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Abstract: Low- and medium-resolution satellites have been a relatively mature platform for inland
eutrophic water classification and chlorophyll a concentration (Chl-a) retrieval algorithms. However,
for oligotrophic and mesotrophic waters in small- and medium-sized reservoirs, problems of low
satellite resolution, insufficient water sampling, and higher uncertainty in retrieval accuracy exist. In
this paper, a hybrid Chl-a estimation method based on spectral characteristics (i.e., remote sensing
reflectance (Rrs)) classification was developed for oligotrophic and mesotrophic waters using high-
resolution satellite Sentinel-2 (A and B) data. First, 99 samples and quasi-synchronous Sentinel-2
satellite data were collected from four small- and medium-sized reservoirs in central China, and
the usability of the Sentinel-2 Rrs data in inland oligotrophic and mesotrophic waters was verified
by accurate atmospheric correction. Second, a new optical classification method was constructed
based on different water characteristics to classify waters into clear water, phytoplankton-dominated
water, and water dominated by phytoplankton and suspended matter together using the thresholds
of Rrs490/Rrs560 and Rrs665/Rrs560. The proposed method has a higher classification accuracy
compared to other classification methods, and the band-ratio algorithm is simpler and more effective
for satellite sensors without NIR bands. Third, given the sensitivity of the empirical method to
water variability and the ease of development and implementation, a nonlinear least squares fitted
one-dimensional nonlinear function was established based on the selection of the best-fitting spectral
indices for different optical water types (OWTs) and compared with other Chl-a estimation algorithms.
The validation results showed that the hybrid two-band method had the highest accuracy with
squared correlation coefficient, root mean squared difference, mean absolute percentage error, and
bias of 0.85, 2.93, 32.42%, and −0.75 mg/m3, respectively, and the results of the residual values further
validated the applicability and reliability of the model. Finally, the performance of the classification
and estimation algorithms on the four reservoirs was evaluated to obtain images mapping the Chl-a
in the reservoirs. In conclusion, this study improves the accuracy of Chl-a estimation for oligotrophic
and mesotrophic waters by combining a new classification algorithm with a two-band hybrid model,
which is an important contribution to solving the problem of low resolution and high uncertainty in
the retrieval of Chl-a in oligotrophic and mesotrophic waters in small- and medium-sized reservoirs
and has the potential to be applied to other optically similar oligotrophic and mesotrophic lakes and
reservoirs using similar spectrally satellite sensors.

Keywords: chlorophyll a concentration; Sentinel-2; oligotrophic and mesotrophic water; optical
water types; remote sensing reflectance
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1. Introduction

Reservoirs, which are widely distributed, generally have comprehensive functions
such as providing flood and drought control, power generation, irrigation, and urban
and industrial water supplies, and they are important water sources and backup water
sources, playing a vital role in ecology and socio-economics [1,2]. As a kind of artificial
lake, a reservoir has the characteristics of both rivers and lakes, and their slow renewal rate
and relatively weak self-cleaning capacity have made their water quality safety a common
concern for regulators and researchers, especially for water source reservoirs [3–5]. The
chlorophyll a concentration (Chl-a) contained in phytoplankton is used as an important
indicator of the ecological integrity of aquatic ecosystems [6–8]. Although an adequate
amount of phytoplankton is essential for aquatic ecosystems, its excessive presence may be
detrimental to ecosystem function and public health [9,10]. Traditional methods cannot
accurately monitor water quality in all waters at the spatial scale. Consequently, optical
remote sensing has long been used as an effective water quality observation method for
economical and rapid observation of key physical–biological processes and watershed
weather in water ecosystems [11–13].

The principle of optical remote sensing monitoring of Chl-a entails quantifying the
optical properties of water by obtaining its intrinsic optical properties (IOP) (related only to
its composition) through optical remote-sensing sensors; that is, the remote-sensing signal
recorded at the top of the atmosphere is reduced to remote-sensing reflectance (Rrs) after the
removal of atmospheric effects, from which Chl-a is estimated [10,14,15]. Semi-empirical
algorithms using combinations of Rrs in the blue–green bands [16] or in the red and near-
infrared (NIR) bands [17] have been developed based on phytoplankton absorption and
backscattering properties. The blue–green ratio algorithm, which is applicable to case
1 waters affected only by phytoplankton and their decomposers, has developed into a
mature ocean color series of algorithms applied to the estimation of Chl-a in the global
ocean. These can be used to estimate Chl-a in clear water with high accuracy [18], but
they tend to overestimate Chl-a in inland and coastal waters [19,20]. In the red–NIR
approach, one assumes negligible absorption of colored dissolved organic matter (CDOM)
and non-algal particles (NAP). The method is less sensitive to uncertainties in atmospheric
corrections [21–23] and is applicable to case 2 waters strongly influenced by debris or
CDOM. It has been applied to the Medium Resolution Imaging Spectrometer (MERIS)
spectral band to retrieve Chl-a [24–26]. In addition, three-band models [27] and four-
band models [28] have been developed for turbid eutrophic waters. The turbid case 2
model was developed for highly turbid waters [29]. The synthetic chlorophyll index model
was developed for water with high amounts of suspended sediment and low levels of
chlorophyll [30]. Fluorescence algorithms were developed based on the characteristics
of the reflectance peak near 700 nm and the Chl-a absorption and fluorescence peaks at
665–685 nm in phytoplankton [22,31]. There are also some methods based on IOP [32–34]
and artificial intelligence [10,35,36].

High accuracy was achieved using Chl-a methods for water with different optical
properties, but switching and mixing multiple methods or weighted integration schemes are
superior to individual methods [13,37–40]. How can different water types be distinguished?
Widely used are optical classification using Rrs waveform features and functional data
clustering analyses such as the k-means method [34,38] and fuzzy C-means clustering [41].
For example, Neil et al. [42] collected raw Rrs data from 185 inland and coastal water
systems worldwide (n = 2807) and classified waters into 13 different optical water types
(OWTs). Each OWT was associated with a different bio-optical characteristic, and retuning
the algorithm to optimize the parameterization of each individual OWT can improve
the overall Chl-a retrieval. Classifications based on IOP, such as scattering or absorption
coefficients, as indicators classify waters into phytoplankton water, inorganic-particulate-
dominated water, and water co-dominated by both sources [43,44]. Classification using
reflectance as an indicator is more extensive. Gómez et al. [45] proposed two normalized
difference indices (i.e., 705- and 665-nm bands and 560- and 442-nm bands) to classify



Remote Sens. 2023, 15, 2209 3 of 22

Mediterranean lakes into two types. The maximum peak height algorithm was used for
estimating Chl-a in inland and coastal waters with an extensive trophic state and switching
between two baseline subtraction indices [22]. Matsushita et al. [37] used maximum
chlorophyll index (MCI) thresholds to classify water into three different trophic states
bounded by 10 and 25 mg/m3.

In summary, water classification and Chl-a estimation algorithms have been validated
in some inland waters, but there are limitations to the application of these algorithms in
other waters, especially for some small- and medium-sized hypotrophic and mesotrophic
inland reservoir waters, where such studies are still very limited [13,30,35,36,40,46–48].
Previously utilized low- and medium-resolution satellites (e.g., the Visible Infrared Imaging
Radiometer Suite, Ocean and Land Colour Instrument, MERIS, etc.) are difficult to use
for small- and medium-sized reservoirs [18,44,49–51]. In addition, in recent decades, most
inland water quality studies have focused on eutrophic waters, with insufficient sampling
of Chl-a in mesotrophic and hypotrophic waters, relatively few retrieval methods, and
higher uncertainty in estimation accuracy, limiting the development and validation of such
Chl-a estimation algorithms [13,42,46–48,52,53]. The Sentinel-2 satellite with its highest
spatial resolution of 10 m and a revisit period of 5 days easily solves the problem of low
resolution of previous satellites and is considered to be the most suitable satellite for remote-
sensing estimation of inland waters [54]. However, because of the band-setting problem,
the bands of 555, 672, 708, and 751 nm involved in the mature algorithm do not exist in
the Sentinel-2 satellite. The investigations of water classification using this satellite and the
applicable Chl-a estimation methods for different waters are less involved [10,24–27,35,55].
In this study, we used Sentinel-2 high-resolution satellite data and measured reservoir Rrs
data, covering four small- and medium-sized reservoirs and oligotrophic and mesotrophic
waters, to achieve (1) a band-ratio water classification algorithm for several small- and
medium-sized reservoirs with oligotrophic and mesotrophic waters in central China, (2) a
hybrid two-band Chl-a retrieval method applicable to Sentinel-2 for different waters, and
(3) a comparison with established water classification algorithms and Chl-a estimation
methods to verify the feasibility and accuracy of the algorithm and method in this study.

2. Data and Methods
2.1. Study Areas

The study area includes the Luhunhu Reservoir (LHH), Xiaolangdi Reservoir (XLD),
Suyuhu Reservoir (SYH), and Danjiangkou Reservoir (DJK), all located in central China
(see Figure 1). The longitude, latitude, and basic information of the reservoirs are listed
in Table 1. DJK is composed of the Danjiang and Hanjiang reservoirs, and DJK refers
to the Danjiang Reservoir specifically. XLD is a canyon-type reservoir, being narrow
at the top and wide at the bottom, so the water depth is greater. In this study, XLD
refers to the southeastern part of the reservoir with a wide water surface. LHH and
DJK are water supply reservoirs, while SYH is mainly for breeding fish and shrimp (see
Table 1 for details about the dataset). All four reservoirs belong to Class II water, and the
nutrient status of the reservoirs depends on the algal growth condition, which is limited by
nitrogen and phosphorus, so the trophic state of the reservoirs depends on the variation
of nitrogen and phosphorus. During most of the time, DJK is in an oligotrophic state, and
the remaining three reservoirs are all mesotrophic reservoirs, but the trophic state of the
reservoirs varies greatly during precipitation and reservoir transfer (flooding and storage).
It is worth mentioning that the water quality of SYH is occasionally mildly eutrophic due
to aquaculture.
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Figure 1. Spatial distribution of study areas ((a) XLD, (b) DJK, (c) LHH, and (d) SYH) and location of
sample sites. See Table 1 for details about the dataset.

Table 1. Information and bio-optical properties of the sampling points. The parameters include Chl-a,
TSS, ISS, and CDOM absorption at 443 nm, listing maximum (Max), minimum (Min), and average
(Mean) values. “-” indicates that data are not available.

Reservoir Name Luhunhu Xiaolangdi Suyahu Danjingkou

Abbreviation LHH XLD SYH DJK
Latitude 34.203◦N 34.868◦N 33.034◦N 32.745◦N

Longitude 112.185◦E 112.357◦E 114.263◦E 111.565◦E
Area (km2) 31.2 272 239 700

Depth (m) Max 20 100 5 167
Mean 9.5 90 1.4 28

Numbers 36 34 16 18

Sampling time 20 May
2021 (12)

14
September
2021 (12)

29
September
2021 (12)

22 October
2020 (17)

4 June 2021
(17)

10
September
2021 (16)

29 June
2022 (18)

Chl-a (mg/m3)
Max 17.09 34.73 3.35 17.89 17.47 8.15 1.57
Min 6.27 18.29 0.74 7.26 4.06 1.70 0.79

Mean 10.50 23.34 1.72 11.20 9.22 3.75 1.15

TSS (mg/L)
Max 5.30 10.40 25.00 2.50 7.40 54.00 -
Min 2.60 4.00 4.50 0.40 2.20 31.00 -

Mean 3.62 6.16 11.88 1.62 4.21 43.81 -

ISS (mg/L)
Max 2.40 6.40 20.50 1.70 3.10 48.00 -
Min 0.90 1.60 2.00 0.00 1.00 22.00 -

Mean 1.43 3.43 9.17 0.98 1.67 37.00 -

CDOM (m−1)
Max 1.24 2.26 3.32 0.51 0.51 18.42 0.19
Min 0.46 0.70 0.88 0.32 0.34 4.65 0.14

Mean 0.85 1.64 1.30 0.42 0.42 14.95 0.17

2.2. Field Data

Seven cruises were conducted during 2020–2022 (Table 1) to characterize the bio-
optical features of these study waters (Figure 1 and Table 1). A total of 104 surface water
samples were collected, including from LHH in May and September 2021 (12 sites), XLD in
October 2020 and June 2021 (17 sites), SYH in September 2021 (16 sites), and DJK in June
2022 (18 sites), and the distribution of water samples in each reservoir is shown in Figure 1.
Water samples were collected and Rrs was measured at the water surface of each sampling
site.
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The water samples were frozen and returned to the laboratory for the acquisition of
water quality parameters (Chl-a, total suspended solids (TSS), inorganic suspended solids
(ISS), and CDOM) within 12 h. The water samples were filtered using Whatman GF/F
glass fiber filters. Chl-a was extracted using the hot ethanol method, TSS and ISS were
determined by weighing, and CDOM was measured using a spectrophotometer [39]. The
nutrient classification of the reservoir was Chl-a ≤ 3.24 mg/m3 in oligotrophic waters,
3.24 < Chl-a ≤ 11.03 mg/m3 in mesotrophic waters, and Chl-a > 11.03 mg/m3 in eutrophic
waters [46]. As can be seen in Table 1, most of the waters in these four reservoirs were
mesotrophic and below, with only the LHH water collected on 14 September 2021 having
high nutrient values. White crystalline particles were found in the water samples from DJK,
so TSS and ISS data were not available.

An ASD FieldSpec spectrometer was used to measure the reflectance of the water (at
350–2500 nm), and the normalized water-leaving reflectance ρw was calculated with the
“above-water method” [56] using the following equation:

ρw = (LSW − rLsky)/(Lρ/ρρ), (1)

where Lsw is the total irradiance of the water surface, r is the reflectance of ambient light at
the air–water interface, Lsky is the irradiance of sky light, Lp is the irradiance of the standard
gray plate, and ρp is the reflectance of the standard gray plate. The spectra of Rrs collected
from the four reservoirs are shown in Figure 2.
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2.3. Sentinel-2 Imagery and Processing

Sentinel-2, an Earth observation mission operating under the Copernicus program
of the European Space Agency, consists of two satellites, Sentinel-2A and Sentinel-2B,
each with a 5-day global revisit period. Each satellite carries the same multispectral
instrument. The imager acquires radiometric measurements from eight spectral bands
in the visible and NIR regions with different spatial resolutions (shown in parentheses),
centered at 443 (60 m), 490 (10 m), 560 (10 m), 665 (10 m), 705 (20 m), 740 (20 m), 783
(20 m), and 842 nm (10 m), respectively. In this study, seven Level-2A surface reflectance
images corresponding to the years 2020–2022 were acquired (https://scihub.copernicus.
eu/dhus/#/home, accessed on 3 August 2022). The atmospheric correction was based
on the LIBRADTRAN radiative transfer model in the Sen2Cor processor [57], which was
also confirmed to be reasonably accurate for application in case 2 waters [58]. It was well
known that the effect of atmospheric disturbances on the radiance of the retained water
and its correction contribute largely to the uncertainty of the product [35,59]. For the

https://scihub.copernicus.eu/dhus/#/home
https://scihub.copernicus.eu/dhus/#/home
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study area in this investigation, there were errors in the atmospheric correction results.
Consequently, a simple atmospheric correction method was adopted [60]. Specifically, a
value was subtracted from each of the seven bands of each pixel to reduce the uncertainty
caused by the lack of atmospheric correction. Therefore,

RC
rs(λ) =

R(λ)− min(RNIR : RSWIR)

π
(2)

where RC
rs is the corrected reflectance in the λ-centered band, R(λ) is the original reflectance

in the λ-centered band, min(RNIR:RSWIR) is the minimum (min) positive reflectance value
in the NIR and short-wave infrared bands, and π is placed in the denominator to scale the
surface reflectance to the off-water reflectance. When RC

rs < 0 or greater than the visible
band value, the data were considered as noise and no correction was applied to this pixel.
Finally, the spatial resolution of the spectral bands was converted from 20 to 10 m using
nearest-neighbor resampling [61].

3. Methods
3.1. Development of a Band-Ratio Algorithm for Optical Classification

Most remote-sensing-based optical classification methods directly use specific features
of remote-sensing spectra to classify optically complex waters into different optical types [34].
The first reflection peaks of water are located between 530 and 580 nm (the green band of
the Sentinel-2 satellite) as a result of the weak absorption of Chl-a and carotenoids, as well
as cellular scattering effects. The Rrs value of water containing low Chl-a in the blue band is
peaked relative to the line between 443 and 560 nm. Therefore, using the ratio of the blue
band to the peak band (560 nm) can effectively distinguish waters containing low Chl-a from
other types, which is the basis for using the blue–green band-ratio method to extract marine
Chl-a. The spectral shapes of the remaining two waters were similar, except for the obvious
changes in magnitude. After peaking at 560 nm, one water body’s peak decreased rapidly
from 560 to 665 nm and then gradually approached 0, while the other’s peak decreased in a
stepwise manner, so the two OWTs were distinguished by the sharpness of the decrease at
665 nm. The specific steps are shown in Figure 3. The range of bands used to distinguish
the three OWTs in the band-ratio algorithm is in the visible band, which is suitable for most
satellites that observe in only visible bands (e.g., Landsat and GF satellites).
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3.2. Chl-a Estimation Method for Each Class

Empirical methods establish relationships between optical measurements and compo-
nent concentrations based on experimental data. They are easy to develop and implement,
but their intrinsic design makes them particularly sensitive to changes in the composi-
tion of water components. Therefore, different optical bands are selected for different
OWTs. The use of band ratios can partially eliminate the effect of bidirectional variation
in reflectance [62]. Therefore, reflectance ratios, rather than reflectance values, were used
to develop the estimation method for Chl-a. The band specific to Sentinel-2 was consid-
ered: The band ratios chosen for the three OWTs were Rrs665/Rrs490, Rrs705/Rrs560,
and Rrs842/Rrs665, respectively. Finally, Chl-a was calculated using a one-dimensional
nonlinear function. It can be seen that the numerator and denominator of the bands move
toward the long-wave band as the turbidity of the water column increases. It is difficult
to estimate Chl-a accurately from remote sensing because phytoplankton pigments and
CDOM combined with suspended matter all strongly absorb short-wave radiation. There-
fore, longer wavelengths (from red to NIR) were used to calibrate the Chl-a estimation
method. This allows us to potentially eliminate the CDOM error [26]. The equation used
was

Chl-a = a(R rs(λ1)/Rrs(λ2))2+b(R rs(λ1)/Rrs(λ2)) + c (3)

where Rrs(λ1)/Rrs(λ2) corresponds to the band ratio, and a, b, and c are the algorithm
coefficients, which are calculated by using nonlinear least-squares fitting.

3.3. Candidate Optical Classification and Chl-a Estimation Algorithms for Comparison

As mentioned previously, the optical properties of inland lake waters are complex, and
a single water can also exhibit different optical properties at different times and in different
spaces. Consequently, numerous well-established algorithms have been developed for
water classification and estimation. Due to the limited spectral bands of Sentinel-2 in the
visible and NIR bands, some frequently used algorithms may use different bands for their
spectral indicators, and algorithms beyond the band range are not applicable to this study.

3.3.1. Other Optical Classifications

To verify the accuracy of the proposed classification algorithm, water classification
algorithms including MCI [37,63], CI672, and R555 [44] were selected for comparison in
this study. The classification used measured spectral data with the following equations:

MCI = Rrs(709)− Rrs(665)−
[
(709 − 665)
754 − 665

(Rrs(754)/Rrs(665))
]

, (4)

where MCI values of 0.0001 and 0.0016 correspond roughly to Chl-a values of 10 and
25 mg/m3, respectively;

CI(672) = Rrs(672)− [Rrs(488) + (672 − 488)/(751 − 488)× (Rrs(751)− Rrs(488))]
≈ Rrs(672)− [0.3Rrs(488) + 0.7Rrs(751)],

(5)

and

CI(555) = Rrs(555)− [Rrs(488) + (555 − 488)/(751 − 488)× (Rrs(751)− Rrs(488))]
≈ Rrs(555)− [0.25Rrs(488) + 0.75Rrs(751)],

(6)

where CI(672) < 0.005 sr−1 separates pigment-dominated waters (Wp) from all OWTs, and
the remaining waters within the range of Rrs(555) ≥ 0.04 sr−1 and CI(555) < 0.015 sr−1 are
detritus-dominated waters (Wd), and those within the range of Rrs(555) < 0.04 sr−1 and
CI(555) ≥ 0.015 sr−1 are intermediate waters (Wm).
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3.3.2. Other Chl-a Estimation Methods

To demonstrate the retrieval accuracy of the proposed Chl-a hybrid algorithm, water
retrieval methods including OCX [64], MCI (described in Section 3.3.1), fluorescence line
height (FLH) [65], two-band radio (TBR) [66], and the three-band algorithm (TBA) [63]
were selected for comparison in this study. The retrieval method employed a band tuned
to Sentinel-2 data. The specific equations are

OCx = max(Rrs(443)/Rrs(560), Rrs(490)/Rrs(560)), (7)

FLH = Rrs(681)− Rrs(665) + (Rrs(709)− Rrs(665))×
(

681 − 665
709 − 665

)
, (8)

TBR = Rrs(709)/Rrs(665), (9)

and

TBA =

[
1

Rrs(665)
− 1

Rrs(709)

]
× Rrs(754), (10)

where Rrs(709) and Rrs(754) were replaced by Rrs(704) and Rrs(739), respectively, in the
Sentinel-2 satellite, respectively. FLH has no replacement band for Rrs(681) because it is
not involved in Chl-a retrieval.

3.4. Method Accuracy Assessment

To evaluate the performance of the proposed method, we used the squared correlation
coefficient (R2), mean absolute percentage error (MAPE), root-mean square difference
(RMSD), and bias to evaluate the accuracy of the algorithm. The effectiveness of the
algorithm was tested using the residual value (RV) and the Lilliefors normality test. These
metrics are defined as follows:

MAPE =
1
N

N

∑
i = 1

∣∣∣∣Vmeasured,i − Vestimated,i

Vmeasured,i

∣∣∣∣× 100%, (11)

RMSD =

√
∑N

i = 1 (Vmeasured,i − Vestimated,i)
2

N
, (12)

bias =
∑N

i = 1 (Vmeasured,i − Vestimated,i)
2

N
, (13)

and
RV = Vmeasured,i − Vestimated,i, (14)

where Vmeasured,i is the measured value in the field, Vestimated,i denotes the value deduced
from the proposed algorithm, and N is the number of samples. The units of MAPE, RMSE,
bias, and RV are percent, mg/m3, mg/m3, and mg/m3, respectively.

The Lilliefors normality test is a modification of the Kolmogorov–Smirnov (K–S) test, a
nonparametric K–S test that can only test for a standard normal distribution. In the Lilliefors
test, one replaces the expectation and standard deviation of the overall population with the
sample mean and standard deviation, respectively, and then uses the K–S normality test in
the same steps. The difference is that the one-sample K–S test can only detect the standard
normal distribution, whereas the Lilliefors test can detect the general normal distribution.

4. Results and Discussion
4.1. Accuracy Assessment of Sentinel-2 Rrs Data

We measured the off-water reflectance data in the study area and evaluated the
accuracy of the reflectance of Sentinel-2 satellite images by converting the reflectance
data to the corresponding Sentinel-2 bands using the spectral response function. After
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correction by the formula, the scatter plots of the eight bands and the correlation between
the calculated measured data and Sentinel-2 data are shown in Figure 4. The correlation
coefficient (R) was used to evaluate the accuracy of the Sentinel-2 Rrs data. The black
diagonal line is the 1:1 line. Except for the 842-nm band, the correlation between all the
bands and the measured data were >0.9; therefore, all eight bands could be used in the Chl-a
estimation algorithm. However, the accuracy of different reflectance data varied in different
bands. The first four bands (443, 490, 560, and 665 nm) were closer to the 1:1 line in the
distribution of low-reflectance values, the 443-nm band had fewer high-reflectance values,
and the 490- and 665-nm bands were farther from the 1:1 line in their medium-reflectance
values. The last four bands (705, 740, 783, and 842 nm) had a distribution closer to the 1:1
line for high-reflectance values and further away for low-reflectance values, which were
obviously more numerous on Sentinel-2 images. Therefore, one should be careful to select
the applicable band with higher accuracy for each different OWT.
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to evaluate the accuracy of the Sentinel-2 Rrs data. The black diagonal line is the 1:1 line.

4.2. Optical Classification Based on Rrs
4.2.1. Spectral Characteristics and Water Quality Parameters for Different Water Types

According to the algorithm in Section 3.1, we divided the 99 sampled data into three
OWTs (after removing 5 anomalous values from the 104 data collected) (Figure 5). It is
worth noting that the thresholds for the three water types are not fixed but can be clearly
separated using Rrs490/Rrs560 and Rrs665/Rrs560. The thresholds in this study were
Rrs490/Rrs560 ≥ 0.8 for Type 1 waters, Rrs490/Rrs560 < 0.8, Rrs665/Rrs560 ≥ 0.6 for Type
2 waters, and Rrs665/Rrs560 < 0.6 for Type 3 waters.
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Figure 5. Sampled data classified according to the algorithm in Section 3.1 and the Rrs band ratios
(a) Rrs490/Rrs560 and (b) Rrs665/Rrs560.

The overall characteristics of the average Rrs peak spectrum are the formation of
reflectance peaks before 600 nm resulting from the weak absorption of Chl-a and carotene
and the scattering effect of cells, after which the reflectance of Type 1 waters decreases
rapidly until it gradually approaches 0, corresponding to cleaner DJK waters with lower
average Chl-a (1.15 mg/m3) and CDOM (0.17 m−1) (Figure 6 and Table 2). Type 2 waters
have an absorption valley near 675 nm resulting from the absorption effect of Chl-a, a
reflection peak at 700 nm caused by the fluorescence of Chl-a and the absorption scattering
effect of the water components together, a higher Chl-a (12.61 mg/m3), and a moderate
TSS and CDOM; it can be considered a phytoplankton-dominated water. Type 3 waters
have more significant absorption valleys and reflection peaks at 675 and 700 nm, but
Chl-a (2.88 mg/m3) is lower than that of Type 2, while both TSS and CDOM are higher,
especially TSS, which can reach 30.13 mg/L. Therefore, this type of water is turbid and can
be considered a water dominated by both phytoplankton and suspended matter (Figure 6
and Table 2).

Type 2 waters is dominated by Chl-a, and Type 3 waters is dominated by both sus-
pended matter and Chl-a. The scattering effect increases the value of Rrs while the ab-
sorption effect decreases it, so the combined effect of absorption and scattering results in a
higher Rrs for Type 3 waters than for Type 2 waters. The corresponding reflectance spectra
of Sentinel-2 are shown in Figure 6.
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Table 2. The maximum (Max), minimum (Min), mean, and standard deviation (SD) values of
different water type parameters. Chl-a, TSS, ISS, and CDOM for each water type classification are
given in mg/m3, mg/L, mg/L, and m−1, respectively. “-” indicates that data are not available.

Water Type Parameter Max Min Mean SD

Type 1 Chl-a 1.57 0.79 1.15 0.23
TSS - - - -
ISS - - - -

CDOM 0.19 0.14 0.17 0.02
Chl-a/CDOM 10.45 4.11 7.07 1.63

Type 2 Chl-a 46.09 4.06 13.74 8.63
TSS 10.70 0.40 3.86 2.26
ISS 6.40 0.00 1.78 1.22

CDOM 2.26 0.32 0.77 0.53
Chl-a/CDOM 52.44 6.82 20.88 10.64

Type 3 Chl-a 8.15 0.74 2.88 1.79
TSS 54.00 4.50 30.13 17.01
ISS 48.00 2.00 25.07 15.34

CDOM 18.42 0.88 9.10 7.16
Chl-a/CDOM 3.64 0.11 0.84 0.90

4.2.2. Comparisons of This Study’s Algorithm with Other Previous Algorithms Using
Measured Rrs(λ)

The results of the data in this study after classification using MCI are shown in
Figure 7a. The Chl-a distribution is still properly classified in Type 1 and Type 2 waters,
although there were also errors, but it was not suitable for Type 3 waters at all. Liu et al. [29]
used the MCI thresholds as the dividing lines between clear case 2 water, moderately turbid
water, and highly turbid water. Later, the R709/R560 ratio algorithm was developed to
classify waters into clear and (moderately and highly) turbid waters corresponding to the
MCI algorithm. The classification is shown in Figure 7b, and it is clear that there is a gap in
the Chl-a distribution corresponding to the 0.0001 threshold in the MCI algorithm, which is
not well applied in this study area.
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Figure 7. Classification of water into (a) three types according to MCI thresholds (0.0001, 0.0016) and
(b) two types according to the R709/R560 algorithm (0.28). Green, blue, and red circles indicate the
three OWTs in this study, corresponding to Types 1, 2, and 3, respectively.

CI672, R555, and CI555 classify waters into Wp, Wd, and Wm types. These are similar
to the water body classification results in this study, with only two data points in error
(Figure 8). This algorithm classified Type 1 and 2 waters as class Wp and Type 3 mostly
as Wm. This basically corresponds to the classification of water types in this study, but
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the very different peak–valley responses of Type 1 and 2 waters in the blue band indicate
that these are two water types (Figure 6). However, for waters with R555 < 0.04 sr−1 and
CI555 < 0.015 sr−1, there is a lack of delineation, resulting in the inability to classify all
waters (Figure 8b). The estimation algorithm used for this classification is the absorption
algorithm related to Chl-a, which was not implemented in this study owing to a lack of
data.

In summary, the optical classification results in this study demonstrate that it is
inappropriate to classify waters using only Chl-a, because Chl-a < 10 mg/m3 may indicate
three different water types with different spectral characteristics. Consequently, different
estimation methods may need to be adopted.
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Figure 8. (a) Wp distinguished according to the CI672 threshold (0.005) and (b) Wm distinguished by
R555 and CI555 (b). Green, blue, and red circles indicate the three OWTs in this study, corresponding
to Types 1, 2, and 3, respectively.

4.3. Validation and Application of Chl-a Estimation Method
4.3.1. Selection of Sensitive Bands

Type 1 waters are relatively clear, being close to marine waters, but the application
of the OCx model in Type 1 waters is not ideal. This is because the optical properties of
inland waters are not only determined by phytoplankton but also strongly influenced by
other components (i.e., NAP and CDOM) [54]. The ratio Chl-a/CDOM in Type 1 waters is
much lower than that in Chl-a-dominated Type 2 waters, indicating that Type 1 waters are
not Chl-a-dominated (Table 2). In addition to Chl-a, CDOM in Type 1 waters also exhibits
high absorption in the blue–green spectral region. Therefore, the OCx model is not suitable
for Type 1 waters.

Type 3 waters have spectral characteristics common to those of inland waters. In
addition to higher suspended matter concentrations, the average value of the Chl-a/CDOM
ratio is <1, so Type 3 waters are typical turbid water bodies. The red–NIR ratio-based
algorithm is least affected by CDOM and NAP absorption and is more suitable for turbid
productive waters, where CDOM and suspended matter effectively absorb blue light [42,49].
The red–NIR band of Sentinel-2 is set to 842 and 665 nm, so Rrs842/Rrs665 is the best
estimated band for Type 3 waters.

4.3.2. Validation of the Hybrid Chl-a Algorithm

The band ratio chosen for Type 1 waters was Rrs665/Rrs490, and the results for a, b,
and c were 4.36, −1.32, and 1.11, respectively. The band ratio chosen for Type 2 waters was
Rrs705/Rrs560, and the results for a, b, and c were 178.23, −58.46, and 12.76, respectively.
The band ratio chosen for Type 3 waters was Rrs842/Rrs665, and the results for a, b, and c
were 35.63, −7.86, and 1.84, respectively. Based on the classification in Section 4.2 and the
hybrid method designed in Section 3.2, the Chl-a estimation results of three OWTs were
obtained with a total accuracy R2 of 0.85 (Figure 9).
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4.3.3. Quantifying the Accuracy of Estimation Methods for Oligotrophic and
Mesotrophic Waters

The validity of the model was verified with the residual values. The residual values
of the Chl-a estimation algorithms for the three OWTs were validated by using the Lil-
liefors test, and they all conformed to a normal distribution and were mostly within the
95% confidence space, indicating the validity of the estimation methods. The quantitative
accuracy of the estimation method is seen in conjunction with the distribution of residuals
(in 0.25 mg/m3) for each method. The smaller range of RVs (−0.5 to 0.5 mg/m3) and more
concentrated data for Type 1 waters, all of which lie within the 95% confidence interval
of the normal distribution (−0.4312 to 0.4295 mg/m3), indicate the reliability of the algo-
rithm (Figure 10). There are only eight overestimated residual values within the range of
0–0.25 mg/m3. Type 2 waters exhibit high residual values, and the residuals are distributed
more evenly. There are more underestimated values, corresponding to a maximum of three
values. Only one value has a residual of >−8 and lies outside 95% (−7.53 mg/m3). The
distribution of residuals for Type 3 waters is similar to that of Type 1 waters, with a range
of −2.75 to 3.5 mg/m3, with more values in the range of 0.5–0.75 mg/m3 for overestima-
tion and underestimation. Only the residual maximum and minimum values were not
in the 95% confidence space (−2.42–2.57). The MAPE values for the three waters were
15.91%, 34.25%, and 39.69%, corresponding to their RV distributions, and the method can
be considered as accurate.
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4.3.4. Calibration and Validation of This Study and Other Previous Methods

The parameter calibration and Chl-a estimation for the established method were
performed based on the three OWT measurements obtained by the band-ratio classification
algorithm. The relationships between measured Chl-a and MCI, TBR, and TBA are shown
in Figure 11 and the calibrated expressions are listed in Table 3. From the parameter
calibration of the FLH algorithm (omitted), the FLH algorithm was a poor fit to the overall
Chl-a for Type 2 waters. Also for Type 3 waters, the correlation between the FLH algorithm
and Chl-a was the weakest compared to the other three retrieval methods, so the FLH
algorithm was removed. The correlation between each method and Chl-a was not high in
Type 1 waters and was strongest in TBA (R2 = 0.3). The correlation between Type 2 waters
and Chl-a was high for MCI, TBR and TBA, with R2 of 0.86, 0.68, and 0.68, respectively.
Type 3 waters exhibited the strongest relationship with Chl-a, with R2 > 0.8 for MCI, TBR
and TBA, while R2 = 0.73 for FLH. In summary, FLH has the lowest correlation with Chl-a
in the three OWTs among the four methods, the TBA method is the most applicable in Type
1 waters, and the MCI method is the most applicable in Type 2 and 3 waters.

Table 3. Parameters of the modified Sentinel-2 satellite band method (MCI, TBR, and TBA) calibrated
using measured Chl-a for the three OWTs obtained by the band-ratio water classification algorithm
with parameters a, b, and c, respectively.

Algorithm OWT a b c

MCI
Type 1 −28,593,178.41 10,968.42 0.71
Type 2 −797,826.48 10,756.67 5.00
Type 3 243,420.83 −2702.81 8.26

TBR
Type 1 −90.15 117.85 −37.30
Type 2 20.70 27.81 −23.10
Type 3 12.25 −11.68 2.69

TBA
Type 1 −131.06 −32.10 −0.68
Type 2 1000.77 286.13 26.02
Type 3 −35.76 37.58 3.30

In view of the poor applicability of FLH in Type 2 waters (R2 = 0.07), this method
was discarded from the Chl-a estimation, and the accuracy of the remaining three meth-
ods for the three OWTs was evaluated, as presented in Table 4. Overall, the estimation
accuracy of MCI was slightly lower (R2 = 0.8, MAPE = 50.35%, RMSE = 4.09 mg/m3, and
bias = −1.42 mg/m3) compared with that of the hybrid two-band method proposed in
this study (R2 = 0.85, MAPE = 32.42%, RMSE = 2.93 mg/m3, and bias = −0.75 mg/m3).
The accuracies of TBR and TBA (R2 = 0.34) were much lower than those of the methods in
this study and MCI, and the error indices were not very different, with RMSE ~15 mg/m3,
MAPE all >100%, and bias all >−5 mg/m3. The accuracy of the method proposed in this
study is still the highest for each OWT. The accuracy of the MCI method was not high in
other OWTs, except for Type 2 waters, and the accuracy of the remaining two methods
(TBR and TBA) was also not high, indicating the inapplicability of the current classical
methods for estimating oligotrophic and mesotrophic Chl-a.

All four methods underestimated Chl-a, with bias < 0 (Table 4). Underestimation using
the method proposed in this study was mainly in Type 2 waters (−1.5 mg/m3), whereas
slight overestimation was found in both Type 1 and 3 waters (by 0.02 and 0.12 mg/m3, re-
spectively). The TBR method underestimates Type 2 and 3, and the MCI and TBA methods
underestimate all three waters (Figure 12). This indicates that Type 2 waters are underesti-
mated in different methods, and Type 3 waters are more likely to be underestimated.
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Figure 11. Relationship between the Sentinel-2 satellite band modified methods (a) MCI, (b) TBR, and
(c) TBA and measured Chl-a of three OWTs based on the band-ratio water classification. Green, blue,
and red circles indicate the three OWTs in this study, corresponding to Types 1, 2, and 3, respectively.

Table 4. Comparison of the performance of the Chl-a estimation method proposed in this study and
selected metrics (MCI, TBR, and TBA) for different OWTs (Types 1, 2, and 3) and for the whole dataset.
The units of RMSE, MAPE, and bias are mg/m3, percent, and mg/m3, respectively.

This Study MCI TBR TBA

R2 All types 0.85 0.8 0.34 0.34
Type 1 0.13 0.09 0.05 0.05
Type 2 0.68 0.63 0.04 0.05
Type 3 0.52 0.27 0 0.04

RMSE All types 2.93 4.09 14.89 15.15
Type 1 0.21 0.47 3.33 20.43
Type 2 3.93 5.14 20.23 20.8
Type 3 1.25 3.08 3.97 2.56

MAPE (%) All types 32.42 50.35 144.34 102.5
Type 1 15.91 36.42 185.07 122.29
Type 2 34.25 38.56 131.32 117.15
Type 3 39.69 80.77 141.85 111.66

bias All types −0.75 −1.42 −5.78 −5.91
Type 1 0.02 −0.24 2.05 −10.69
Type 2 −1.5 −2.12 −10.92 −10.94
Type 3 0.12 −0.91 −1.47 −0.86
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Figure 12. Scatter plots of measured Chl-a and Sentinel-2 estimated Chl-a based on the modified
method (a) MCI, (b) TBR, and (c) TBA (n = 99). Green, blue, and red circles represent the three OWTs
based on the band-ratio water classification algorithm proposed in this study, corresponding to Types
1, 2, and 3, respectively. The black diagonal line is the 1:1 line. The units of RMSE, MAPE, and bias
are mg/m3, percent, and mg/m3, respectively.

4.4. Application of the Hybrid Chl-a Algorithm

The hybrid method was applied to different OWTs in the study area to obtain the
spatial distribution of waters. In DJK, which is Type 1 water, Chl-a is only >1.2 mg/m3 in
near-shore and tributary areas and is lower in the central area of the reservoir (Figure 13a).
The overall water source of DJK is clean and meets the standard of a water source reservoir.
Because of the seasons, the reservoir’s water area and Chl-a vary greatly. In summer, there
is abundant water, but in autumn, there is relatively little, and the seasonal growth of
phytoplankton is low in summer and high in autumn. Therefore, the area of XLD with high
Chl-a in summer is greater than that in autumn, but the average concentration is lower
than that in autumn. Meanwhile, because of the characteristics of the narrow structure, the
regions of high and low Chl-a were segmented in different areas (Figure 13b). During the
three sampling times in LHH, the waters belonged to Type 2 or 3, and there was strong
rainfall two days before the sampling on 29 September, so the water was turbid. Chl-a in the
south of LHH was higher than that in the north during normal weather, and, after strong
rainfall, Chl-a in the north of the reservoir was higher than that in the south, probably due
to the nutrients carried by the upstream rivers. Chl-a in SYH was higher at the northern
end farthest from the dam, which is a consistent feature of the Chl-a distribution in the
reservoir (Figure 13c).
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Figure 13. Estimated spatial distribution of the three OWTs based on hybrid two-band methods:
(a) Type 1 water in DJK (June 2022), (b) Type 2 water in XLD (October 2020, and June 2021) and LHH
(May 2021, and 14 September 2021), and (c) Type 3 waters in SYH and LHH (September 2021, and 29
September 2021).

5. Conclusions

In this study, a hybrid two-band Chl-a estimation model based on spectral char-
acteristics classification was developed using the high-resolution satellite Sentinel-2 for
oligotrophic and mesotrophic waters of small- and medium-sized reservoirs. Seven simul-
taneous satellite cruise surveys and ground experiments were conducted using four small-
and medium-sized reservoirs, and 99 samples were collected for method calibration and
validation. First, the study verified the usability of Sentinel-2 in inland Class II waters. The
off-water reflectance data of Sentinel-2 are highly accurate after atmospheric correction,
and the correlation coefficients between Sentinel-2 and the measured reflectance data in all
bands are greater than 0.88. Therefore, Sentinel-2 satellites can be applied to the estimation
of Ch-a in inland oligotrophic and mesotrophic waters.

Based on the spectral characteristics of different water types, a simple band-ratio
algorithm is proposed for water classification. The specific algorithm is to classify waters
into three categories using the thresholds of Rrs490/Rrs560 and Rrs665/Rrs560: When
Rrs490/Rrs560 is not <0.8, the water is clear (Type 1); when Rrs490/Rrs560 < 0.8 and
Rrs665/Rrs560 is not <0.6, the water is phytoplankton dominated (Type 2); and, when
Rrs490/Rrs560 < 0.8 and Rrs665/Rrs560 < 0.6, the water is dominated by both phytoplank-
ton and suspended matter (Type 3). The water classification results are consistent with
those of Jiang et al. [44] but are simpler and more effective for satellite sensors that do not
observe in the NIR.

A hybrid two-band Chl-a estimation method based on an empirical algorithm was
developed that is sensitive to the variation of water composition so that the best-fitting
spectral indices were selected for three different OWTs as Rrs665/Rrs490, Rrs705/Rrs560
and Rrs842/Rrs665, respectively. Compared with the established Chl-a methods, the
hybrid two-band method has the highest accuracy with R2, RMSE, MAPE, and bias of 0.85,
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2.93 mg/m3, 32.42%, and −0.75 mg/m3, respectively. The results of RV further validate
the applicability and reliability of the model.

Finally, the Chl-a values of different OWTs in four reservoirs at different periods were
estimated using Sentinel-2 images, and the results can effectively represent the spatial
distribution characteristics of inland small- and medium-sized reservoirs. It indicates that
the algorithm proposed in this study, which uses high-resolution satellite data for simple
band ratio classification and hybrid two-band estimation, not only improves the accuracy
of Chl-a estimation for inland oligotrophic and mesotrophic waters but also can be equally
applicable for reservoirs in different states. It is worth mentioning that the thresholds
of the simple band-ratio classification algorithm based on spectral characteristics are not
fixed, and the sensitive bands of the hybrid two-band Chl-a algorithm are applicable to the
corresponding water types, but for other optically similar oligotrophic and mesotrophic
lakes and reservoirs, the thresholds of the classification algorithm and the parameters of the
hybrid two-band Chl-a estimation algorithm can be determined according to the specific
study area.
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