to the MLS units and therefore it is a lightweight device and it can be moved in a
handheld mode [1].

All around the three monumental chestnut trees we followed a circular path, and
the MLS device scanned the entire trees from multiple angles, allowing for the creation of
detailed MLS point clouds of the trees (Figure 3). All along the path, in clean areas, we
placed 3 highly reflective targets which were collected as GCPs with the Total Station or
the GNSS device. These targets are clearly visible in the MLS point clouds and therefore
they can be used to correctly scale and reference the datasets. We processed the raw MLS
point clouds data through the open source CloudCompare v2.13 software (http://www.
cloudcompare.org/, accessed on 15 February 2023) [41]. In the six surveys, thanks to the
CloudCompare tools, we manually removed all the points belonging to the surrounding
trees to obtain a clean MLS point cloud of each single monumental chestnut tree. This
operation was enhanced with both the “Cloth Simulation Filter” [42] and the “Statistical
Outlier Remover” [43,44] function in CloudCompare; the former was used to differentiate
the above-ground from the ground points, whereas the latter was used to remove the
acquisition phase noise points. After the normalization of the MLS point clouds, we
extracted the monumental trees’ height as the maximum point distance in the Z axis. In
the summer surveys, the LiDAR unit of the MLS is reflected by the dense canopies of the
monumental trees.
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Figure 3. (a) The MLS detection of a tree (MT1) surrounding and target in winter. (b) Top view of
the Kaarta Stencil-2 point cloud around one tree (black line) with the loop-closed trajectory. The line
color change is based on the trajectory time, with red at the beginning and white at the end. The blue
and green colors represent the points’ intensity obtained during the MLS point cloud acquisition.

The occlusion effect due to the leaves did not allow us to correctly scan the top of the
trees’ canopies [21,45] and thus the scans remain incomplete. By using a combination of

http://www.cloudcompare.org/
http://www.cloudcompare.org/
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manual and automated segmentation, we segmented the three MLS point clouds in “MLS
tree skeleton” and “MLS tree canopy”. The first includes the stem and main branches,
up to the canopy insertion point, whereas the second includes secondary branches and
leaves, to the highest point collected by the MLS. We segmented the MLS point clouds
using both CloudCompare and R software [46]. In CloudCompare, filters such as “number
of neighbors” and “verticality” were used to emphasize MLS point clouds’ geometric
features, such as the tree trunks and the crowns. Both filters are in the section Tools >
Other > Compute geometric features. The “Number of neighbors” filter estimates the
surface density by counting the number of N neighbors for each point within a sphere
of radius R [47], while the “verticality” one analyzes the surfaces verticality in a point
cloud. This filter helps to identify the orientation relative to the vertical axis by analyzing
the angles between it and the plane normals, and then it classifies the points according to
their verticality, enhancing the tree trunks [48]. Being highlighted by these filters, the user
can manually and randomly take portions of the MLS point clouds representing the tree
skeleton and the canopy and assign them the proper label. Indeed, these filters only assist
in identifying the tree skeleton and canopy but are unable to accurately separate the two
parts, given the complex tree structure. User intervention is required to select a sample of
points and classify them into one category or the other. Using linear discriminant analysis
(LDA) [49] within the ‘caret’ [50] package in R, which allows us to classify large amounts
of data quickly [51], the non-labeled points were classified based on the labeled points,
resulting in a fully segmented MLS point cloud. On the other hand, during the winter
surveys and with no leaves intercepting the LiDAR beam, we collected the monumental
tree in the leaf-off phase and, in post-processing, we removed the smaller twigs and limbs
always with the “Number of neighbors” and “verticality” filters. The resulting MLS point
clouds represent the actual MLS tree skeletons, which can then be used to extract the WV.

The three monumental trees have a complex structure and a wide crown, being par-
tially isolated from the other trees in the chestnut grove. This partial isolation allowed the
MLS to properly scan the entire tree structure in the leaf-off phenological phase. In summer,
however, to obtain the complete structure, fusion with the UAV dense cloud was neces-
sary. We used a DJI Mavic Mini drone (https://www.dji.com/nl/mavic-mini, accessed
on 11 April 2023) to acquire different nadiral RGB images. This UAV has a 1/2.3” CMOS
sensor with 12 MP and a f/2.8 aperture with electronic shutter. Its takeoff weight is 249 g
and the maximum speed is between 8 and 13 m/s. We set the flight at 30 m above the
ground, and in the summer surveys, the upper part of the canopies were generated with the
SfM algorithm [52]. This involves capturing a series of overlapping images of the surveyed
object from different viewpoints. We carried out the photogrammetric approach on the
Agisoft Metashape Professional (AMP) software version 1.8.4 (https://www.agisoft.com/,
accessed on 10 April 2023). With the UAV surveys, we collected 71 images for MT1, 94 im-
ages for MT2 and 60 images for MT3. During the SfM process, we utilized GCPs to align
the images, resulting in the successful generation of UAV dense clouds for the canopy tops
of the monumental trees.

Moreover, to generate the dense clouds of the monumental trees’ trunks, in the winter
surveys, we used a SLR Sony Alpha77 camera as a close-range photogrammetry device.
The results are a high-definition SLR dense clouds of the trunks, which have pronounced
buttresses and visible cankers reconstructable by close-range photogrammetry. The oper-
ators made two circular paths all around the monumental trees, also shooting the GCPs
placed close to the trunks to collect useful overlapping images. We acquired 63, 78 and
96 frames (respectively, for MT1, MT2 and MT3) which were put together to generate the
three SLR dense clouds up to the level of the first main branches. We generated the SLR
dense clouds and the UAV dense clouds with AMP software (Figure 4), using the “Estimate
image quality” algorithm on the “Photos” menu just to discard the poor quality ones. We
set the “high” accuracy in the alignment phase, leaving 40,000 key points and 4000 tie
points as default. Afterwards, we optimized the resulting sparse point clouds with the
“gradual outlier selection” process and through the guided marker positioning systems,

https://www.dji.com/nl/mavic-mini
https://www.agisoft.com/
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we scaled the point clouds. We generated the dense clouds using the “high” quality and
both the “aggressive” and “mild” filtering modes. We preferred the latter to preserve the
smallest details in the SLR surveys, while the aggressive one had been used in the UAV
surveys, where conservation of the smaller details was unnecessary [53].
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Figure 4. Detailed view of the MT2 dense clouds obtained through the AMP software. (a) SLR
dense cloud representing the monumental trunk with pronounced buttresses and visible defects and
(b) the UAV dense cloud representing the canopy top which was not detectable with the MLS in the
summer survey.

The point–pair registration of the point clouds obtained through LiDAR and pho-
togrammetry results in a sub-decimeter level of accuracy. The goal of point–pair regis-
tration is to determine a transformation matrix which enables the conversion of point
clouds acquired by different sensors into a common coordinate system [54]. Both the
photogrammetric dense clouds and the MLS point cloud were thus co-registered with the
GCPs that were used to compute the errors. The MLS residuals of observation were within
the tolerance of the instrument’s declared precision and were computed in CloudCompare.
The photogrammetric residuals of observation were computed with the reprojection error
directly by the AMP software.

The GCPs collected during the MLS, UAV and SLR surveys made it possible to
correctly align and fuse the different point clouds of the monumental trees and to obtain
the 3D tree models.

2.3. Point Clouds Processing

We developed a semi-automatic procedure for tree metric data extraction and tree
volume computation. Through the “Cross section” tool, in CloudCompare, we sliced our
SLR dense clouds at 1.30 m and then we exported this tree portion as a single point cloud
to determine the DBH. With the slice’s contour we generated a polyline and, with the
“PoissonRecon” plugin, we reconstructed the mesh [55] and then we computed its area
using the “measure the surface” command in CloudCompare. Assuming that the slices
had a circular shape, each DBH was determined using the reverse formula. Once we had
merged the MLS point cloud with the UAV and SLR dense clouds, we exported the 3D
tree model of each monumental tree in a .pcd file format with CloudCompare and then we
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imported it in 3D Forest open source software [56,57] (https://www.3dforest.eu/, accessed
on 10 April 2023). The latter enabled the extraction of various tree parameters, including
the TH and the CBA, by using an orthogonal projection into a plane and applying the
concave hull algorithm [58]. In order to determine the WV, we used the MLS tree skeletons
acquired during the MLS winter surveys. The AdQSM [59], a novel tree quantitative
structure model (QSM) which was originally developed to reconstruct 3D mesh from
terrestrial laser scanning devices [60,61], was applied to the MLS tree skeleton, enabling the
reconstruction of a mesh representing the 3D branch geometry. The AdQSM is based on the
combination of a point cloud segmentation and a voxel-based model, which allows for a
precise reconstruction of the tree structure [59,62]. The values of the “Height Segmentation”
and “Cloud Parameter” parameters were set to 0.50 and 0.003, respectively, in accordance
with the recommended values presented by the authors of the AdQSM. The exported tree
skeleton meshes were then imported into the CloudCompare software, and the WV was
computed through the mesh volume measurement method. Regarding the computation of
the CV, the “Alpha Shape” algorithm is a commonly used method in the literature for the
extraction of such features [63–65]. This algorithm performs a geometric reconstruction of
surfaces and it is based on the extraction of contours from a set of unordered points [64],
resulting in a mesh. The algorithm uses a parameter, referred to as “alpha”, to control the
number of points included within the enclosed polyhedron mesh. Therefore, the predefined
parameter “alpha” determines the level of the mesh [66]. Alpha ranges between 0 and
1, and decreasing its value leads to the inclusion of fewer points. This results in a more
detailed and smoother mesh, which is more realistic compared to meshes created using
close-to-1 alpha values [67,68]. The three MLS tree canopies fused with the UAV dense
clouds were processed in MATLAB [69] (educational license provided by our university),
using the Alpha Shape algorithm with an alpha value set at 0.25, resulting in three meshes.

3. Results

During the field survey, DBH was measured with a diameter–circumference tape,
obtaining the following values: MT1 = 166 cm, MT2 = 194 cm, MT3 = 145 cm. The following
tree height values were estimated by a laser hypsometer (TruPulse® 360B, Laser Technology
Inc., Centennial, CO, USA): MT1 = 18.5 m; MT2 = 21.2 m; MT3 = 24.5 m. The tree age of
MT1, MT2 and MT3, estimated using an increment borer, is at least 200 years.

The geomatic devices and the different tree phenological phases surveyed allowed us
to obtain 3D tree models to extract accurate tree metric data. Table 1 indicates the errors
of the SfM process in meters and pixels for both the creation of SLR dense clouds and the
generation of the UAV dense clouds. Table 2 displays the errors in meters of the MLS point
clouds’ registration process for both winter and summer surveys, as well as the acquisition
time and trajectory length for each survey.

Table 1. SfM errors in both meters and pixels for the three monumental tree surveys using UAV and
SLR cameras.

Tree ID Device Output Error [m] Error [pix]

MT1 SLR Sony Alpha77 SLR dense cloud 0.007465 6.576
MT2 SLR Sony Alpha77 SLR dense cloud 0.007528 7.669
MT3 SLR Sony Alpha77 SLR dense cloud 0.007391 4.384

MT1 DJI Mavic Mini UAV dense cloud 0.068557 0.731
MT2 DJI Mavic Mini UAV dense cloud 0.029017 0.555
MT3 DJI Mavic Mini UAV dense cloud 0.078677 0.910

https://www.3dforest.eu/
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Table 2. Errors in meters, scan time and trajectory length of the MLS point clouds in both winter and
summer surveys.

Tree ID Season Errors [m] Scan Time
(h:m:s)

Trajectory
Length [m]

MT1 Summer 0.045934 00:04:13 155.8
MT2 Summer 0.070326 00:02:23 103.5
MT3 Summer 0.038402 00:04:08 180.8

MT1 Winter 0.055897 00:04:32 190.6
MT2 Winter 0.056023 00:05:10 176.8
MT3 Winter 0.021010 00:03:46 121.4

3D Models and Tree Metrics Data Extraction

The geomatic data fusion approach we used here provided 3D tree models (Figure 5).
The resulting 3D tree models are the final products of the fusion process, from which we
extracted various tree metrics.
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fusing SLR dense cloud, MLS point cloud and UAV dense cloud.

After obtaining the meshes of three SLR dense cloud slices (Figure 6), we computed
the related DBHs. Our procedure revealed that the DBH of the MT1 trunk was 164 cm,
the MT2 trunk was 187 cm and the MT3 trunk was 148 cm. The mean absolute difference
between the traditional and proposed methods corresponded to 4 cm, equal to a mean
percentage difference of 2.3%.
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Figure 6. Mesh of the DBH sections from the SLR dense clouds in the three monumental trees (MT1,
MT2 and MT3).

Importing the three 3D tree models into 3D Forest provided the following measures:
TH MT1 = 18.75 m; TH MT2 = 19.57 m; TH MT3 = 23.18 m; CBA MT1 = 258.67 m2; CBA
MT2 = 198.55 m2; CBA MT3 = 156.46 m2 (Figure 7). The mean absolute difference between
the traditional and proposed methods for TH corresponded to 1.07 m, equal to a mean
percentage difference of 4.8%.
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Figure 7. The 3D Forest output of the three 3D tree models (MT1, MT2 and MT3) with the TH (m)
and the CBA (m2).

Using the mesh reconstructed through the AdQSM thanks to the MLS tree skeletons
surveyed with the MLS winter surveys (Figure 8), we measured the standing WV of the
three monumental trees: MT1, MT2 and MT3. The mesh was reimported into Cloud-
Compare as an .obj file and we computed the WV through the mesh volume computation
function. The WV values were 39.83 m3, 41.63 m3 and 39.05 m3, respectively.
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Figure 8. Mesh representation of the three MLS tree skeletons in the winter surveys (MT1, MT2 and
MT3) by AdQSM (visualization in CloudCompare).

Thanks to the three crown meshes reconstructed (Figure 9), we estimated the following
CWs of the three 3D tree models (MT1, MT2 and MT3): 328.39 m3, 393.31 m3 and 406.48 m3,
respectively.
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Figure 9. The three crown meshes reconstructed with the alpha shape (α: 0.25) algorithm.

4. Discussion

Our geomatic data fusion approach for the detection and modeling of three monumen-
tal chestnut trees allowed the tree metrics estimation of the three individuals. Moreover, the
3D tree models obtained are useful datasets to be preserved over time. The 3D tree models
are the final products of the fusion and therefore they have to be considered as a result in
our paper. They provide a representation useful for monitoring the evolution and decay
of the trees, and they can be shared with different users and various software or digital
visualizers [70]. Our data fusion approach combining point clouds from ground-based
devices with the output of UAV equipped with RGB cameras allowed us to overcome the
single device survey limitations, as several authors have pointed out [23,71,72]. In addition,
the three monumental trees have peculiar structures and their modeling required us to
integrate heterogeneous data from different sources [73].
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Our modeling results are comparable with the DBH and the TH obtained in the field by
traditional measurements. Another study demonstrated that the combination of UAV used
for aerial photogrammetry with point clouds obtained by LiDAR can be used to generate
a single 3D model of the forest study area with a precision equal to 3 cm [74]. Similarly,
the use of close-range photogrammetry for sparse point cloud generation shows that the
parameters extracted from the 3D Forest models have an accuracy greater than 90% [75].
In a previous work [76], close-range photogrammetry generated dense and accurate point
clouds suitable for DBH estimation, reaching an RMSE interval from 4.41 cm to 5.98 cm. In
our case, traditional field measurements of DBH and especially TH could be biased by the
large size and the complex canopy structure, favoring the application of UAV surveys for
the accurate detection of the canopy top. However, different papers showed the reliability
and accuracy of the SfM approach in measuring tree trunk diameters and TH [77–79].

Usually, the estimation of CV and WV is conducted with tree/forest yield tables, but
they are unsuitable for irregular structures, such as the monumental trees [80]. We com-
puted the WV by using AdQSM and, in the literature, this computation achieved an rRMSE
of 32.78% in [62] and of 49.40% in [81]. AdQSM enables a comprehensive understanding of
the trees’ structure, as confirmed by another study that used this algorithm to extract forest
structure parameters and demonstrated its usefulness in studying forest windbreaks [82].
However, even if it proved to be an effective method to model the complex and highly
variable structure of monumental trees, the resulting meshes do not take into account the
presence of trunk cavities, hollows and breakages and therefore the WV must be intended
as the volume occupied by the tree rather than the actual amount of wood.

Regarding the CV, several authors have demonstrated the widespread use of the Alpha
Shape algorithm for the computation of CV in the literature [66,83–85]. We selected the
alpha value based on the results obtained from other authors. The authors of [67] used an
alpha of 0.25, obtaining R2 = 0.84 in the CV computation, while the authors of [86] obtained
R2 = 0.87 in their paper.

The heterogeneity of the datasets can be managed for updating and visualizing 3D
tree models as a first step for a tree information model, extending the concept of the better-
known building information model. These types of datasets, in the near future, could be
associated with other arboricultural field observations, creating a multi-scale tree decision
support system [87]. Inclusive and updated information, such as the ones presented, would
be of great support, especially in urban forestry and landscape restoration, where the role of
individual trees is of increasing importance for their adaptive management and the supply
of multiple ecological services in the cities and in rural landscapes [88].

5. Conclusions

The combination of geomatic techniques (MLS, UAV and SLR photogrammetry) al-
lowed us to overcome some instrumental limitations and to create 3D tree models. The
3D tree models of three monumental trees enhanced the data access and increased the
range of potential applications. In this case, we utilized these 3D tree models to extract
metric data that are difficult to measure directly in the field using traditional methods.
Our results, along with replication on other specimens in various conditions, provide a
basis for extending the virtualization of these monumental trees to landscape or regional
scale. This can induce monitoring for the conservation of these important habitat trees, by
providing a comprehensive database, a sort of a “Monumental Trees Network” (given the
existing list of regional and national inventories). Moreover, this type of dataset can also be
used as training for artificial intelligence algorithms or virtual reality studies, enhancing
the possibilities and the knowledge associated with the agroforestry sector and to the
ecosystems services provided by the monumental individuals. In conclusion, the proposed
methodology needs to be extended to other monumental trees, training the algorithms on
different tree species, dimensions and physiognomy.
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Wielgus, K. Biotic and abiotic factors causing the collapse of Robinia pseudoacacia L. veteran trees in urban environments. PLoS
ONE 2021, 16, e0245398. [CrossRef]

30. Lonsdale, D. Review of oak mildew, with particular reference to mature and veteran trees in Britain. Arboric. J. 2015, 37, 61–84.
[CrossRef]

31. Jacobsen, R.M.; Birkemoe, T.; Evju, M.; Skarpaas, O.; Sverdrup-Thygeson, A. Veteran trees in decline: Stratified national
monitoring of oaks in Norway. For. Ecol. Manag. 2023, 527, 120624. [CrossRef]

32. Maravelakis, E.; Bilalis, N.; Mantzorou, I.; Konstantaras, A.; Antoniadis, A. 3D modelling of the oldest olive tree of the world.
Antoniadis/Int. J. Comput. Eng. Res. 2012, 2, 2250–3005.

33. Krebs, P.; Koutsias, N.; Conedera, M. Modelling the eco-cultural niche of giant chestnut trees: New insights into land use history
in southern Switzerland through distribution analysis of a living heritage. J. Hist. Geogr. 2012, 38, 372–386. [CrossRef]

34. Velasco, E.; Chen, K.W. Carbon storage estimation of tropical urban trees by an improved allometric model for aboveground
biomass based on terrestrial laser scanning. Urban For. Urban Green. 2019, 44, 126387. [CrossRef]

35. Achim, A.; Moreau, G.; Coops, N.C.; Axelson, J.N.; Barrette, J.; Bédard, S.; Byrne, K.E.; Caspersen, J.; Dick, A.R.; D’Orangeville, L.
The changing culture of silviculture. Forestry 2022, 95, 143–152. [CrossRef]

36. Farina, A.; Canini, L. Alberi Monumentali D’Italia; MASAF, Rodorigo Editore: Roma, Italy, 2013; ISBN 9788899544348. Available
online: https://www.politicheagricole.it/flex/cm/pages/ServeBLOB.php/L/IT/IDPagina/13577 (accessed on 7 March 2023).

37. Cousseran, F. Guide des Arbres Remarquables de France; Edisud: St Rémy de Provence, France, 2009; ISBN 2744908215.
38. Croft, A. Ancient and Other Veteran Trees: Further Guidance on Management; Ancient Tree Forum: London, UK, 2013.
39. Chang, L.; Niu, X.; Liu, T.; Tang, J.; Qian, C. GNSS/INS/LiDAR-SLAM integrated navigation system based on graph optimization.

Remote Sens. 2019, 11, 1009. [CrossRef]
40. Ullrich, A.; Pfennigbauer, M. Advances in lidar point cloud processing. In Proceedings of the Laser Radar Technology and

Applications XXIV, Baltimore, MD, USA, 16–17 April 2019; SPIE: Bellingham, WA, USA, 2019; Volume 11005, pp. 157–166.
41. CloudCompare v2.13 Software. Available online: http://www.cloudcompare.org/ (accessed on 15 February 2023).
42. Sun, J.; Zhang, Z.; Long, B.; Qin, S.; Yan, Y.; Wang, L.; Qin, J. Method for determining cloth simulation filtering threshold value

based on curvature value of fitting curve. Int. J. Grid Util. Comput. 2021, 12, 276–286. [CrossRef]
43. Zhang, Y.; Wu, H.; Yang, W. Forests growth monitoring based on tree canopy 3D reconstruction using UAV aerial photogrammetry.

Forests 2019, 10, 1052. [CrossRef]
44. Salehi, M.; Rashidi, L. A Survey on Anomaly detection in Evolving Data: [with Application to Forest Fire Risk Prediction]. ACM

SIGKDD Explor. Newsl. 2018, 20, 13–23. [CrossRef]
45. Gollob, C.; Ritter, T.; Wassermann, C.; Nothdurft, A. Influence of scanner position and plot size on the accuracy of tree detection

and diameter estimation using terrestrial laser scanning on forest inventory plots. Remote Sens. 2019, 11, 1602. [CrossRef]

https://doi.org/10.3389/fenvs.2022.949442
https://doi.org/10.1016/j.rse.2019.111474
https://doi.org/10.1016/j.rse.2019.111309
https://doi.org/10.1016/j.jag.2021.102512
https://doi.org/10.5194/isprs-archives-XLIII-B1-2020-227-2020
https://doi.org/10.3390/f7060127
https://doi.org/10.1007/s40725-019-00087-2
https://doi.org/10.1007/s40725-019-00094-3
https://doi.org/10.1016/j.foreco.2009.01.053
https://doi.org/10.1007/s10531-020-02033-2
https://doi.org/10.1002/ece3.3305
https://doi.org/10.1038/s41598-020-75723-0
https://doi.org/10.1371/journal.pone.0245398
https://doi.org/10.1080/03071375.2015.1039839
https://doi.org/10.1016/j.foreco.2022.120624
https://doi.org/10.1016/j.jhg.2012.01.018
https://doi.org/10.1016/j.ufug.2019.126387
https://doi.org/10.1093/forestry/cpab047
https://www.politicheagricole.it/flex/cm/pages/ServeBLOB.php/L/IT/IDPagina/13577
https://doi.org/10.3390/rs11091009
http://www.cloudcompare.org/
https://doi.org/10.1504/IJGUC.2021.117849
https://doi.org/10.3390/f10121052
https://doi.org/10.1145/3229329.3229332
https://doi.org/10.3390/rs11131602


Remote Sens. 2023, 15, 2197 15 of 16

46. R Development Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing; 2013;
ISBN 3-900051-07-0. Available online: http://www.R-project.org/ (accessed on 11 April 2023).

47. Hamal, S.N.G.; Ulvi, A. 3D modeling of underwater objects using photogrammetric techniques and software comparison.
Intercont. Geoinf. Days 2021, 3, 164–167.

48. Hristova, H.; Abegg, M.; Fischer, C.; Rehush, N. Monocular Depth Estimation in Forest Environments. Int. Arch. Photogramm.
Remote Sens. Spat. Inf. Sci. 2022, 43, 1017–1023. [CrossRef]

49. Balakrishnama, S.; Ganapathiraju, A. Linear discriminant analysis-a brief tutorial. Inst. Signal Inf. Process. 1998, 18, 1–8.
50. Kuhn, M.; Wing, J.; Weston, S.; Williams, A.; Keefer, C.; Engelhardt, A.; Cooper, T.; Mayer, Z.; Kenkel, B.; R Core Team. Package

‘caret’. R J. 2020, 223, 7.
51. Zhu, M.; Martinez, A.M. Subclass discriminant analysis. IEEE Trans. Pattern Anal. Mach. Intell. 2006, 28, 1274–1286. [PubMed]
52. Zhang, W.; Shao, J.; Jin, S.; Luo, L.; Ge, J.; Peng, X.; Zhou, G. Automated marker-free registration of multisource forest point

clouds using a coarse-to-global adjustment strategy. Forests 2021, 12, 269. [CrossRef]
53. Tinkham, W.T.; Swayze, N.C. Influence of Agisoft Metashape parameters on UAS structure from motion individual tree detection

from canopy height models. Forests 2021, 12, 250. [CrossRef]
54. Zhang, Y.; Qiao, D.; Xia, C.; He, Q. A Point Cloud Registration Method Based on Histogram and Vector Operations. Electronics

2022, 11, 4172. [CrossRef]
55. Kazhdan, M.; Chuang, M.; Rusinkiewicz, S.; Hoppe, H. Poisson surface reconstruction with envelope constraints. In Computer

Graphics Forum; Wiley Online Library: Hoboken, NJ, USA, 2020; Volume 39, pp. 173–182.
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