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Abstract: The change-detection task is essentially a binary semantic segmentation task of changing
and invariant regions. However, this is much more difficult than simple binary tasks, as the changing
areas typically include multiple terrains such as factories, farmland, roads, buildings, and mining
areas. This requires the ability of the network to extract features. To this end, we propose a multi-
branch collaborative change-detection network based on Siamese structure (MHCNet). In the model,
three branches, the difference branch, global branch, and similar branch, are constructed to refine
and extract semantic information from remote-sensing images. Four modules, a cross-scale feature-
attention module (CSAM), global semantic filtering module (GSFM), double-branch information-
fusion module (DBIFM), and similarity-enhancement module (SEM), are proposed to assist the three
branches to extract semantic information better. The CSFM module is used to extract the semantic
information related to the change in the remote-sensing image from the difference branch, the GSFM
module is used to filter the rich semantic information in the remote-sensing image, and the DBIFM
module is used to fuse the semantic information extracted from the difference branch and the global
branch. Finally, the SEM module uses the similar information extracted with the similar branch to
correct the details of the feature map in the feature-recovery stage.

Keywords: change detection; multi-branch; high-resolution remote-sensing image

1. Introduction

The change-detection method can identify the difference between two remote-sensing
images taken at different times and then assign labels to each pixel in the image. Pixels in
unchanged areas are labeled 0, while pixels in changed areas are labeled 1. Remote-sensing
image change-detection technology has been widely used in urban development planning [1],
agricultural surveys [2,3], land management [4,5], and natural disaster assessment [6,7].

The research in the field of change detection can be traced back to 1977 when [8] used
differential methods to identify differences in remote-sensing images. Until now, scholars
have proposed many methods and made breakthroughs in this field. This paper mainly
divides these methods into two categories based on deep learning: traditional methods
and change-detection methods in deep learning.

1.1. Traditional Methods

Pixel-based and object-based methods are two subcategories of traditional approaches.
The initial method involves processing the dual-phase remote-sensing images to

obtain the difference image. Subsequently, an appropriate threshold is set to segment the
difference image, which allows for the determination of both the change region and the
invariant region. The most representative processing methods are the difference method [9]
and the ratio method [10]. Rawashdeh [11] completed the identification and evaluation of a
newly built irrigation area by differentiating all pixels of the image. These methods are easy
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to implement and execute and have good detection results for images featuring significant
changes or particularly low resolution. However, they are not effective in handling images
with slightly higher resolution and less significant changes. To address this limitation,
researchers have proposed a method that classifies images based on their content and then
uses the classification results for change detection. However, this approach leads to a strong
correlation between the accuracy of change detection and the accuracy of image-content
classification. If the accuracy of image-content classification is not high, the accuracy of
the change-detection results will be low, and this method does not fully utilize all the
information of the image. Comber [12] first classify an image to obtain a classification
object, then cover it with another pixel-based classification result and identify the correct
changes in the classification error through expert knowledge. In 2011, Kesikoglu [13] first
classified Landsat remote-sensing images and then used the classified results to detect
changes. The above two methods only use the spectral information of the image to some
extent, ignoring other information of the remote-sensing images, such as shape information
and texture information.

In 1995, after Hay [14] proposed the concept of the object, the object-based change-
detection method was rapidly developed. The object-based method can use the shape,
texture, and other information of the image and rich spatial context information. Therefore,
the object-based method is much better than the pixel-based method. Aiming at the
characteristic that different targets have different backscattering characteristics, Shi [15]
proposed an object-oriented change-detection method for POLSAR images based on the
weighted polarization scattering difference. Leichtle [16] applied k-means clustering to
distinguish the change region and the invariant region of the image based on principal
component analysis. This method can obtain multiple sets of object-based difference
features from the image data. Desclee [17] performed a single segmentation of multiple
remote-sensing images with region-merging technology to depict objects with statistical
characteristics of reflectance difference and marked the corresponding objects as changes
using outliers. The above methods can make use of the rich information in the image,
but the ability to extract features is insufficient, so the accuracy of change detection is not
high enough.

1.2. Change-Detection Method in Deep Learning

Deep learning techniques have advanced rapidly due to the ongoing increase in
computer technology [18–21]. The powerful feature-extraction ability and end-to-end
network structure of deep learning methods can be effectively applied to the field of remote-
sensing image-change detection. To identify landslide catastrophes, Ding [22] suggested a
technique combining texture-change detection and convolutional neural networks. The
efficiency and convenience of this method are better than traditional methods. In order to
better mine the rich information in the image, Wang [23] proposed an end-to-end neural
network framework by combining a sub-pixel hybrid affinity matrix and a two-dimensional
convolutional neural network. Zhan [24] proposed a change-detection method based on
twin convolutional neural networks and used a weighted contrast loss function to train
the method, which can better distinguish the change region from the invariant region
of the image. Zhang [25] proposed a joint learning network of spectrum space, which
uses a network similar to dual CNN to extract a joint representation of spectrum space,
fuses it to represent different information, and then explores potential information through
discriminative learning. Liu [26] designed a super-resolution remote-sensing image change-
detection network that proposed a module that can overcome the resolution difference
between two-time remote-sensing images.

The method mentioned above has demonstrated the effectiveness of using CNN’s
feature-extraction ability for remote-sensing analysis, making a breakthrough in the task
of change detection. However, as remote-sensing technology continues to improve, the
resolution of remote-sensing images will increase. At higher resolutions, the noise problem
in dual-time remote-sensing images will become more pronounced [27]. For example,
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small deviations may occur between the two images caused by differences in the imaging
angles [28]. Additionally, differences in the color and brightness caused by changes over
time may also exist [29]. In addition to these issues, there are many other challenges that
need to be addressed. Therefore, feature extraction is necessary to effectively tackle these
challenges. Some existing methods enhance the model’s receptive field by adding additional
convolutional layers, thus improving the model’s ability to extract features [30–32]. There are
also some methods that simply utilize attention mechanisms to enhance the model’s ability to
focus on the regions of change in the two images [33,34]. These two methods are inefficient in
enhancing the model’s ability to extract features.

1.3. Content of This Article

To address the issue with existing deep learning methods, this paper proposes a
multi-branch collaborative network for change detection based on the Siam structure. In
the feature-encoding stage, we subdivide the semantically rich feature information within
remote-sensing images and construct three branches, the differential branch, global branch,
and similar branch, to extract and filter different semantic information. Then, during the
feature-decoding stage, we utilize progressive upsampling to fuse the three different kinds
of extracted semantic information in order to recover as much of the original image’s
overall structure and details as possible. In the difference branch, this paper proposes a
cross-scale feature-attention module (CSAM) to pay attention to the information of the
changing region in the dual-temporal remote-sensing image. In the global branch, because
the concat operation will yield a lot of information, this paper proposes a global semantic
filtering module (GSFM) to filter the useful information. Considering that simple fusion
will lead to information redundancy, this paper proposes a double-branch information-
fusion module (DBIFM) to fuse the obtained differential semantic information and global
semantic information. In the process of upsampling recovery, a similarity-enhancement
module (SEM) is proposed to supplement the similar semantic information extracted from
the similar branch into the recovered image and correct the edge details. At the bottom of
the network, we use the improved pyramid pooling module (PPM) [35] to extract similar
semantic information at the bottom. The complete network consists of many millions of
parameters in a complex architecture. It uses ResNet as a backbone and features three
branches and five modules.

The main contents of this paper can be summarized as the following four points:

1. A multi-branch collaborative change-detection network based on Siamese structure
is proposed.

2. Previous deep learning approaches do not adequately consider various types of se-
mantically meaningful information in remote-sensing images, leading to limitations
in their ability to extract features. Some more-traditional methods are unable to differ-
entiate between the changed and invariant regions, let alone identify the changing
region. The network continuously extracts different levels of differential semantic
information, global semantic information, and similar semantic information through
three branches and continuously aggregates different levels of differential semantic
information, global semantic information, and similar semantic information in the
process of upsampling. It distinguishes the changing area and the invariant area and
pays attention to the edge details as much as possible.

3. For the difference semantic information, global semantic information, and similar
semantic information in the three branches, a cross-scale feature-attention module
(CSAM), global semantic filtering module (GSFM), double-branch information-fusion
module (DBIFM) and similarity-enhancement module (SEM) are proposed. The four
modules independently and selectively integrate multi-level difference information.

4. Ablation experiments and comparative experiments were performed on the self-
built BTRS-CD dataset and the public LEVIR-CD dataset. The ablation experiments
show that each module of MHCNet can help the whole network to complete the
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change-detection task. The comparative experiments show that MHCNet has a higher
performance in change-detection tasks.

2. Methods

Previous research has shown that CNNs deliver an excellent performance in segmenta-
tion tasks [36]. Additionally, the dual-branch weight-sharing structure of Siamese networks
can extract semantically rich information from two images separately. Leveraging the
above advantages, we propose MHCNet, a approach that combines Siamese networks with
CNNs. Although the change-detection task only requires identification of the changed and
invariant regions, the changed region still contains a significant amount of semantically
meaningful information pertaining to various types of terrain. This places greater demands
on the network model’s ability to extract features. Therefore, we choose three operations
to construct the difference branch, the global branch, and the similar branch to further
refine and extract the different information of the dual-temporal remote-sensing image.
These three operations are: Through the subtraction operation, the extracted feature maps
are directly subtracted, and the obtained feature maps have sufficient difference semantic
information. The difference branch further extracts this feature map, the concat operation
stacks the extracted feature maps on the channel dimension, and the obtained feature maps
have various rich semantic information, mainly acting on the global branch. In addition,
the extracted feature maps are directly added, and the obtained feature maps have a large
number of similar semantic information corresponding to similar branches.

Figure 1 depicts the overall architecture of the MHCNet proposed in this paper, which
consists of a backbone network and four modules. Each layer of ResNet-34 contains
different levels of semantic information, which helps us to quickly extract multi-scale
information, and the residual structure of ResNet-34 can prevent the network from being
too deep. Therefore, we use ResNet-34 with two common parameters as the backbone
network of change detection. The four modules are the cross-scale feature-attention module
(CSAM), global semantic filtering module (GSFM), double-branch information-fusion
module (DBIFM), and similarity-enhancement module (SEM). In the feature-encoding
phase, two ResNet-34s with common parameters are used to downsample the dual-time
remote-sensing image and obtain four different levels of semantic information. In the
feature-decoding phase, the cross-scale feature-attention module (CSAM) focuses on the
features after the subtraction operation and optimizes the ability of the difference branch to
extract the difference semantic information. The global semantic filtering module (GSFM)
improves the efficiency of feature extraction for the rich semantic information after the
concat operation. The double-branch information-fusion module (DBIFM) is a weighted
aggregation of the difference semantic information extracted using the cross-scale feature-
attention module (CSAM) and the global semantic information extracted using the global
semantic filtering module (GSFM). The similarity-enhancement module (SEM) extracts
similar semantic information after the subtraction operation, which is used to restore the
image in upsampling and correct the edge of the image.

2.1. Cross-Scale Feature-Attention Module (CSAM)

For bi-temporal remote-sensing images containing a variety of ground object information,
the difference semantic information it contains is also various, which requires the network
to have a higher ability to extract features [37]. Therefore, we use the subtraction operation
to construct the difference branch to increase the network’s capacity to extract the difference
semantic information. This operation directly subtracts the feature maps extracted using
ResNet-34 with two common parameters, and the further obtained feature maps contain
rich difference semantic information, which is strongly related to the change area we need to
identify, but this difference semantic information contains a lot of redundant information. In
addition, the deep features have rich semantic information, which is very beneficial to restore
the edge information of the object [38], while shallow features have rich global information,
which is beneficial to restore the overall contour of the object. Considering the above two
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points, we propose a cross-scale feature-attention module (CSAM) to optimize the ability of
the difference branch to extract the difference semantic information. At the same time, the
difference semantic information of each level and the difference semantic information of the
previous level guide each other to obtain better difference semantic information. The design
of the CSAM module draws on BiseNetv2 [39].
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Figure 1. The network framework of MHCNet. Four auxiliary modules are proposed in MHCNet,
which are the cross-scale feature-attention module (CSAM), global semantic filtering module (GSFM),
double-branch information-fusion module (DBIFM), and similarity-enhancement module (SEM).

Figure 2 depicts the module’s structure. The module has two inputs flow ∈ R
C
2 ×2H×2W

and fhigh ∈ RC×2H×2W, where C, H, and W represent the number of channels and the
height and width of the feature map, respectively. For low-level features, we use a 3 × 3
convolution with a step size of 2 to further extract the features, so that they have the same
scale as the high-level features. In addition, we also use another branch to weight them to
the high-level features that have been further extracted. For high-level features, we use a
3 × 3 convolution with doubling the number of channels to further extract the features, so
that they have the same number of channels as the low-level features. In addition, we also
weight it by another branch to further extract the low-level features. The following is the
calculation formula for the aforementioned process:

fout1 = f213×3( flow)⊗ S
(

f111×1
(

A
(

f121×1
(

fhigh

))))
(1)

fout2 = f123×3
(

fhigh

)
⊗ S

(
f111×1

(
A
(

f111×1( flow)
)))

(2)

fout = C( fout1, fout2) (3)

In the above three formulas, ⊗ represents matrix multiplication; f213×3(·) represents
a convolutional layer consisting of a two-dimensional convolution, a batch normalization,
and a Relu function, where 3× 3 in the superscript represents a convolution kernel of 3, and
2 and 1 in the subscript represent steps of 2 and the number of channels 1 times the original,
respectively; f123×3(·) represents a convolutional layer consisting of a two-dimensional
convolution, a batch normalization, and a Relu function, where 3 × 3 in the superscript
represents a convolution kernel of 3, and 1 and 2 in the subscript represent steps of 1
and the number of channels 1/2 times the original, respectively; f121×1(·) represents a
convolutional layer consisting of a two-dimensional convolution, a batch normalization,
and a Relu function, where 1 × 1 in the superscript represents a convolution kernel of 1,
and 1 and 2 in the subscript represent steps of 1 and the number of channels 1/2 times
the original, respectively; f111×1(·) represents a convolutional layer consisting of a two-
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dimensional convolution, a batch normalization, and a Relu function, where 1 × 1 in the
superscript represents a convolution kernel of 1, and 1 and 1 in the subscript represent
steps of 1 and the number of channels 1 times the original; S(·) represents the sigmoid
activation function; and C(·, ·) represents the stacking operation of two feature maps on
the channel dimension.
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C×H×W
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AvgPool
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Figure 2. Structure of cross-scale feature-attention module.

2.2. Global Semantic Filtering Module (GSFM)

The concat operation we introduced in the global branch is to stack the various levels
of features extractedusingby ResNet-34 [40] with two common parameters on the channel
dimension to obtain the global semantic information. Although the concat operation
can completely retain the two parts of the extracted semantic information, it ignores the
previous relationship between the two. In addition, the extracted rich semantic information
can be classified not only into semantic information such as factories, farmland, roads,
buildings, and mining areas, but also into semantic information of changing areas and
semantic information of unchanged areas. However, for the two-category change-detection
task, we only need to focus on one of the semantic information sets. Therefore, it is evident
that using the concat operation would result in information redundancy, which will affect
the accuracy of the predictions and must be avoided. Considering the above two points,
we propose a global semantic filtering module (GSFM) to optimize the ability of the global
branch to extract information and avoid the above two shortcomings. The specific way is
to extract and strengthen the connection between the two parts of the semantic information
through channel attention and location attention with residual structure and then filter out
the global semantic information of the change area we focus on as completely as possible
through the convolution layer. The design of the GSFM module draws on Cbam [41].

The input of the module is set to fcat ∈ R2C×H×W. The structure diagram of the
module is primarily separated into two sections, as shown in Figure 3. In the first part,
first, we extract two different channel information sets of C × 1 × 1 using global average
pooling and global maximum pooling, respectively, and sum them. Then, the results are
entered into the upper and lower 1 × 1 convolutions, respectively, and then the sum of
the results is sent to the sigmoid activation function to obtain the weighting coefficient.
The weighting coefficient is directly multiplied by fcat and then added to fcat. Finally, the
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feature fout1 that screens the channel features is obtained. In the second part, we first
obtain two feature maps with a size of 1 × H ×W on the channel dimension of fout1 using
mean and max operations, respectively. Then, the two images are stacked on the channel
dimension and then fed into a 1 × 1 convolution to obtain a weighted coefficient of 1 × H
×W. The weighted coefficient is directly multiplied by the fout1 matrix fout2, and then fout1
and addition are performed. The feature fout2 that filters the channel features is obtained.
Finally, fout2 is fed into a 3 × 3 convolution for extraction to obtain the final output fout.
The following is the calculation formula for the aforementioned process:

fout1 = fcat + fcat ⊗ S
(

f111×1(A( fcat) + M( fcat)) + f111×1(A( fcat) + M( fcat))
)

(4)

fout2 = fout1 + fout1 ⊗ f111×1(mean( fout1) + max( fout1)) (5)

fout = f123×3( fout2) (6)

Adaptive

Avgpool

Adaptive

Maxpool

1×1conv

1×1conv

Sigmoid

mean

max

1×1conv

2C×H×W

2C×H×W

2C×H×W

3×3conv

C×H×W

CC

Figure 3. Structure of global semantic filtering module.

In the above three formulas, ⊗ represents matrix multiplication; f111×1(·) represents
a convolutional layer consisting of a two-dimensional convolution, a batch normalization,
and a Relu function, where 1× 1 in the superscript represents a convolution kernel of 1, and
1 and 1 in the subscript represent steps of 1 and the number of channels 1 times the original;
f123×3(·) represents a convolutional layer consisting of a two-dimensional convolution,
a batch normalization, and a Relu function, where 3 × 3 in the superscript represents a
convolution kernel of 3, and 1 and 2 in the subscript represent steps of 1 and the number of
channels 1/2 times the original; mean(·) represents the function that averages the features
in the channel dimension; and max(·) represents the function that takes the maximum
value of the feature in the channel dimension.

2.3. Double-Branch Information-Fusion Module (DBIFM)

Through the two branches of the differential branch and the global branch, we obtain
the differential semantic information focusing on the changing region and the global
semantic information focusing on the changing region of different features. These two
information subsets can constrain the model to accurately determine the change area as
much as possible, so we need to efficiently fuse these two different semantic information
sets. We propose the double-branch information-fusion module to fuse the two information
sets to successfully assess the change area because simple addition, cat, and convolution
fusion cannot fully utilize the information and may compromise the information integrity.

The structure of the double-branch information-fusion module is shown in Figure 4,
and the feature maps of the final output of the similar branch and the global branch are
received at the same time. Therefore, there are two inputs set to fsub ∈ RC×H×W and
fcat ∈ RC×H×W. Firstly, matrix multiplication is performed on fsub and fcat, and then the
weighting coefficients with a size of C × 1 × 1 are obtained using global average pooling.
Then, the weighting coefficients that are consistent with the two semantics are learned
by two branches composed of two 1 × 1 convolutions. After that, the two weighting
coefficients are multiplied with fsub and fcat, respectively. Finally, the obtained results are
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added to the 3 × 3 convolution to obtain the final output feature. The following is the
calculation formula for the aforementioned process:

fout1 = fsub ⊗ f111×1
(

f111×1(A( fsub ⊗ fcat))
)

(7)

fout2 = fcat ⊗ f111×1
(

f111×1(A( fsub ⊗ fcat))
)

(8)

fout = f113×3( fout1 + fout2) (9)

C×H×WC×H×W

C×H×W

 Adaptive 

Avgpool

1×1conv 1×1conv

1×1conv 1×1conv

3×3conv

Figure 4. Structure of double-branch information-fusion module.

In the above three formulas, ⊗ represents matrix multiplication; f111×1(·) represents
a convolutional layer consisting of a two-dimensional convolution, a batch normalization,
and a Relu function, where 1 × 1 in the superscript represents a convolution kernel of 1,
and 1 and 1 in the subscript represent steps of 1 and the number of channels 1 times the
original; and f113×3(·) represents a convolutional layer consisting of a two-dimensional
convolution, a batch normalization, and a Relu function, where 3 × 3 in the superscript
represents a convolution kernel of 3, and 1 and 1 in the subscript represent steps of 1 and
the number of channels 1 times the original.

2.4. Similarity-Enhancement Module (SEM)

The difference branch and global branch, as well as the cross-scale feature-attention
module (CSAM), global semantic filtering module (GSFM), double-branch information-
fusion module (DBIFM) can help the model to accurately determine the change area as
much as possible, but there may be missed detection and false detection. Therefore, we
design a similar branch separately, extract similar semantic information through the similar
branch to verify the accuracy of the change area detection from the unchanged area, and
correct the missed detection and false detection. In the similar branch, we introduce the
addition operation, which directly adds the features extracted using ResNet-34 with two
common parameters to obtain similar semantic information. In order to verify whether the
change area is accurate and correct the missed detection and false detection, we designed a
similarity-enhancement module (SEM) in the feature-decoding process.

The structure of the similarity-enhancement module (SEM) is shown in Figure 5. This
module has a total of three inputs, which are the recovering feature f1 ∈ RC×H×W, the feature
f2 ∈ RC×H×W with similar semantic information obtained from the similar branch, and the
output feature f3 ∈ RC×H×W obtained using the double-branch information-fusion module.
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First, f1 and f2 are matrix-multiplied, sent to a 1 × 1 convolution, and then added to f3 to
obtain the output. The following is the calculation formula for the aforementioned process:

fout1 = f111×1( f1 ⊗ f2) (10)

fout = fout1 + f3 (11)

1×1conv

C×H×W

C×H×W

C×H×W

C×H×W

1×1conv

C×H×W

C×H×W

C×H×W

C×H×W

Figure 5. Structure of similarity-enhancement module.

In the above two formulas, ⊗ represents matrix multiplication and f111×1(·) represents a
convolutional layer consisting of a two-dimensional convolution, a batch normalization, and a
Relu function, where 1 × 1 in the superscript represents a convolution kernel of 1, and 1 and 1
in the subscript represent steps of 1 and the number of channels 1 times the original.

In addition, we improve the pyramid pooling module (PPM) and place it at the
bottom layer to further extract the similar semantic information obtained using the addition
operation. The extracted features are directly involved in the decoding process. The
improved pyramid pooling module (PPM) is shown in Figure 6.

Adaptive

Avgpool(1)

Adaptive
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1×1conv

1×1conv
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(C/4)×H×W

(C/4)×H×W

C×H×W

Figure 6. Improved pyramid pooling module structure.

The input of the improved pyramid module (PPM) is the similar semantic information
f ∈ RC×H×W at the bottom. First, the global average pooling of four different pooling
kernels is used to extract features of different scales, then 1 × 1 convolution is used for
dimensionality reduction, and finally they are stacked together for output. The following is
the calculation formula for the aforementioned process:
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fout = C
(

f141×1
(

A1( f )
)

, f141×1
(

A2( f )
)

, f141×1
(

A4( f )
)

, f141×1
(

A6( f )
))

(12)

In the above formulas, f141×1(·) represents a convolutional layer consisting of a two-
dimensional convolution, a batch normalization, and a Relu function, where 1 × 1 in the
superscript represents a convolution kernel of 1, and 1 and 1 in the subscript represent steps
of 1 and the number of channels 1/4 times the original. Aa(·) represents a two-dimensional
global average pooling with a pooled kernel size a.

2.5. Summary at the End of the Chapter

In this chapter, we first provide a detailed introduction of the overall framework of
MHCNet. Subsequently, we discuss the strengths and weaknesses of constructing different
branches, global branches, and similar branches. Then, we propose a cross-scale feature-
attention module (CSAM), a global semantic filtering module (GSFM), and a similarity-
enhancement module (SEM) to optimize the advantages and disadvantages of the three
branches. We also propose a double-branch information-fusion module (DBIFM) to weight
and fuse two different semantic information sources. Finally, we improve the pyramid module
at the bottom to improve the role of the similar branches. In addition, we visualized feature
extraction at each stage of the model. The specific results are shown in Figure 7.

(a) (b) (c) (d) (e)(a) (b) (c) (d) (e)

Figure 7. Heatmap where (a) represents the heat map of the backbone network + SEM, (b) represents
the heat map after adding CSAM to the basis of (a), (c) represents the heat map after adding GSFM
to the basis of (b), (d) represents the heat map after adding DBIFM to (c), and (e) is a real label
diagram. As illustrated in the figure, the model’s attention to the changing areas gradually increases
as the modules are continuously stacked. This observation indicates the effectiveness of each of our
modules in improving the model’s ability to represent features.

3. Dataset

We created the BTRS-CD dataset to demonstrate the effectiveness of our approach.
Additionally, we also used the LEVIR-CD dataset in our work [30].

3.1. BTRS-CD Dataset

Google Earth’s global geomorphological image is integrated from satellite images and
aerial data. Users can obtain satellite images captured using remote-sensing technology at
any time around the world free of charge. The BTRS-CD dataset built in this paper is taken
from Google Earth. We collected 3520 pairs of 512 × 512 dual-time remote-sensing photos,
including 2850 and 570 images in the training and test sets, respectively. All dual-date
satellite images used in this study were captured from 664 time points in eastern and
central China between 2010 and 2019. These images cover 659 different objects and their
surrounding environments, with a coverage area of approximately 3 square kilometers per
image. The following is the link to the dataset: https://pan.baidu.com/s/1wph-EHhU1
6eDdAXasVDhhg?pwd=014t (accessed on 28 February 2023). The publication date of this
article is 11 April 2023.

https://pan.baidu.com/s/1wph-EHhU16eDdAXasVDhhg?pwd=014t
https://pan.baidu.com/s/1wph-EHhU16eDdAXasVDhhg?pwd=014t
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High-quality datasets are essential for improving the robustness and prediction accu-
racy of the model. Therefore, we developed the following four criteria to help us produce
high-quality datasets:

1. The entire dataset should contain a large number of changed regions.
2. Human-induced geomorphological changes, such as the expansion of roads in fertile

land, the conversion of forests into factories, the expansion and reconstruction of
urban buildings, the diversion of rivers, and the return of farmland to forests, can lead
to changed areas in remote-sensing images. Therefore, the dataset should include as
many of these geomorphological changes as possible.

3. Seasonal geomorphological changes can also lead to changes in remote-sensing im-
ages, such as significant changes in winter and summer broad-leaved forest and river
ebb and flow.

4. Completely rely on manual tagging to turn the most accurate change-area information
into a label map in the dataset.

Figure 8 shows a sample of the dataset showing several types of change regions. The
dataset includes various types of changes, such as scattered housing reconstruction, clus-
tered factory buildings, irregular roads, and changes caused by large factory construction.
Additionally, the dataset also includes many pairs of dual-time remote-sensing images that
do not contain any change areas, but exhibit differences in brightness and color due to
different shooting times.

The TRS-CD dataset’s proportion distribution map for the change area is shown in
Figure 9. There are more dual-time remote-sensing images with a change area of 0–60% in
the dataset.

Image1

Label

    
 
    

  
   

  
    

 
    

  
   

  
    

  
   

 

(e)(d)(c)(b)(a)

Image2

Figure 8. BTRS-CD dataset. Each column represents a pair of two-time remote -ensing images,
image1 and image2 are real remote-sensing images, and label is a label (white is the change region,
black is the invariant region).Where, (a) represents the no-change area, (b) represents the construction
of factories, (c) represents the transformation of roads into fields, (d) represents the transformation of
factories into vacant land, and (e) represents the changes within the building complex.

3.2. LEVIR-CD Dataset

The LEVIR-CD dataset is based on Google Earth global images from 2002 to 2018 in
Texas. It consists of 637 pairs of 1024 × 1024 dual-time remote-sensing images. It has the
following three characteristics:
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1. The entire dataset covers a time span of 5 to 14 years; thus, the remote-sensing image
includes a significant number of areas that have undergone changes.

2. In terms of spatial coverage, the remote-sensing images from the entire dataset were
collected from more than 20 distinct regions across Texas, encompassing a variety of
settings such as residential areas, apartments, vegetated areas, garages, open land,
highways, and other locations.

3. The dataset takes into account seasonal and illumination changes, which are crucial
factors for developing effective algorithms.

The 1024 × 1024 remote-sensing image is divided into 512 × 512 remote-sensing
images due to computational resource constraints, as shown in Figure 10.
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Figure 10. LEVIR dataset diagram. Each column represents a pair of two-time remote-sensing
images, image1 and image2 are real remote-sensing images, and label is a label (white is the change
region, black is the invariant region).Where, A represents the conversion of good land to buildings, B
represents the conversion of forests to buildings (concentrated change areas), C represents conversion
of forests to buildings (scattered change areas), D represents conversion of forests to buildings
(uneven distribution of change areas), and E represents building houses on open land.

Figure 9. The proportion distribution map of the change area of the BTRS-CD dataset. The percent
of the changing area is plotted along the horizontal axis, and the sample size is plotted along the
vertical axis.
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Figure 10. LEVIR dataset diagram. Each column represents a pair of two-time remote-sensing
images, image1 and image2 are real remote-sensing images, and label is a label (white is the change
region, black is the invariant region).Where, (a) represents the conversion of good land to buildings,
(b) represents the conversion of forests to buildings (concentrated change areas), (c) represents
conversion of forests to buildings (scattered change areas), (d) represents conversion of forests to
buildings (uneven distribution of change areas), and (e) represents building houses on open land.
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4. Experiment

To confirm the efficacy of our technique in achieving the change-detection objective,
we conducted ablation experiments and comparison experiments. Our experiments were
conducted on the TRS-CD and LEVIR-CD datasets, and our model was evaluated based on
four metrics: ACC, RC, PR, and Miou.

4.1. Experimental Details

The deep learning framework used in the model code is PyTorch, and we conducted
all experiments on a computer equipped with an RTX 3070 8GB graphics card. The learning
rate is a crucial hyperparameter that significantly affects the training process and the final
performance of the model. If the learning rate is consistently high, the model may fail to
converge or diverge altogether. Conversely, if the learning rate is always low, the model
may converge very slowly, and even if trained for an extended period, it may only reach a
local optimal solution. In this paper, we employed an exponential decay mechanism for
the learning rate, which started with a relatively high value in the early stages of training
and gradually decreased over time. The decay rate and initial learning rate were carefully
chosen through experimentation to achieve the optimal results. The formula for calculating
how to change the learning rate is as follows:

η = η0 ×
(

1− E
Eg

)P
(13)

where η stands for the adjusted learning rate, η0 for the baseline learning rate, Eg for
the maximum number of iterations, and P a constant that regulates the learning-rate
decay. Adam was selected as the optimization algorithm. Adam covers many optimization
techniques and is a tool for running deep learning algorithms under python.

The loss function selects BCEWithLogitsLoss. Its specific calculation formula is as follows:

L = {l1, . . . , lN}, ln = −[yn · log(S(xn)) + (1− yn) · log(1− S(xn))] (14)

In the above formula, S(·) represents the sigmoid function. N is the number of batches.
n is the number of labels in each batch. xn is the predicted value, yn is the label value, and
ln is the loss value of a single batch. L is the total loss. The BCEWithLogitsLoss function
has a better robust performance when performing calculations.

We set the initial learning rate to 0.0015, the maximum number of iterations to 200,
the momentum parameter P to 0.95, and the batch size to 6. Ablation experiments and
comparison experiments were performed on the self-built TRS-CD dataset. The parameter
settings of the two experiments were the same. We conducted experiments to evaluate the
generalization performance of our model using the LEVIR-CD dataset, with a focus on test-
ing the model’s ability to detect changes in unfamiliar environments. We set the maximum
number of iterations to 100 and all other parameters are the same as the experiments on the
self-built TRS-CD dataset.

4.2. Selection of Backbone

The first experiment was for picking out a better performing backbone network.
The backbone networks chosen are mainly VGG [42] and ResNet [43]. The results of the
experiment are shown in Table 1. The best results are shown in bold.

As shown in Table 1, ResNet achieved a higher accuracy than VGG. In addition,
the residual structure of ResNet can effectively prevent performance degradation caused
by deep network structures. Therefore, we chose ResNet34 as the backbone network
for MHCNet.
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Table 1. Comparative experiment of MHCNet under different backbone networks (bold numbers
represent optimal results).

Backbone ACC (%) RC (%) PR (%) MIoU (%)

VGG16 93.96 63.83 74.63 76.70
VGG19 93.46 65.90 69.61 75.59

ResNet18 95.79 73.92 82.30 83.56
ResNet34 96.01 75.33 82.90 84.36

4.3. Ablation Experiment of TRS-CD Dataset

We conducted ablation experiments on our self-built TRS-CD dataset to evaluate the
impact of the auxiliary module on the performance of the entire network. Specifically, we
varied the network architecture by adding an auxiliary module to assess the effect on the
overall performance of the model. The experiment provided insight into their contribution
to the final performance and parameters of the model.

Table 2 shows the ablation results of MHCNet. Based on the backbone network, we
add modules one by one to verify the effectiveness of each module. The training strategies
of all models are the same. In this experiment, we mainly focus on the value of Miou.

Table 2. Ablation experiments of MHCNet (bold numbers represent optimal results).

Method ACC (%) RC (%) PR (%) MIoU (%) Param (M)

Backbone 95.53 74.09 79.85 82.77 30.65
Backbone + CSAM 95.71 74.55 80.63 83.14 33.45

Backbone + CSAM + GSFM 95.80 74.59 81.71 83.58 36.25
Backbone + CSAM + GSFM + DBIFM 95.94 74.83 82.50 84.19 40.08

Backbone + CSAM + GSFM + DBIFM + SEM 96.01 75.33 82.90 84.36 40.43

The cross-scale feature-attention module (CSAM) proposed in the difference branch
can optimize the ability of the difference branch to extract the difference semantic informa-
tion and enable the two different scales of difference semantic information to guide each
other to obtain the best possible difference semantic information. When this module is
introduced, the value of Miou increases by 0.37%.

The global semantic filtering module (GSFM) acts on the global branch, which can
extract and enhance the internal relationship between the two parts of the semantic infor-
mation and then filter out the global semantic information of the changed region. After
introducing this module, the value of Miou increases by 0.44%.

The double-branch information-fusion module (DBIFM) is a weighted fusion of the
difference semantic information and the global semantic information focusing on the
changing region. The value of Miou increases by 0.61% after adding this module. The
similarity-enhancement module (SEM) proposed in the similar branch tests the accuracy of
the change region prediction from the invariant region and corrects the missed detection
and false detection, improves the edge information, and increases the Miou value by 0.17%.

The four auxiliary modules of CSAM, GSFM, DBIFM, and SEM proposed by us
increase the Miou by 0.37%, 0.44%, 0.60%, and 0.17%, respectively, and the final MHCNet
increases the Miou by 1.59% compared with the basic network. Thus, we can conclude that
for the change-detection task, each auxiliary module we propose can improve the ability of
the network to extract features.

MHCNet has 40.43 M parameters. It is not difficult to see from Table 2 that MHCNet’s
backbone network has 30.65 M. This is because the backbone network uses two common
parameters in ResNet34 that are used to extract features from two images respectively.
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4.4. TRS-CD Dataset Comparison Test

In this section, we compared our proposed algorithm with existing change-detection
algorithms. Given that semantic segmentation is a fundamental component of change-
detection algorithms, we also included three traditional semantic-segmentation algorithms
in our comparative experiments. This experiment provided a comprehensive evaluation of
the performance of our model.To ensure a fair comparison, we initialized all parameters of
the models randomly and learned them from scratch, even in cases where some networks
had pre-trained parameters available. By training all models from scratch, we were able to
assess their true performance and minimize the impact of any pre-existing biases or learned
features. Table 3 presents the experimental outcomes.

Table 3. Comparative experiments on TRS-CD dataset (bold numbers represent optimal and subopti-
mal results).

Method ACC (%) RC (%) PR (%) MIoU (%) Param (M) Flops (GMac)

BiSeNet [44] 95.21 71.92 78.56 81.33 22.02 22.48
FCN8s [45] 92.85 66.06 66.84 74.49 18.65 80.68
UNet [46] 92.68 59.67 70.00 73.18 13.42 124.21

FC_DIFF [47] 91.12 39.27 74.83 65.87 11.35 19.29
FC_EF [47] 90.11 48.06 67.38 66.51 11.35 14.79

FC_CONC [47] 91.58 51.25 70.87 69.61 11.55 19.30
ChangNet [48] 94.18 62.78 75.62 76.88 23.52 42.73
TCDNet [49] 95.07 69.98 79.31 80.97 23.28 32.65

MFGANnet [50] 95.54 72.40 80.09 82.32 33.53 52.82
MHCNet (Ours) 96.01 75.33 82.90 84.36 40.43 59.07

Table 3 records the experimental results of MHCNet and other network models on the
TRS-CD dataset. From the above data, the following four points can be obtained:

1. The first three lines in the table are deep learning networks dedicated to semantic
segmentation. The best-performing network is BiseNet, with a value of 81.5% for
Miou, indicating that the change-detection task is a more complex binary semantic-
segmentation task.

2. Among other networks, FC_DIFF was specifically proposed for change detection
in 2018 and achieved the lowest performance on the TRS-CD dataset with a Miou
score of only 65.87%. In contrast, MFGANnet, proposed in 2022, achieved the highest
performance with a Miou score of 82.32%. It can be seen that, over time, researchers
have made breakthroughs in the field of change detection, and the proposed change-
detection networks are becoming more and more effective.

3. Our proposed MHCNet achieved a Miou score of 84.36% on the TRS-CD dataset, out-
performing the second-best-performing MFGANnet by 2.04%. These results demon-
strate that MHCNet is more effective than the other compared networks in the chal-
lenging task of change detection.

4. MHCNet has a relatively large number of parameters compared to the other models.
This is due to the dual-branch structure of MHCNet, which results in a large number
of parameters in the backbone network, accounting for almost three-quarters of
the total model parameters. Despite its relatively large number of parameters, the
model complexity of MHCNet is at a medium level, making it a practical option for
change-detection tasks.

The test set of the self-built TRS-CD dataset contains 570 pairs of dual-temporal
remote-sensing images. We selected three sets of predicted change maps for evalua-
tion, corresponding to housing reform, land-use change, and water change, as shown in
Figure 11. The first picture has a larger change area with relatively small sub-regions, which
challenges the detection ability of the network. As shown by the red circle in the image,
the other networks exhibit missed detections and their correctly detected areas have rough
edges. In contrast, our network can effectively predict the change area with more delicate
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edges. In the second image, the results predicted by our model are basically consistent with
the real labels and perform better than other networks. The change area of the third picture
is a slender road. Some poorly performing networks cannot detect the change area, and the
better-performing networks’ prediction results are also intermittent. Our network predicts
a continuous change area. It can be seen from the performance in the prediction map that
MHCNet performs best and has a higher performance than the other networks.

Label (a) (b) (c) (d) (e)Image1(Ⅰ) 

(Ⅱ) 

(Ⅲ) 

(f) (g) (h) (i) (j)Image2

Label (a) (b) (c) (d) (e)Image1
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Label (a) (b) (c) (d) (e)Image1

(g)(f) (h) (i) (j)Image2
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(f) (g) (h) (i) (j)Image2
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Label (a) (b) (c) (d) (e)Image1

(g)(f) (h) (i) (j)Image2

Figure 11. Prediction graphs of different algorithms on TRS-CD dataset. A comparison of three
pairs of dual-time remote-sensing images is presented in (I–III). Image1 and Image2 represent bi-
temporal Google Earth images; label means label; (a) represents our MHCNet prediction graph;
(b–j) represent the prediction maps for MFGANnet, BiSiNet, ChangNet, FC_CONC, FC_DIFF, FC_EF,
FCN8s, TCDnet, and UNet, respectively.

4.5. Comparative Experiments on the LEVIR-CD Dataset

In this section, we perform comparative experiments on the LEVIR-CD dataset to
test the generalization and robustness of MHCNet. Due to the limitation of GPU physical
memory, we simultaneously cut a 1024 × 1024 pixel two-time remote-sensing image into
four 512 × 512 pixel images. Therefore, the number of images in the training set and the
validation set of the LEVIR-CD dataset increased to 3600 and 480, respectively.

Table 4 shows our experimental results. The first three networks in the table are
behavior semantic segmentation networks, and the other networks are all change-detection
private networks. The FC_EF network, which has a Miou index of just 82.86%, is the worst
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change-detection network on the LEVIR-CD dataset, as can be seen from the table, whereas
the UNet network has a Miou index of 83.36%. Compared with the other networks, our
MHCNet has the highest detection accuracy. The Miou index can reach 86.92%, which is
0.67% higher than that of UNet.

Table 4. Comparison experiments on the LEVIR-CD dataset (bold numbers represent optimal and
suboptimal results).

Method ACC (%) RC (%) PR (%) MIoU (%) Param (M) Flops (GMac)

BiSeNet 98.04 80.49 78.74 83.36 22.02 22.48
FCN8s 98.39 79.08 83.33 84.68 18.65 80.68
UNet 98.62 81.32 84.69 86.25 13.42 124.21

FC_DIFF 98.46 78.84 85.72 85.26 11.35 19.29
FC_EF 97.94 80.26 78.07 82.86 11.35 14.79

FC_CONC 98.54 79.72 86.53 86.09 11.55 19.30
TCDNet 98.20 77.02 83.05 83.63 23.28 32.65

ChangNet 98.12 79.57 81.21 83.74 23.52 42.73
MFGANnet 98.30 78.49 84.70 84.73 33.53 52.82

MHCNet (Ours) 98.65 81.79 86.59 86.92 40.43 59.07

Figure 12 is a prediction diagram of three different situations we selected from the
validation set. There are three situations depicted in these pictures: a transition from open
space to some houses, a transition from some houses to a large number of houses, and
changes that occur during the day and night. The first picture shows a transition from
open space to a part of a house, resulting in a change area scattered throughout the entire
picture, which makes it prone to missed detection. As seen from the prediction graph, only
MHCNet perfectly predicts all regions, while the other networks have varying degrees of
missed detection, multiple detection, and false detection. The second image depicts a series
of small change areas side by side. Some networks with poor performance are unable to
accurately detect the boundaries of the change area, resulting in incomplete predictions.
However, the prediction results of the MHCNet network are the closest to the real label. In
the third image, besides the numerous change areas, the image illumination significantly
differs and there are many background interference factors. In this case, as shown in
the red circle in the figure, apart from the prediction results of MHCNet, other networks
exhibit shortcomings such as missed detection and insufficient detail in the shapes of their
prediction results. The prediction results indicate that MHCNet has a high generalization
ability and anti-interference ability.

4.6. Comparative Experiments on Cross-Dataset

Two sets of comparative experiments on the TRS-CD and LEVIR-CD datasets demonstrate
that MHCNet exhibits an excellent feature-extraction ability and robust performance. Furthermore,
we designed two additional experiments to further verify MHCNet’s robust performance:

1. Train on the TRS-CD dataset and test on the LEVIR-CD dataset.
2. Train on the LEVIR-CD dataset and test on the TRS-CD dataset.

In addition, these two sets of experiments also help to verify whether MHCNet has
overfitting. For simplicity, we call these two datasets TRS-LEVIR and LEVIR-TRS. Tables 5 and 6
show the indicators of all models on TRS-LEVIR and LEVIR-TRS, respectively.

The above two tables show that the indicators of all models on the two datasets are
generally lower than the TRS-CD and LEVIR-CD datasets.This shows that the TRS-CD
and LEVIR-CD datasets contain a large number of distinct samples. Models trained on
one dataset struggle to accurately predict images from another dataset. Therefore, LEVIR
can be selected as a suitable dataset for conducting generalization experiments to a certain
extent. Second, MHCNet achieved the highest score on our primary evaluation metric,
Miou. Additionally, MHCNet achieved basically the highest score on the other evaluation
metrics, demonstrating that the model exhibits strong generalization and robustness.
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Figure 12. Prediction of different algorithms on the LEVIR-CD dataset. A comparison of three
pairs of dual-time remote-sensing images is presented in (I–III). Image1 and Image2 represent bi-
temporal Google Earth images; label means label; (a) represents our MHCNet prediction graph;
(b–j) represent the prediction maps for MFGANnet, BiSiNet, ChangNet, FC_CONC, FC_DIFF, FC_EF,
FCN8s, TCDnet, and UNet, respectively.

Table 5. Comparative experiments on TRS-LEVIR dataset (bold numbers represent optimal and
suboptimal results).

Method ACC (%) RC (%) PR (%) MIoU (%) Param (M) Flops (GMac)

BiSeNet 91.97 60.65 61.69 66.08 22.02 22.48
FCN8s 92.08 59.97 57.53 64.25 18.65 80.68
UNet 92.28 61.44 62.48 65.55 13.42 124.21

FC_DIFF 90.18 44.55 56.74 63.93 11.35 19.29
FC_EF 91.74 45.19 60.72 64.95 11.35 14.79

FC_CONC 90.46 44.85 59.11 63.86 11.55 19.30
TCDNet 90.83 63.62 63.32 66.31 23.28 32.65

ChangNet 91.07 54.07 56.68 62.80 23.52 42.73
MFGANnet 92.16 61.47 64.27 67.94 33.53 52.82

MHCNet (Ours) 92.44 63.30 65.12 68.71 40.43 59.07
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Table 6. Comparative experiments on LEVIR-TRS dataset (bold numbers represent optimal and
suboptimal results).

Method ACC (%) RC (%) PR (%) MIoU (%) Param (M) Flops (GMac)

BiSeNet 88.51 55.74 58.26 65.31 22.02 22.48
FCN8s 88.10 55.15 57.73 62.29 18.65 80.68
UNet 88.28 56.83 58.14 65.74 13.42 124.21

FC_DIFF 88.86 53.26 52.35 65.67 11.35 19.29
FC_EF 87.54 52.15 57.74 64.57 11.35 14.79

FC_CONC 88.61 54.36 51.49 65.55 11.55 19.30
TCDNet 88.48 55.57 55.84 66.24 23.28 32.65

ChangNet 88.23 56.09 54.70 64.10 23.52 42.73
MFGANnet 8.39 56.17 56.31 66.34 33.53 52.82

MHCNet (Ours) 88.90 57.12 58.02 66.78 40.43 59.07

5. Summary

First, we propose a multi-branch collaborative change-detection network based on
Siamese structure (MHCNet). In this network, we introduce three branches to extract
different semantic information, including a difference branch, global branch, and simi-
lar branch, to extract different semantic information, global semantic information, and
similar semantic information of the change area. In addition, we propose four auxiliary
modules, CSAM, GSFM, DBIFM ,and SEM, to assist the three branches to extract semantic
information. Finally, the extracted semantic information is supplemented into the recovery
graph in the feature-decoding stage. From the perspective of the number of parameters and
complexity of the model, NBCNet has the largest number of parameters, but it does not
produce a large gap compared with MFGANnet. The complexity is at an upper moderate
level, well below UNet and FCN8s. The specific process is as follows:

The CSAM module is proposed in the difference branch, which can optimize the
ability of the difference branch to extract the difference semantic information and allow the
difference semantic information of two different scales to guide each other to obtain the
best possible difference semantic information. The GSFM module is proposed in the global
branch, which can extract and enhance the internal relationship between the two parts
of the semantic information and filter out the global semantic information of the change
area. The DBIFM module combines the differential semantic information with the global
semantic information that focuses on the changing region to help the model accurately
determine the changing region. The SEM module is proposed in the similar branch. This
module tests the accuracy of the change region prediction from the invariant region and
corrects the missed detection and false detection to improve the edge information.

In the experiment, MHCNet can obtain higher evaluation indicators than other net-
works on the self-built TRS-CD dataset and the public LEVIR-CD dataset from a specific
numerical point of view. The specific Miou indicators can reach 84.36% and 86.92%, re-
spectively. MHCNet also received the best scores on the two datasets cross-acquired with
TRS-CD and LEVIR-CD. The specific Miou indicators can reach 68.71% and 66.78%, respec-
tively. From the effect of the comparison chart, MHCNet’s prediction chart is the closest to
the real label. The summary is as follows:

1. As can be seen from the comparison graph, MHCNet performs better at handling
edge details, such as the shape of the river and adjacent houses, among others.

2. Other networks have many missed detections, multiple detections, and false detec-
tions. MHCNet has few of these problems, and the prediction graph is closest to the
real label.

3. MFGANnet, BiseNet, and TCDNet ranked second, third, and fourth, respectively, on
the TRS-CD dataset, but ranked fifth, sixth, and seventh on the LEVIR-CD dataset.
In contrast, MCDNet achieves the best results on both the TRS-CD and LEVIR-CD
datasets and exhibits superior robustness and generalization.
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4. MHCNet received the best score for every evaluation metric when tested on the
cross-dataset. Despite having the largest number of parameters, MHCNet exhibits
better generalization performance and does not exhibit significant signs of overfitting,
indicating that the model performs quite well.

Currently, transformers are proven to be effective in the image domain. Some
studies [51–54] have applied transformers to the field of remote-sensing image analysis.
In the future, we should apply transformers to remote-sensing image change-detection
tasks. In addition, the light weight of the model is also a research direction of scholars [55].
Due to the feature that a pair of images is required for the change-detection task, the
number of parameters and the complexity of the model are often doubled. How to
reduce the parameter amount and complexity of the model is crucial to future change-
detection models.
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