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Abstract: The infection of Apple mosaic virus (ApMV) can severely damage the cellular structure
of apple leaves, leading to a decrease in leaf chlorophyll content (LCC) and reduced fruit yield.
In this study, we propose a novel method that utilizes hyperspectral imaging (HSI) technology to
non-destructively monitor ApMV-infected apple leaves and predict LCC as a quantitative indicator of
disease severity. LCC data were collected from 360 ApMV-infected leaves, and optimal wavelengths
were selected using competitive adaptive reweighted sampling algorithms. A high-precision LCC
inversion model was constructed based on Boosting and Stacking strategies, with a validation set
R2

v of 0.9644, outperforming traditional ensemble learning models. The model was used to invert
the LCC distribution image and calculate the average and coefficient of variation (CV) of LCC for
each leaf. Our findings indicate that the average and CV of LCC were highly correlated with disease
severity, and their combination with sensitive wavelengths enabled the accurate identification of
disease severity (validation set overall accuracy = 98.89%). Our approach considers the role of plant
chemical composition and provides a comprehensive evaluation of disease severity at the leaf scale.
Overall, our study presents an effective way to monitor and evaluate the health status of apple leaves,
offering a quantifiable index of disease severity that can aid in disease prevention and control.

Keywords: hyperspectral imaging; apple leaves; apple mosaic virus; chlorophyll; ensemble learning

1. Introduction

Apple mosaic disease, caused by the apple mosaic virus (ApMV), is a common world-
wide occurrence [1]. Infection with ApMV results in damage to the cellular structure of the
mesophyll, manifesting as irregular yellowish- to cream-colored spots and streaks that may
progress along the leaf veins, forming a reticulate appearance [2]. This damage causes a
significant decrease in leaf chlorophyll content (LCC) [3], leading to reduced photosynthetic
capacity, premature abscission of leaves, severe yield reduction, and a shortened life span
of fruit trees [4]. Therefore, from this perspective, LCC serves as an important indicator
of plant health [5–7] and is essential for monitoring crop growth, evaluation quality, and
estimation yield [8].

LCC can be measured using traditional chemical methods or portable instruments.
However, the former methods are time-consuming, inefficient, and damage the leaves, mak-
ing them unsuitable for large-scale measurements. On the other hand, portable instruments
allow for rapid and non-destructive measurement of LCC at a single point on the leaf at a
specific time [9]. Nonetheless, this method is inadequate for measuring LCC in diseased
leaves because ApMV infection not only changes the LCC but also damages the structure
of the mesophyll tissue [10], leading to unevenly distributed LCC. Therefore, single-point
measurements cannot accurately determine the LCC of the entire leaf and its distribution,
making it challenging to evaluate the health status of the leaf as a whole [11,12]. Rapid and
accurate monitoring of LCC and distribution characteristics is vital to identify the disease
severity and disease prevention and control.
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Hyperspectral imaging (HSI) enables the acquisition of both spectra and images of a
target object, with each pixel containing highly rich spectral information [13]. This is the
only method that can quickly, accurately, and non-destructively obtain both image and
spectral information [14–16], making it advantageous and necessary for monitoring crop
pests and diseases at different scales and assessing the severity of diseases. Hyperspectral
imaging technology can obtain high-resolution, high-precision images of plants through
remote sensing, which enables the monitoring of large areas of farmland in a short period
without direct contact with plants. This greatly reduces the risk of disease transmission
and helps to quickly assess the health status of plants in the entire region. It provides more
complete and accurate information and can detect problems that may be difficult to detect
with the human eye. By analyzing the spectral characteristics reflected from the surface
of plants, it can accurately identify, locate, and classify different types of plant pests and
diseases, providing better control strategies for farmers or horticulturists. It also enables
the real-time monitoring of plant health status, as well as the early warning and diagnosis
of plant pests and diseases, reducing losses and lowering management costs [17,18]. For
instance, Abdulridha, et al. [19] constructed a radial basis function detection model for
citrus ulcer disease using unmanned aerial vehicle HIS combined with multiple vegetation
indices, achieving 100% classification accuracy when distinguishing between healthy and
ulcer-infected trees. In another study, Khan, et al. [20] used both texture and vegetation
indices to enhance the differences based on HSI and applied a partial least squares–linear
discriminant analysis model for the early detection of wheat yellow rust. Guo, et al. [21]
developed a model for the detection of wheat yellow rust by combining the spectral index
and texture features of unmanned aerial vehicle HSI, which enabled field-scale monitoring.
Additionally, Gao, et al. [22] utilized least squares–support vector machine to detect the
Cabernet Sauvignon vine leaf curl disease using HSI.

Despite prior extensive research, most studies on disease severity estimation using
visual methods only focused on image classification and recognition techniques, without
considering the role of different plant components. This omission limits the objectivity and
accuracy of their judgments. Therefore, more attention should be given to the different
components, as well as the physiological and biochemical parameters [23]. Hyperspectral
data have been used to invert plant physiological and biochemical parameters, such as
chlorophyll [24,25], anthocyanins [26,27], and water content [28,29]. Some scholars have
combined these parameters for disease detection. For example, Zhao, et al. [30] used HSI
inversion to determine the spatial distribution of chlorophyll and carotenoid in cucumber
leaves to visualize the severity of angular spot disease. Luo, et al. [31] assessed the severity
of maize dwarf mosaic disease and to distinguish diseased leaves from healthy leaves
through leaf anthocyanin content. Li, et al. [32] obtained inverse images of chlorophyll
distribution based on the HSI of lemon leaves with yellow vein clearing disease using mul-
tiple dimensionality reduction algorithms combined with a least squares–support vector
machine model. Analyzing these images provided a reference for a better understanding
of the symptoms of lemon yellow vein clearing disease. However, there has been little
research conducted on apple leaf diseases [33].

In this study, we combined HSI with machine learning methods to quantitatively invert
the LCC of ApMV-infected apple leaves. Then, we used LCC to identify the disease severity
of ApMV-infected apple leaves and explore the feasibility of quantitatively assessing the
disease severity of leaves based on the chlorophyll content at the leaf scale.

2. Materials and Methods
2.1. Leaf Sample Collection

Data collection was conducted on 23 July 2022 at an orchard in Wuquan Town,
Yangling District, Xianyang City, Shaanxi Province (108.010969◦E, 34.30475◦N). Thus,
30 apple trees were selected, from which 3 healthy and 9 infected leaves were collected
from each tree via visual inspection according to the rules in Table 1 (360 leaves in total).
All trees were ten-years-old, grown under the same irrigation and fertilization conditions,
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and infected only with ApMV. The location of the study area and sampled trees is shown
in Figure 1. All collected leaves were sealed in plastic bags and stored in a thermos with ice
packs to maintain their freshness for transport to the laboratory.
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Table 1. Degree of leaf disease and measurement area.

Disease Severity Percentage of Disease Spot Area Number of Measurements Measurement Area

health 0% 2 Two random uninfected areas

slight 0~25% 3 Two random uninfected areas
and one infected area

moderate 25~50% 3 One random uninfected area
and two infected areas

severe >50% 2 Two random infected areas

2.2. Data Acquisition
2.2.1. LCC Determination

The Dualex 4, an optical leaf analyzer developed by Force-A (Orsay, France), is capable
of accurate and non-destructive determination of LCC in real time [34]. The analyzer used
in this study can measure leaf chlorophyll content (LCC) within 1 s. The measurement
results are numerical values in µg/cm2, which are stored in the analyzer, and the data
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can be transferred to a personal computer via a USB cable. Following the rules outlined
in Table 1, the corresponding areas on all leaves were selected for measurement, and the
average of the measured values was taken as the chlorophyll content value of that leaf. In
this way, a total of 360 leaf chlorophyll content values were obtained.

2.2.2. Hyperspectral Image Acquisition

An SOC 710VP portable hyperspectral imager (Surface Optics Corp., San Diego,
CA, USA) was used to acquire hyperspectral images using built-in push-sweep spectral
imaging technology. This allowed for quick, convenient, and accurate acquisition of HSI
in the field. The system had a spectral range and resolution of 374.81–1042.15 nm and
4.6875 nm, respectively, with 128 bands and an imaging resolution of 696 × 520. The
hyperspectral imaging system included SOC 710VP, a standard gray panel, low-reflectivity
black cotton cloth, and a tripod. It was set up on the rooftop of the College of Resources
and Environment, Northwest A&F University, in an outdoor area with sunlight and no
shadows. HSIs were obtained under clear, windless weather conditions from 10:00 to 14:00
on 23 July 2022. Each leaf was placed horizontally on a black cotton cloth with a standard
gray panel, and HSIs were taken with the system pointing vertically downward onto the
leaves after focusing to obtain a clear image. The acquired hyperspectral images were
calibrated using SRAnalysis™ Version 3.0 software with the following calibration equation:

Rλ =
Iλ − Dλ

Wλ − Dλ
, (1)

where Rλ is the corrected image, Iλ is the original image, Dλ is the dark current image, and
Wλ is the reference plate image. Using the region of interest tool in ENVI 5.3 (Research
System Inc., Boulder, CO, USA), the average spectral reflectance of the chlorophyll mea-
surement location was extracted from the calibrated leaf image as the spectral data of the
leaf. A total of 360 spectral samples were obtained. The spectral reflectance of the leaf and
background in the hyperspectral image showed the greatest difference at 701.38 nm. Thus,
the binarized image at 701.38 nm was obtained via segmentation with a threshold of 0.25 in
MATLAB R2021b (MathWorks, Natick, MA, USA) to remove the background. Similarly,
the binarized image at 649.05 nm was segmented with a threshold of 0.15 to separate the
disease spots and calculate their areas.

2.3. Data Processing

To quantitatively assess the disease severity based on LCC, we established a method to
invert the LCC distribution of leaves based on HSI (Figure 2). First, we measured LCC and
calculated the percentage of diseased spot area using the threshold segmentation method.
Next, we preprocessed the extracted spectral reflectance to reduce the effect of environmen-
tal noise and selected the optimal wavelength combination using the competitive adaptive
reweighted sampling (CARS) algorithm. Additionally, we established a high-performance
Stacked–Boosting prediction model of LCC based on a Stacking and Boosting ensemble
learning strategy. We mapped the LCC distribution using the model and calculated the
average LCC for each leaf to analyze the correlation between LCC and disease severity.
Finally, we combined the average LCC with sensitive wavelengths for disease severity
identification.



Remote Sens. 2023, 15, 2202 5 of 19Remote Sens. 2023, 15, x FOR PEER REVIEW 5 of 19 
 

 

 
Figure 2. Flow chart for quantitative assessment of apple mosaic disease severity based on hyper-
spectral images. 

2.3.1. Spectral Data Pre-Processing 
External environmental factors during the spectral data acquisition can generate ran-

dom noise that affects prediction accuracy. Pre-processing spectral data is essential to re-
duce the impact of external factors to some extent. Therefore, we used the Savitzky–Golay 
(SG) algorithm to filter and denoise the raw spectral data. The SG algorithm effectively 
reduces the random noise in the spectral data, improving the data’s accuracy without dis-
torting the signal’s trend [35]. In this study, quadratic polynomial 15-point smoothing was 
selected for noise reduction in the spectral data, as it had a good noise reduction effect. 
Figure 3 shows the original spectral reflectance curve and the SG-filtered spectral reflec-
tance curve. The original spectral reflectance curve was noisy in the visible range greater 
than 750 nm and the near-infrared spectrum. In contrast, the SG-filtered spectral reflec-
tance curve effectively reduced the noise without changing the spectral reflectance curve’s 
trend. 

 
Figure 3. (a) Original spectral reflectance, and (b) Savitzky–Golay filtered spectral reflectance. 

2.3.2. Sample Split 
Different sample split algorithms can lead to varying results. Prior to building the 

model, we used the SPXY algorithm to split all 360 spectral samples into calibration (270 
samples) and validation (90 samples) sets at a 3:1 ratio for calibrating and validating the 

Figure 2. Flow chart for quantitative assessment of apple mosaic disease severity based on hyper-
spectral images.

2.3.1. Spectral Data Pre-Processing

External environmental factors during the spectral data acquisition can generate
random noise that affects prediction accuracy. Pre-processing spectral data is essential to
reduce the impact of external factors to some extent. Therefore, we used the Savitzky–Golay
(SG) algorithm to filter and denoise the raw spectral data. The SG algorithm effectively
reduces the random noise in the spectral data, improving the data’s accuracy without
distorting the signal’s trend [35]. In this study, quadratic polynomial 15-point smoothing
was selected for noise reduction in the spectral data, as it had a good noise reduction
effect. Figure 3 shows the original spectral reflectance curve and the SG-filtered spectral
reflectance curve. The original spectral reflectance curve was noisy in the visible range
greater than 750 nm and the near-infrared spectrum. In contrast, the SG-filtered spectral
reflectance curve effectively reduced the noise without changing the spectral reflectance
curve’s trend.
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2.3.2. Sample Split

Different sample split algorithms can lead to varying results. Prior to building the
model, we used the SPXY algorithm to split all 360 spectral samples into calibration
(270 samples) and validation (90 samples) sets at a 3:1 ratio for calibrating and validating
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the model, respectively. The SPXY algorithm was developed from the Kennard–Stone
algorithm, which considers all samples as candidates, selects the two samples with the
farthest sample distance, and then puts these two samples in the calibration set in turn
until reaching the set ratio. The SPXY method considers both the features and labels of the
samples when calculating the sample distances, ensuring that the samples in the calibration
set are evenly distributed according to the spatial distances. This approach effectively
covers the multidimensional vector space, improving the prediction ability of the proposed
model [36,37]. Table 2 shows the dataset split using the SPXY algorithm.

Table 2. Basic characteristics of the sample.

Sample Number of Samples Minimum (µg/cm2) Maximum (µg/cm2) Mean (µg/cm2) Standard Deviation

Calibration set 270 4.14 55.60 28.93 13.27
Validation set 90 6.30 53.62 35.42 13.21

Total 360 4.14 55.60 30.55 13.53

2.3.3. Feature Selection Method

Hyperspectral data contain a significant amount of redundant information that can
affect the model’s performance and prediction accuracy. In this study, we utilized the CARS
algorithm, an iterative statistical information-based variable selection algorithm based on
the Darwinian principle of “survival of the fittest”, to select characteristic wavelengths.
This method combines a partial least squares regression model using an adaptive weighted
sampling technique and exponential decay function to retain wavelengths with larger
absolute values of regression coefficients and remove features with smaller absolute values
of regression coefficients in the partial least squares regression model. It uses cross-checking
to filter the subset of variables with the smallest root mean square error in cross-validation
(RMSECV) as the optimal subset of variables [38,39]. We implemented the CARS algorithm
through the LibPLS v1.98 toolbox [40].

2.3.4. Spectral Sensitivity Index

Spectral sensitivity index (SI) can be used to express the difference in spectral re-
flectance between different leaves. The SI is calculated as follows:

SI =
RD − RH

RH
(2)

where RD is the spectral reflectance of leaves infected with ApMV, and RH is the average
spectral reflectance of the healthy leaves. Equation (2) shows that when SI > 0, the spectral
reflectance of diseased leaves is higher than healthy leaves at a certain wavelength. As SI
increases, the difference in spectral reflectance between diseased leaves and healthy leaves
is more significant and vice versa. Using SI to analyze sensitive wavelengths for disease
monitoring partially eliminates the influence of environmental noise on the spectra, making
the spectra of different disease severities more comparable, thus improving the accuracy of
monitoring [41].

2.3.5. Coefficient of Variation

The coefficient of variation (CV) is the ratio of the standard deviation of the data to the
average value. CV can eliminate the effect of average and compare the degree of variation
among different samples. The CV is calculated as follows:

CV =
σ

µ
× 100% (3)

where σ is the standard deviation of the sample, and µ is the the average of the sample. Data
variability is low when CV < 15, medium when 15 < CV < 35, and high when CV > 35 [42].
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CV can be used to express the complexity in LCC distribution, which reflects the degree of
dispersion of LCC distribution.

2.4. Modeling Method
2.4.1. Basic Models

In this study, seven machine learning models were selected as the base learners of
Stacked–Boosting models: classification and regression tree (CART), elastic network (EN),
Gaussian process regression (GPR), K-nearest neighbor regression (KNN), kernel ridge
regression (KRR), multilayer perceptron (MLP), and support vector machine regression
(SVR). Classification and regression tree (CART) is a prediction model that predicts the
value of an outcome variable based on other values. It partitions predictor variables into
branches, with each end node containing a prediction of the outcome variable. CART is
easy to understand and interpret, requires little data preparation, and handles large-scale
data very well [43,44]. The Elastic Network (EN) is a regularized regression method that
linearly combines the L1 penalty of the lasso method and the L2 penalty of the ridge
method [45]. It adds a regularization term to the loss function for fast training and has
simple parameters that prevent overfitting [46]. Gaussian Process Regression (GPR) is
a nonparametric Bayesian regression method that infers the probability distribution of
all possible values without being restricted by functional form [47]. GPR works well on
small datasets and provides predictive uncertainty measures. K-nearest neighbor algorithm
(KNN) is a simple, nonparametric supervised learning classifier that uses proximity to make
predictions for groupings of individual data points, making it sensitive to the local structure
of the data [48]. In regression problems, KNN uses the average of K-nearest neighbors
to predict continuous values. Ridge regression is a method for estimating coefficients of
a multiple regression model with highly correlated independent variables [45]. kernel
ridge regression (KRR) combines ridge regression with the kernel technique to learn linear
functions in the space induced by the corresponding kernel and data [49]. Multilayer
perceptron (MLP) is an artificial neural network that maps input vectors to output vectors.
It overcomes the limitation of perceptron by recognizing linearly indistinguishable data [50].
Support vector machine regression (SVR) uses support vectors from training samples
to design optimal decision boundaries. It is a nonlinear modeling method based on
statistical learning theory and can solve both linear and nonlinear regression modeling
problems [51,52].

2.4.2. Stacked–Boosting for Predictive Models

Stacking is an ensemble learning strategy, which fuses multiple models and typically
consists of two levels: level 0 with two or more base learners, and level 1 with a meta-
learner that combines the predicted values of base learners. The predicted values of each
base learner (Figure 4, P1–P6) are used as input features for the meta-learner [53,54]. At
level 0, algorithms with significant differences, in principle, are usually chosen as base
learners and cross-validated to train the models. At level 1, a model with better predictive
performance, stable performance, and strong generalization ability is typically selected
as a meta-model to incorporate the predictions from the base models. Compared to a
single machine learning model, Stacking models can combine the advantages of multiple
algorithms and exhibit stronger predictive and generalization capabilities [53].

Boosting is an ensemble learning strategy that can transform weak learners into
strong ones to improve the predictive performance of machine learning algorithms [54,55].
AdaBoost is a representative algorithm for Boosting integrated learning [56,57]. The core
idea of this algorithm is to modify the weight of each sample based on its regression
prediction error, pass the modified weights to the next learner for training, focus more
on poorly performing samples in the previous iteration of learning, and finally fuse the
weak learners obtained from each training stage into a strong learner. The weighted
average of the predictions is used as the final output, meaning the AdaBoost algorithm can
effectively improve the prediction accuracy of the base learner with less overfitting [53,58].
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The traditional AdaBoost algorithm usually uses CART as the base learner. In this study,
seven machine learning models were used as the base learners of AdaBoost to achieve
the Boosting ensemble of different models: classification and regression tree (CART),
elastic network (EN), Gaussian process regression (GPR), K-nearest neighbor regression
(KNN), kernel ridge regression (KRR), multilayer perceptron (MLP), and support vector
machine regression (SVR). These seven models differ significantly in principle, and the
better-performing model can be selected as the base learner of the Stacking model.

CatBoost is a decision-tree-based gradient-boosting machine learning method that
uses a symmetric decision tree as the base learner. This method employs ranking boosting
to combat noisy points in the calibration set, thus reducing the need for much hyperparam-
eter tuning, reducing the possibility of overfitting, improving the model generalizability,
avoiding bias in gradient estimation, and solving the problem of prediction bias, all of
which improve the model’s predictive and generalization capabilities [59,60]. Therefore,
the CatBoost model was selected as the meta-learner for the Stacking model in this study
(Figure 4).
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To maximize the use of limited samples and improve the prediction accuracy and
training efficiency, we used 5-fold cross-validation and Bayesian optimization to deter-
mine the hyperparameters of each model, which were implemented with the Scikit-learn
library [61] and Optuna library [62], respectively. The search range of hyperparameters for
each model is shown in Table 3.
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Table 3. Hyperparameter tuning range.

Models Hyperparameters and the Search Range

CART max_depth: (2~20)
EN alpha: (0.01~10), L1_ratio: (0~1)

GPR alpha: (1 × 10−10), n_restarts_optimizer: (1~50)
KNN weight: distance, n_neighbors: (1~10), p: (1~10)
KRR kernel: laplacian, alpha: (0.01~1)
MLP solver: lbfgs, hidden_layer_sizes: (0~100,0~100), learning_rate: (0.01~1)
SVR kernel: rbf, C: (1~10), gamma: (0.5~5)

AdaBoost base_estimator: (CART, EN, GPR, KRR, MLP, SVR), n_estimators: (1~100),
learning_rate: (0.01~1)

CatBoost task_type: GPU, iterations: (10~500), depth: (2~10),
learning_rate: (0.01~1), L2_leaf_reg: (1~50)

2.4.3. Model Evaluation Methodology

To evaluate the prediction accuracy and generalization ability of different models, the
coefficient of determination (R2), root mean square error (RMSE), and residual predictive
deviation (RPD) were calculated using the following formulas:

R2 =
n

∑
i=1

(ŷi − y)2/
n

∑
i=1

(yi − y)2 (4)

RMSE =

√
n

∑
i=1

(yi − ŷi)
2/n (5)

RPD =
stdev

RMSE
(6)

where yi is the measured value, y is the average of the measured values, ŷi is the predicted
value, n is the number of samples, and stdev is the standard deviation. The closer the R2

value is to 1, the smaller the RMSE and the higher the prediction accuracy of the model;
RPD greater than 2 indicates very good model prediction ability, RPD between 1.4 and 2
indicates average model prediction ability, and RPD less than 1.4 indicates poor predictive
power in the model [63].

Overall accuracy (OA) and Kappa coefficients were used to assess the accuracy of
identification of disease severity. The specific formulas for OA and Kappa were calculated
as follows:

OA =
TP + TN

TP + TN + FP + FN
(7)

Kappa =
OA − pe

1 − pe
(8)

pe =
C

∑
i=1

TPi + FNi + TPi + FPi
N2 (9)

where TP is true positives, TN is true negatives, FP is false positives, FN is t false negatives,
C is the number of classes, and N is the number of samples. The closer the OA value is to
100% and the closer the Kappa coefficients are to 1, the higher the classification accuracy of
the model.

3. Results
3.1. Spectral Characteristics of Leaves

The spectral characteristics of plants are influenced by their internal structure, bio-
chemical composition, and morphological features [31], and the cells of leaves infected with
ApMV are damaged, with irregular yellowish- to cream-colored spots, decreased chloro-
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phyll content, and differences in spectral reflectance. Significant differences in spectral
reflectance and SI were observed for regions with differing LCC (Figure 5). The spectral
curves of the healthy regions with an LCC of 45.66 µg/cm2 had weak reflection peaks in
the green band at 550 nm and two absorption valleys in the blue band at 450 nm and the
red band at 680 nm, which were consistent with the reflectance spectral characteristics of
green plants. However, as disease severity increases and LCC decreases, two prominent
reflection peaks appeared in the green band at 550 nm and the red band at 650 nm, while
the red edge (680–730 nm) shifted toward the short-wave direction. The large SI values
were concentrated in the visible spectrum range (380–750 nm), indicating that the differ-
ences in leaf spectral reflectance in the visible band under different disease severities were
significant, and the leaf spectral reflectance increased gradually with increasing disease
severity. In the near-infrared spectrum range (750–1100 nm), the differences in spectral
reflectance in regions with different LCC were relatively small, and the SI was almost 0 for
different disease severities. This was due to the influence of internal structure, biochemical
composition, and morphological features of the plant on its spectral characteristics [31].
ApMV damages the structure of mesophyll tissues, resulting in reduced photosynthetic
capacity and, thus, reduced absorption of red and blue bands, which consequently results
in a significant increase in spectral reflectance in the visible spectrum range (380–750 nm).
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3.2. Characteristic Wavelength Extraction

The raw spectral reflectance data were smoothed using the SG algorithm and used as
input data. The number of iterations for the CARS algorithm was determined based on the
minimum RMSECV in the PLSR model. Figure 6 shows the results of 50 iterations of the
CARS algorithm and the selected optimal wavelength combination locations. As the CARS
algorithm iterated and the number of selected wavelengths decreased, the RMSECV value
first decreased and then increased. The lowest RMSECV value was found in the 26th itera-
tion, indicating that wavelengths that were poorly correlated with LCC were eliminated in
the 1st to 26th iterations. The iterations after the 26th may have eliminated wavelengths
more strongly correlated with LCC, leading to a decrease in model accuracy and an increase
in RMSECV. Therefore, we used the wavelength combination selected in the 26th iteration
of the CARS algorithm for modeling and validation. We finally selected 15 feature wave-
lengths, mainly concentrated in the red-edge position and near-infrared range: 701.38 nm,
717.17 nm, 727.72 nm, 850.47 nm, 855.86 nm, 861.26 nm, 872.07 nm, 882.91 nm, 893.76 nm,
899.19 nm, 920.97 nm, 948.31 nm, 959.27 nm, 992.29 nm, and 1003.3 nm, as shown in
Figure 6d. These constitute only 12% of the original wavelengths (128), demonstrating that
the CARS algorithm can effectively reduce modeling complexity [32].
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3.3. Modeling Evaluation of LCC Prediction

The 15 feature wavelengths selected by the CARS algorithm were used as the model’s
input data. Seven models, classification and regression tree (CART), elastic network (EN),
Gaussian process regression (GPR), K-nearest neighbor regression (KNN), kernel ridge
regression (KRR), multilayer perceptron (MLP), and support vector machine regression
(SVR), were used to make predictions. These seven models were used as the base learners
for AdaBoost for Boosting ensemble to construct predictive models. Finally, Stacked–
Boosting prediction models were constructed. The results are shown in Table 4.

Table 4. Modeling results.

Model RMSEc R2
c RMSEv R2

v RPD

CART 3.8288 0.9164 4.6980 0.8722 2.6818
EN 3.0413 0.9473 3.4346 0.9317 3.3022

GPR 2.1294 0.9741 3.8393 0.9146 3.3059
KNN 0.0000 1.0000 3.3096 0.9367 3.9322
KRR 2.1399 0.9739 3.0436 0.9463 4.0729
MLP 3.0368 0.9474 3.2271 0.9397 4.1084
SVR 2.7234 0.9577 3.4373 0.9316 3.4026

CART-Boosting 2.4479 0.9658 2.7598 0.9559 4.7031
EN-Boosting 3.0095 0.9484 3.3658 0.9344 3.3512

GPR-Boosting 1.4083 0.9887 3.1167 0.9437 4.1014
KNN-Boosting 0.0493 1.0000 3.0414 0.9404 4.3078
KRR-Boosting 2.0279 0.9765 2.9451 0.9498 4.2451
MLP-Boosting 2.5351 0.9634 2.7623 0.9558 4.7044
SVR-Boosting 2.6465 0.9601 3.3853 0.9336 3.4364

Stacked-Boosting 1.3608 0.9894 2.4796 0.9644 5.1054

Among the models, the KNN model and KNN-Boosting model had an R2
c of 1. How-

ever, the prediction accuracy of the validation set was low, indicating that it shows severe
overfitting. Therefore, KNN-Boosting was not used as the base model for the Stacking
model. The prediction accuracy of the KRR model was the highest among the seven base
models, with R2

c and R2
v of 0.9739 and 0.9463, respectively, and the RPD value was 4.0729.

The CART model had a poorer prediction accuracy among the seven base models, with an
R2

v of 0.8722, relatively high RMSEv, and RPD of only 2.6818. The prediction accuracy of
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all seven base models improved after Boosting ensemble, among which the CART-Boosting
model showed the most noticeable performance improvement, with R2

c increasing by 0.0494,
R2

v increasing by 0.0837, and RPD increasing by 2.0213. This was followed by the MLP-
Boosting model, whose R2

v reached 0.9558. In comparison, the Stacked–Boosting model
performed the best, with R2

c of 0.9894, R2
v of 0.9644, and RPD of 5.1054. The difference in

the coefficient of determination between the calibration and validation sets was slight. The
RMSEv was only 2.4796 µg/cm2, indicating that the Stacked–Boosting model had higher
prediction accuracy and strong generalization ability.

3.4. Inversion of LCC by HSI

In this study, we monitored the LCC distribution of leaves with different disease se-
verity and used the characteristic wavelengths as the input data for the Stacked–Boosting
model to calculate the average LCC by inversing the LCC distribution. Figure 7 shows the
RGB images and LCC distribution of leaves with varying disease severity and their average
LCC. The RGB images show that the healthy areas of the leaves were dark green. On the
lightly infected leaves, the diseased spots were light yellow and showed diseased spots
and streaks along the veins. On the most severely infected leaves, the diseased spots were
creamy white and showed a reticulated distribution, uninfected areas appeared light green,
while the uninfected areas of the other leaves appeared dark green. This result indicates
that the cell structure of the leaf area infected with ApMV was damaged, which reduced
the LCC and affected the uninfected area. The LCC distribution image and the average
LCC also confirmed this phenomenon. In the infected area, the LCC decreased from the
periphery to the center of the diseased spot. In the uninfected area, the LCC of the area
near the diseased spot was lower than that of the area far from the diseased spot, indicating
that the uninfected area will be affected by the infected area because the infected area has
a tendency to expand. Visual comparison showed that the inversion of LCC distribution
using the Stacked–Boosting model was consistent with the actual distribution trend. The
average LCC decreased with increasing disease area, which was consistent with the fact.
This indicates that the model was reliable.
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3.5. Relationship between LCC Statistics and Percentage of Disease Spot Area

The LCC distribution allowed for the computation of the average and CV of LCC
for each leaf. Figure 8 depicts the relationship between these two LCC statistics and
the percentage of disease area. As illustrated in Figure 8, there was a highly significant
negative correlation between the average LCC and the percentage of the diseased area
(r = −0.9084), while the CV of LCC was positively correlated with the percentage of dis-
eased area (r = 0.9314) [64]. The increase in the percentage of disease area resulted in a
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gradual decrease in the average LCC and an increase in the CV of LCC. This trend can be
attributed to the uneven LCC distribution resulting from increased disease severity and
reduced LCC in infected areas. Therefore, changes in LCC offer a quantitative indicator for
monitoring disease severity on ApMV-infected leaves.
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3.6. Identify Disease Severity Based on Average LCC and Sensitive Wavelengths

In Section 3.1, we found that the spectral reflectance of leaves with different levels
of disease severity differed the most in the visible spectrum range, making it useful for
distinguishing among different levels of disease. As shown in Figure 5a, regions of large
differences in reflectance in the visible spectrum range are located at reflection peaks of
550.95 nm and 649.05 nm and absorption valleys of 602.36 nm and 680.39 nm. As shown
in Figure 5b, the SI at 500.02 nm is significantly higher than that at adjacent wavelengths,
indicating large differences in reflectance among leaves with different levels of disease
at this wavelength. These wavelengths are more sensitive to disease severity, which can
effectively reflect the features of leaves with different levels of disease and are helpful
for distinguishing among different levels of disease [18]. The red edge region of plants
(680–730 nm) is significantly correlated to LCC and can effectively monitor changes in LCC,
making it a useful indicator of plant vitality [65]. Therefore, the wavelength of 722.44 nm
can also be used to distinguish among different levels of disease [66]. Additionally, the
average LCC is highly correlated with disease severity and can be used as a feature to
distinguish between different levels of disease. In summary, we selected six sensitive
wavelengths (500.02 nm, 550.95 nm, 602.36 nm, 649.05 nm, 680.39 nm, and 701.38 nm)
and the average LCC as features to distinguish among different levels of disease. Table 5
shows the classification results of the Random Forest model based on different sensitive
wavelengths, average LCC, and their combinations. Among them, the classification based
on the wavelength of 550.95 nm had the best accuracy among the single wavelengths, with
an OAv of 86.67% and Kappav of 0.8188. The accuracy of classification based on all sensitive
wavelengths was higher than that based on a single wavelength, with an OAv of 92.22%
and Kappav of 0.8960. The classification accuracy based on all LCC statistics is higher
than that based on a single statistic, with an OAv of 95.56% and Kappav of 0.9406. The
combination of all sensitive wavelengths and all LCC statistics had the highest accuracy,
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with an OAv of 98.89% and Kappav of 0.9852, and the confusion matrix of the classification
results is shown in Figure 9. Yellowish color means larger value, greenish color means
smaller number.

Table 5. Identification modeling results.

Feature OAc/% Kappac OAv/% Kappav

500.02 nm 97.04 0.9604 74.44 0.6573
550.95 nm 93.70 0.9161 86.67 0.8188
602.36 nm 96.67 0.9556 85.56 0.8045
649.05 nm 97.04 0.9604 78.89 0.7150
680.39 nm 93.70 0.9159 66.67 0.5550
722.44 nm 90.37 0.8713 57.78 0.4441

Average LCC 91.85 0.8913 91.11 0.8811
CV of LCC 93.33 0.9111 81.11 0.7468

all sensitive wavelengths 97.41 0.9654 92.22 0.8960
all LCC statistics 97.78 0.9704 95.56 0.9406

sensitive wavelengths + LCC statistics 99.26 0.9901 98.89 0.9852
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4. Discussion
4.1. Stacked–Boosting Modeling Summary

The Stacked–Boosting model exhibited the best prediction performance among all
models, did not produce overfitting, and had high generalization ability. To further compare
the prediction performance of the Stacked–Boosting model and the traditional ensemble
learning model, a Random Forest model with a bagging strategy and XGBoost model
with the gradient boosting strategy was applied to construct an LCC prediction model
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using the same dataset. The accuracy and prediction scatter plots of the models are shown
in Figure 10. The overall prediction accuracy of the Random Forest model was lower
than that of the Stacked–Boosting model, and it exhibited significant deviation between
the predicted and measured values. The XGBoost model was overfitted; it had high
prediction accuracy in the calibration set but lower prediction accuracy in the validation
set than that of the Stacked–Boosting model. When compared with prediction values of the
traditional ensemble learning model, the Stacked–Boosting model had a more concentrated
distribution around the 1:1 line (Figure 9). This result indicates that the generalization
ability and overall prediction performance of the Stacked–Boosting model were superior to
those of the traditional integrated learning model.
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The Stacked–Boosting model exhibited excellent prediction performance and general-
ization ability for several reasons. First, the integration strategy of Boosting improves the
prediction performance of weak learners, which can indirectly improve the final prediction
performance. Secondly, using significantly different base learner models for the Stacking
model can leverage the advantages of each algorithm. Finally, using the CatBoost model
provided better prediction performance as the meta-learners of the Stacking model could
properly consider the weights of the different base learner prediction results of and reduce
the errors caused by poorly performing base learners.

As the meta-learners of the Stacking model directly use the prediction results of the
base learners as input data, the selection of the base learners directly affects the final
prediction accuracy. As shown in Figure 11, the importance of different feature variables
varies widely, and, thus, the importance of the prediction results from the different base
learners on the final prediction also varies widely. Therefore, in practice, when selecting the
most appropriate to improve prediction performance and reduce computational overhead,
the characteristics of the base learners and their degree of importance to the final prediction
should be considered.
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4.2. Quantitative Description of Disease Severity Using Chlorophyll Content

Diseased spot color, morphology, and affected area percentage have typically been
used as criteria for grading disease severity [23,27,67]. However, these methods fail to
consider the role of phytochemical components, making it difficult to obtain objective and
accurate grading results. The LCC of plants is influenced by factors, such as temperature,
water, and light, and aging can also lead to a decrease in LCC [68–71]. However, in this
experiment, the leaves were collected under the same environmental conditions, and ApMV
was found to be the most important factor causing significant changes in LCC. As shown
in the LCC distribution in Figure 7, the impact of ApMV on LCC was extremely significant.
At all levels of disease severity, the LCC of diseased areas was always lower than that of
healthy regions, and the average LCC of severely infected leaves was even lower. This
study also found a strong correlation between LCC and disease severity. Using LCC as a
feature could improve the accuracy of identifying disease severity, and good identification
accuracy (OAv = 95.56) was obtained using only two LCC statistics. These findings suggest
that LCC can serve as a quantitative indicator to assess the severity of ApMV infection.

5. Conclusions

An LCC prediction model and a disease severity identification model were developed
based on the HSI of ApMV-infected apple leaves to verify the feasibility of using HSI
to identify ApMV infection and quantitatively describe the leaf health condition. The
results demonstrated that the Stacked–Boosting model had higher prediction accuracy and
generalization ability than the traditional ensemble learning model and could be used to
invert the LCC. The average LCC was obtained from the LCC distribution images and
could be used for a quantitative description of leaf health and photosynthetic capacity.
It can also be used for identifying disease severity. This method considered the role of
phytochemical components, which is more accurate than using the disease area as the only
indicator of disease extent. However, model construction, hyperparameter optimization,
and computational overhead are highly complex. Therefore, subsequent studies should
give more consideration to the type and number of base learners to explore ways to reduce
the model complexity. Our proposed method can also be used to assess plant leaf health
under other biotic or physicochemical stresses. Nonetheless, it is important to note that LCC
is influenced by several factors, and our study only applied to leaves known to be infected
with ApMV. For unknown leaves, LCC alone may not be sufficient to determine whether
they are infected with ApMV. Therefore, an early monitoring method for identifying ApMV
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infection should be explored in future studies. Furthermore, this study only achieved a
quantitative description of disease severity at the leaf scale, and the health status of the
entire apple tree was not assessed. Future research should explore the application of our
method as a preliminary step in the development of a more comprehensive canopy-scale
tree health assessment method.
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