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Abstract: To restrict the entry of polluting components into water bodies, particularly rivers, it is criti-
cal to undertake timely monitoring and make rapid choices. Traditional techniques of assessing water
quality are typically costly and time-consuming. With the advent of remote sensing technologies and
the availability of high-resolution satellite images in recent years, a significant opportunity for water
quality monitoring has arisen. In this study, the water quality index (WQI) for the Hudson River has
been estimated using Landsat 8 OLI-TIRS images and four Artificial Intelligence (AI) models, such as
M5 Model Tree (MT), Multivariate Adaptive Regression Spline (MARS), Gene Expression Program-
ming (GEP), and Evolutionary Polynomial Regression (EPR). In this way, 13 water quality parameters
(WQPs) (i.e., Turbidity, Sulfate, Sodium, Potassium, Hardness, Fluoride, Dissolved Oxygen, Chloride,
Arsenic, Alkalinity, pH, Nitrate, and Magnesium) were measured between 14 March 2021 and 16
June 2021 at a site near Poughkeepsie, New York. First, Multiple Linear Regression (MLR) models
were created between these WQPs parameters and the spectral indices of Landsat 8 OLI-TIRS images,
and then, the most correlated spectral indices were selected as input variables of AI models. With
reference to the measured values of WQPs, the WQI was determined according to the Canadian
Council of Ministers of the Environment (CCME) guidelines. After that, AI models were developed
through the training and testing stages, and then estimated values of WQI were compared to the
actual values. The results of the AI models’ performance showed that the MARS model had the best
performance among the other AI models for monitoring WQI. The results demonstrated the high
effectiveness and power of estimating WQI utilizing a combination of satellite images and artificial
intelligence models.

Keywords: water quality index; remote sensing; artificial intelligence models; spectral bands; spectral
indices; natural streams

1. Introduction

At the present time, human access to sanitary water resources has become cornerstone
of great importance for various consumptions. With the increase in urbanization along the
rivers and uneven distribution of water treatment centers, many areas have been facing
barriers to reducing surface water quality. Monitoring water resources plays a crucial
role in human health and preserves the ecosystem, and consequently, reducing the water
quality causes irreparable effects on humans and the environment. Hence, it is necessary
to continuously monitor the water quality states of natural streams [1–4]. Water Quality
Index (WQI) is a straightforward and mathematical equation that has been employed by
Horton [5] and Brown [6] to demonstrate suitable water quality conditions for agricultural,
industrial, and drinking purposes. In order to compute values of WQI, a variety of Water
Quality Parameters (WQPs) need to be observed/measured [3–6]. Accessing the measured
data of water quality parameters is one of the attention-stricken obstacles that environmen-
talists face. Although traditional methodologies of monitoring water quality are based on
in situ measurement (for a point in time and space), which provides accurate observations,
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these are laborious, expensive, and time-consuming [7–9]. The recent advancement in
remote sensing technologies brings vast opportunities to identify and quantify WQPs [9].
Over the last decade, the capacity of Landsat-8 [10–12] and Sentinel 2 [10,11,13,14] has been
evaluated to identify states of WQPs in several studies.

In recent years, numerous scholars have carried out investigations to create an
empirical algorithm to estimate WQP (optically active) using satellite images, such as
Turbidity [10,15,16] and chlorophyll-a [16–18].

1.1. Literature Review

Moreover, with the state-of-the-art development in machine learning (ML), data
mining (DM), and deep learning (DL) techniques, applying AI techniques to perform
various analyses of satellite images have improved the monitoring of water bodies’ quality
in recent years [19–21]. Numerous studies have been done to estimate various WQPs with
the aid of satellite images and AI techniques.

Chebud et al. [22] employed Landsat TM images and ground-measured data to de-
velop the artificial neural network (ANN) model in order to estimate three water quality
parameters (chlorophyll-a, turbidity, and phosphorus) in the Kissimmee River basin located
in the state of Florida, USA. According to the results of their research, the developed model
had a high ability to monitor water quality parameters. In another study, genetic program-
ming (GP) was successfully used by Chang et al. [23] to create a connection between the
total phosphorus (TP) concentration data and the moderate-resolution imaging spectrora-
diometer (MODIS) images for Tampa Bay located in the state of Florida, USA. Kim et al. [24]
used geostationary ocean color imager (GOCI) satellite images to monitor Chl-a and sus-
pended particulate matter (SPM) concentrations on the west coast of South Korea. For this
purpose, three machine learning models of random forest (RF), cubist regression model
(CRM), and support vector machine (SVR) were used to understand the robust correlation
between the measured values of WQPs and GOCI image data. The results showed that the
SVR model was superior over other ML models. Later, Sharaf El Din et al. [25] indicated the
successful performance of a back propagation neural network (BPNN) to predict turbidity,
total suspended solid (TSS), chemical oxygen demand (COD), biochemical oxygen demand
(BOD), and dissolved oxygen (DO). The monitored WQPs had been collected from Saint
John River, Canada and additionally, satellite images of Landsat-8 were used. From their
study, R2 (coefficient of determination) values were 0.991, 9.933, 0.937, 0.93, and 0.934 for
turbidity, TSS, COD, BOD, and DO, respectively. Arias-Rodriguez et al. [26] used extreme
learning machine (ELM), support vector regression (SVR), and linear regression (LR) mod-
els in order to estimate Chl-a, turbidity, total suspended matter (TSM), and Secchi disk
depth (SDD) using the national water quality monitoring system. Through their research,
they applied data from Mexico for four lakes and additionally, Landsat-8 OLI, Sentinel-3
OLCI, and Sentinel-2 MSI were recruited. They found that the ELM model had relatively
better performance in water quality estimation than other machine learning models.

Moreover, Najafzadeh et al. [3] predicted monthly WQI by 12 WQPs, such as Ca2+,
Na+, Mg2+, pH, COD, BOD, DO, electrical conductivity (EC), total hardness (TH), phos-
phate (PO4

3−), nitrate (NO3
−), fecal coliform (FC), turbidity (Tur), and ammonium (NH4

+)
for the Karun River, Iran. They obtained monthly temperature values from satellite images
of Landsat-7. From their research, it was found that the MT model had the best performance
for the estimate of water quality index (WQI) compared with multivariate adaptive regres-
sion spline (MARS), gene expression programming (GEP), and evolutionary polynomial
regression (EPR).

In Hassan et al.’s [7] research, the structure of an artificial neural network (ANN)
was optimized by a bio-inspired technique called a binary whale optimization algorithm
(BWOA) to determine the relationship between the satellite reflection value Sentinel-2
and the observed values in order to estimate optically active and non-optically active
parameters. They used the field data from Nasser Lake, Egypt, and the Bin El Ouidane
Reservoir, Morocco. BWOA-ANN models obtained coefficients of determination (R2)



Remote Sens. 2023, 15, 2359 3 of 26

of 0.916 and 0.890 for both an estimation of optically active and non-optically active
parameters, respectively. On the other hand, Hong et al. [19] employed four improved
structures of deep neural network (DNN) models (ResNet-18, ResNet-101, GoogLeNet, and
Inception v3) to establish a relationship between hyperspectral imagery captured by drones
and in situ measurements, as well as meteoroidal data to monitor Chl-a, phycocyanin
(PC), and turbidity for Daechung Dam reservoir, South Korea. The results of their study
demonstrated that the ResNet-18 model had the most accurate performance out of the other
DNN models.

Ahmed et al. [20] employed four types of ANN models (i.e., convolutional neural
network [CNN], fully connected network [FCN], multi-layer perceptron [MLP], and recur-
rent neural network [RNN]) and six structures of long short-term memory (LSTM) model
(i.e., LSTM-Dominated, Vanilla-LSTM, Stacked-LSTM, Bidirectional-LSTM, Convolutional-
LSTM, and CNN-LSTM) in order to monitor concentrations of DO and electrical conductiv-
ity (EC) parameters using shuttle radar topography mission (SRTM) data for the Rawal
watershed stream network, Pakistan. They found that the bidirectional-LSTM has better
performance in predicting DO and EC parameters. Recently, Chen et al. [27] designed
a novel self-optimizing machine learning monitoring method in order to predict Chl-a,
Ammonia Nitrogen (NH3-N), and Turbidity parameters. The WQPs were acquired from
the Nanfei River located at Yangtze River Basin, China. Chen et al. [27] used unmanned
aerial vehicle (UAV) images for analyses of WQPs. Additionally, the performance of the
proposed ML model was compared with CatBoost, XGBoos, AdaBoost, random forest (RF),
k-nearest neighbors (KNN), DNN, and LR models. From their research, it was found that
the proposed model had the best performance.

According to the above-mentioned literature review, while there are quite a few advan-
tages to the usability of remote sensing in this area, there are also some shortcomings that
must be considered. Remote sensing techniques have four major advantages: non-invasive
observations, large area coverage, high-resolution images, and real-time monitoring. In
the case of shortcomings, remote sensing techniques have limitations in detecting certain
water quality parameters, atmospheric interference (e.g., cloud cover, aerosols, and water
vapor), limited spectral range, and expensive technologies. Overall, the use of remote
sensing for water quality monitoring is a promising area of research, but there are still
limitations and challenges that need to be addressed. Continued advances in technology
and the development of AI techniques are likely to improve the accuracy and accessibility
of remote sensing data for water quality monitoring in the future.

1.2. Objectives and Research Organization

The purpose of this study is to develop empirical relationships based on AI models and
an analysis of remote sensing data in order to estimate WQI in the Hudson River, New York
in the USA. The major contribution of this study is that applying information on spectral
bands to establish conceptual multivariate regression models for each WQP and then
the most influential spectral bands for approximation of WQPs is yielded. Additionally,
four AI models (i.e., GEP, MT, EPR, and MARS) are developed by using spectral band
properties in order to estimate WQI. This study applies AI models that are capable of
providing linear and non-linear regression equations with a high degree of interpretability
in comparison with previous investigations [28–31]. In fact, the majority of AI models that
have been used in the literature function as a black box. Moreover, the present study does
not employ optically active and non-optically active WQPs in order to monitor water quality
states of natural streams in comparison with related works [7,14,20]. More importantly, this
study uses properties of spectral bands to conceptually establish relationships with WQI,
and as a result, this methodology would be more beneficial than studies that use optically
and non-optically active WQPs.

This study is organized as follows. Section 2 describes the study area, statistical
characterizations of WQPs, and computation of WQI. Section 3 is dedicated to preparing
satellite data for various purposes, such as the extraction of radiation and reflectance bands



Remote Sens. 2023, 15, 2359 4 of 26

and separating water bodies from other parts of satellite images. Section 4 determines
the multivariate linear correlations between Landsat 8 spectral indices and WQPs, and
then, the relationships are used to estimate each WQP. After that, the key spectral bands
are considered input variables to feed AI models. In Section 5, AI models are trained and
tested to determine WQI. Finally, the results of AI models are statistically evaluated and
compared with relevant literature.

2. Overview of Case Study and Water Quality Data Description

Geographically, the Hudson River rises in the Adirondack Mountains, runs through
the Hudson Valley southward to the upper New York Bay between New York City and
Jersey City, and then empties into the Atlantic Ocean at New York Harbor. In terms of
length, the Hudson River is a 315 mile (507 km) river that flows from north to south. The
watershed of the Hudson River is dominated by 13,400 square miles. The largest city where
the Hudson River flows is New York, with a population size of 18.8 million, where it stands
as the most populous city in the USA. Figure 1 illustrated the geographical location of the
case study.

Figure 1. Overview of geographical localization of monitoring site for the Hudson River.

Two types of data were employed in this study: observation data and remote sensing
images. The observation data includes 13 WQPs: turbidity, sulfate (SO4

2−), sodium (Na+),
potassium (K+), hardness, fluoride (F−), dissolved oxygen (DO, chloride (Cl−), arsenic
(AS), alkalinity, pH, nitrate (NO3

−), and magnesium (Mg2+) whose statistical properties
were listed in Table 1. These parameters were collected from the Hudson River near
the Poughkeepsie, NY site located on the Hudson River with latitude 41.72176015 and
longitude 73.94069299 from 14 March 2021 to 16 June 2021. The water quality data was
taken from https://waterdata.usgs.gov (accessed on 11 August 2022). Additionally, some
WQPs affecting sewage discharge (e.g., COD and phosphorous) were not available at the
dates of the satellite images, whereas nitrate was included.

https://waterdata.usgs.gov
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Table 1. Descriptive statistics of measured WQPs through the sampling point at the Hudson River.

Parameter Unit Max Min Average Standard Deviation

Tur NTU 28.69 1.12 16.67 6.3

SO4
2− mg/L 16.7 9.02 11.66 2.34

Na+ mg/L 31.4 14.1 20.64 5.02

K+ mg/L 1.44 0.79 1.14 0.32

pH — 7.9 7.5 7.57 0.14

NO3
− mg/L 0.76 0.34 0.48 0.12

Mg2+ mg/L 5.76 3.56 4.64 0.68

Hardness mg/L 103 65 83.1 10.94

F− mg/L 0.1 0.1 0.1 1.9 × 10−16

Cl− mg/L 56.3 23.6 35.25 10.16

AS mg/L 53 × 10−3 27 × 10−3 36 × 10−3 8.12

Alk mg/L 76.7 52.4 65.7 6.88

DO mg/L 14.1 7.5 10.9 2.18

Figure 2 shows the histograms of 13 WQPs in order to better understand their frequen-
cies. Histograms provide scholars with a summary of the changes made to data collection
through visual representation. As seen in Figure 2, the frequencies of WQPs demonstrate
various distributions, such as symmetrical, skewed right, skewed left, and bimodal patterns.
In addition to this, half of the frequency distributions follow the bimodal pattern: Figure 2a
(Tur), Figure 2d (K+), Figure 2f (NO3

−), Figure 2g (Mg2+), Figure 2h (Hardness), Figure 2j
(Cl−), and Figure 2k (AS). Moreover, the frequencies of SO4

2− and Na+ were illustrated in
Figure 2b,c that had skewed right patterns, whereas the frequencies of the pH (Figure 2e),
Alk (Figure 2l), and DO (Figure 2m) parameters followed a symmetrical pattern. Figure 2i
indicates that the frequency of F− parameter has no special pattern.
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−, (g) Mg2+, (h) hardness, (i) F−, (j) Cl−, (k) AS, (l) Alk, and (m) DO.

As seen in Table 2, 11 spectral bands with wavelengths of 0.43–11.9 µm and resolutions
of 15 m (panchromatic), 30 m (visible, near-infrared [NIR], and short-wave infra-red
[SWIR]), and 100 m (thermal) of Landsat-8 images have been employed. Additionally, the
properties of Landsat-8 images are available at https://landsat.gsfc.nasa.gov (accessed on
11 August 2022). In this investigation, six images taken from Landsat-8 were used. These
images are identical in terms of the observation date and the image capture date. Satellite
images in the study area have been selected in a cloud-free state. Table 3 summarizes the
properties of Landsat-8 satellite bands. The information from the previous images was
utilized to fill the time gap, which ranged from 8 to 16 days between each image. Images
that are taken from the USGS (United States Geographical Survey) website are available at
https://earthexplorer.usgs.gov/. Other descriptions of images (i.e., identification, date,
and image range) were found in Table 3.

Table 2. Landsat-8 Operational Land Imager (OLI) and Thermal Infrared Sensor (TIRS).

Bands Wavelength (µm) Resolution (m)

Band 1—Coastal aerosol 0.43–0.45 30

Band 2—Blue 0.45–0.51 30

Band 3—Green 0.53–0.59 30

Band 4—Red 0.64–0.67 30

Band 5—Near Infrared (NIR) 0.85–0.88 30

Band 6—SWIR 1 1.57–1.65 30

Band 7—SWIR 2 2.11–2.29 30

Band 8—Panchromatic 0.50–0.68 15

Band 9—Cirrus 1.36–1.38 30

Band 10—Thermal Infrared (TIRS) 1 10.6–11.19 100

Band 11—Thermal Infrared (TIRS) 2 11.50–12.51 100

https://landsat.gsfc.nasa.gov
https://earthexplorer.usgs.gov/
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Table 3. The details of Landsat-8 OLI-TIRS images of the Hudson River and the time frame.

Image Acquisition Date Image ID Range of Image Usage

12 March 2021 LC80130312021071LGN00 12 March 2021

13 April 2021 LC80140312021110LGN00 13 March 2021–13 April 2021

20 April 2021 LC80140312021126LGN00 14 April 2021–20 April 2021

6 May 2021 LC80130312021135LGN00 21 April 2021–5 May 2021

15 May 2021 LC80140312021158LGN00 7 May 2021–15 May 2021

7 June 2021 LC80130312021167LGN00 16 May 2021–7 June 2021

3. Data Preparation and Methods
3.1. Preparation of Satellite Images

In order to use satellite images, reflection from the water surface is required, and at
first, the data collected in each pixel had no value or unit. Due to the fact that the images
were recorded in different months, the condition of each image is different from other
images, so radiometric and atmospheric correction is necessary for each of the images.

3.1.1. Conversion of Digital Number to Spectral Radiance

According to Equation (1), the digital number (DN) value is converted to spectral
radiation using the calibration factor of the sensor (USGS, 2016):

L = Gain×DN×Offset (1)

where L is spectral radiance at the sensor’s aperture in watts/(m2 × ster × µm), DN is the
pixel value, and Gian and Offset are the sensor calibration coefficients.

3.1.2. Conversion of Spectral Radiation to Spectral Reflectance

To enhance and automate ground reflectance retrieval, additional features are incorpo-
rated in this conversion:

ρ =
πLd2

ESUN × COS(SZ)
(2)

where d is Earth–sun distance in astronomical units, ESUN is solar irradiance, and SZ is
the radiation angle during satellite imaging. Correcting the atmospheric influence is a
crucial next step in the image processing process. Quick atmospheric correction (QUAC)
was performed using ENVI software, and the image’s brightness levels were transformed
to surface reflectance values.

3.1.3. Separation of Water from Other Parts of Satellite Images

To investigate the relationship between satellite images and WQPs, it was necessary
to separate the watershed of the Hudson River from other waterless areas. In this way, a
spectral index was used [32]:

NDWI =
G−NIR
G + NIR

(3)

where NDWI was the normalized difference water index, G was the green spectral band,
and NIR was the near infra-red spectral band. The value of this spectral index was between
+1 and −1. Parts of the image that had pure water were assigned a value of +1, and other
parts without water were assigned a value between 0 and −1.



Remote Sens. 2023, 15, 2359 9 of 26

3.2. Correlation between Spectral Bands and WQPs

The Pearson correlation of all WQP with each of the 11 Landsat-8 bands (b1, b2, b3,
. . . , b11) was examined in SPSS software as the first step in this section of the study. The
correlation coefficient (R) between the water quality parameters of the Hudson River and
spectral bands is shown in Table S1 (see Supplementary Materials). The results of the
Pearson correlation demonstrated that the highest correlation coefficients are listed as DO
with b10 (R= −0.914), pH with b11 (R = 0.916), Mg2+ with b11 (R = 0.864), Na+ with b9
(R = −0.866), SO42− with b2 (R = −0.933), hardness with b1 (R = −0.871), Alk with b3
(R = 0.776), AS with b10 (R = 0.914), F− with b11 (R = 0.728), K+ with b1 (R = 0.827), Cl−

with b10 (R = −0.883), tur with b11 (R = −0.841), and NO3
− with b6 (R = −0.854).

In the next step, ratio index (RI) and normalization difference index (NDI) were
calculated as:

NDI
(

Ri, Rj
)
=

Ri − RJ

Ri + RJ
(4)

RI
(

Ri, Rj
)
=

Ri
RJ

(5)

Random bands between 0.47 µm and 12.51 µm were chosen as Ri and Rj [4].
Having the spectral indices computed, the values of Pearson correlation between

each spectral index and all WQPs were determined. According to related works, although
using spectral indices reduces some of the noise caused by lighting and background and
increases correlation coefficients with water quality parameters, the spectral index does
not always increase correlation coefficients [21,33,34]. In fact, the previous investigations
concluded that the correlation between ratios of spectral bands and WQPs can be considered
a relatively appropriate way of approximating WQPs or WQI. Table S2 shows the correlation
coefficients between water quality parameters and spectral indices (NDI and RI), as seen in
the Supplementary Materials section. For instance, DO with b6/b5, pH with b5/b7, and
Mg2+ with b9/b10 and b9/b11 have the highest values of correlation coefficients.

3.3. Correlation between WQPs and Spectral Indices

After determining the highest correlation of single bands and spectral indices (RI
and NDI), multivariate linear regression (MLR) analysis was used to create a relationship
between WQPs (dependent variable) and spectral data (independent variable). Accordingly,
Equation (6) expressed MLR analysis as follows:

WQP = A0 + ∑k
i=1(Ai × Xi) (6)

where Xi was single bands and spectral indices with a high correlation coefficient and k
was the number of bands; A0 and A1 were empirical regression coefficients obtained from
in situ data observations. By applying the relationships obtained on Landsat-8 images, the
value of each pixel was converted to the simulated value of WQP. This study utilizes MLR
analysis in order to provide an empirical equation between WQPs and spectral indices.
It was highly important to consider both single spectral indices (i.e., b1, b2, b3, . . . , b11)
and ratios of spectral indices. Table 4 presents lists of MLR equations that establish the
correlation between WQPs and spectral indices. As seen in Table 4, the most correlated
MLR equation (R = 0.954) was dedicated to Cl−, which was approximated using b0, b11,
and b2/b6, whereas the approximation of Na+ has rather lower correlation (R = 0.756) with
spectral indices (b9, b11, and b3/b11) in comparison with other WQPs. Additionally, MLR
equations estimating Cl− (0.954), pH (0.939), F−(0.937), AS (0.936), and Alk (0.920) stood at
the other ranks in terms of accuracy level.
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Table 4. The most accurate equations obtained from MLR in order to estimate WQPs.

Parameters Multivariate Linear Regression Equation R

Tur 969.3− 1.5468× b11 + 2.07× b5
b2

0.873

SO4
2− −285 + 2824× b2 + 91× b4

b3
− 548× b6 0.867

Na+ 477 + 10, 066× b9 − 17.8× b11 − 34, 776× b3
b11

0.756

K+ 1.4643− 0.217× b2
b6
− 0.1186× b5

b6
+ 0.0786× b5

b7
0.849

pH −2.03 + 0.912× b11 0.939

NO3
− 0.299− 0.894× b7−b5

b7+b5
− 28.17× b6 − 1.31× b6

b5
0.868

Mg2+ 8.063− 183, 590× b9
b11

+ 156, 519× b9
b11

0.888

Hardness −755 + 1745 + b1 + 705× b1
b8

+ 404× b4
b3

0.801

F− 1.597− 0.00508× b11 − 174× b9
b10

0.937

Cl− 277 + 0.0001× b10 − 0.807× b11 − 3.835× b2
b6

0.954

AS 0.38939− 0.02497× b6
b5

+ 0.04198× b2
b6

0.936

Alk −18, 804 + 27, 173× b11−b2
b11+b2

− 8290× b11−b1
b11+b1

− 0.0009× b11
b4 0.920

DO 103.16− 0.3289× b11 0.917

3.4. WQI Calculation

WQI values are generally estimated by two globally accepted guidelines: NSF (Na-
tional Sanitation Foundation) and CCME (Canadian Council of Ministers of the Envi-
ronment) [3,35]. In this study, the WQI values given by CCME guideline were applied
to approximate the water quality of the Hudson River. This method has no parameter
restrictions; the more parameters that were used as inputs to this index, the more accu-
rately the state of the water quality was assessed. The WQI values by CCME produced a
dimensionless number in the range of 0 to 100, where 0 and 100 denoted the poorest and
excellent quality (Canadian Council of Ministers of Environment, 2001). The maximum
and minimum values of the water quality index (WQI) for the Hudson River were 96.25
and 84.2, respectively. WQI scale is shown in Table 5.

Table 5. Various states of WQI values based on CCME guidelines.

Class Threshold Value Water Quality States

I 95–100 Excellent

II 80–94 Good

III 60–79 Fair

IV 45–59 Marginal

V 0–44 Poor

In this study, we tried to predict WQI values based on spectral indices, and additionally,
WQI was generally dependent on WQPs. After that, it was proved that there was a strong
correlation between WQPs and spectral indices through MLR analysis. Therefore, it can
be inferred that WQI is inextricably bound up with spectral indices. Moreover, WQI was
expressed as follows,

WQI = f (b1, b2, b3, b4, b5, b6, b7, b8, b9, b10, b11) (7)

In Equation (7), statistical descriptions of input–output variables have been given in
Table 6. The present study utilized single spectral bands in order to feed AI models due to
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the fact that these AI models would provide the best non-linear combinations of spectral
bands (i.e., regression-based equations).

Table 6. Descriptive statistics of single bands and WQI.

Parameter Max Min Average Standard Deviation

b1 0.107 0.034 0.055 0.02

b2 0.09 0.037 0.055 0.02

b3 0.072 0.029 0.048 0.012

b4 0.09 0.029 0.057 0.021

b5 0.052 0.025 0.034 0.007

b6 0.038 0.016 0.027 0.007

b7 0.053 0.011 0.026 0.011

b8 0.171 0.036 0.064 0.012

b9 0.004 0.0009 0.002 0.001

b10 293.7 276.22 283.34 6.13

b11 292.9 275.71 282.67 5.99

WQI 96.25 84.25 88.11 3.68

All AI models were performed using 11 input variables whose 71 dataseries (75% of
dataseries) were applied to carry out the training phase, and then, the remaining dataseries
(24 series of spectral indices) were allocated to perform the testing phase.

3.5. Definition of Statistical Indices

To investigate the evaluation of AI models efficiency in the training and testing phases,
index of agreement (IOA), root mean square error (RMSE), mean absolute error (MAE),
and scatter index (SI) have been utilized. These statistical criteria were frequently applied
to evaluate WQI predictions and other water resources problems, such as stream flow
forecasting and soil temperature (e.g., [3,25,30,36–39]).

IOA = 1− ∑U
i=1(WQI(i)Obs −WQI(i) Pre)

2

∑U
i=1
((

WQI(i)Pre −WQIObs
)
−
(
WQI(i) Obs −WQIObs

))2 (8)

RMSE =

[
∑U

i=1(WQI(i)Pre −WQI(i) Obs)
2

U

]1/2

(9)

MAE =
1
U ∑U

i=1|WQI(i)Pre −WQI(i)Obs| (10)

SI =

√
(1/U)∑U

i=1
((

WQI(i)Pre −WQIPre
)
−
(
WQI(i) Obs −WQIObs

))2

(1/U)∑U
i=1 WQI(i) Obs

(11)

where WQIPre denotes predicted values of WQI by AI models, WQIObs denotes the com-
puted values of WQI by CCME guideline, WQI is the average value of WQI, and U is the
number of WQI samples.

IOA criterion was developed by Willmott [36] as a standardized measure of the degree
of numerical model estimation error and varied between 0 and 1. The best value of the IOA
value was +1. This meant that the AI model showed the best performance. Additionally,
the worst value was zero, which indicated the worst performance of the test model. RMSE,
MAE, and SI were the error function values, ranging from 0 to +∞.
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4. Implementation of Soft Computing Models
4.1. Model Tree

The M5 tree model is one of the data mining methods that has received much attention
in modeling various problems [3]. This model is an extension of the MT tree model pro-
posed by Quinlan [40]. Compared to regression trees, the advantages of the M5 tree model
are that it is smaller and reduces computational costs. The M5 method divides a complex
problem into many subdomains, and a multivariate regression model is considered for
each subdomain. Overall, MT implementation includes three steps: tree structure creation,
pruning, and smoothing stages. In the first stage, a regression tree is generated based on
the decision tree in which intra-subdivision variations in the class values of each branch is
minimized to split the tree structure into branches, leaves, and nodes. In this way, the con-
cept of purity plays a key role in controlling the splitting criterion. The standard deviation
of each class value of data points at a certain node is considered. After the tree structure
is grown, a multivariate linear regression is fitted on the data sets of class. Additionally,
the pruning stage is performed to estimate “true error” for each subtree (or multivariate
linear regression at each node of tree). In the smoothing stage, sharp discontinuities among
adjacent multivariate linear regression models at the leave of the pruned tree are efficiently
controlled. This process combines the leaf model estimation with the aid of every node
(where splitting parameters are available) along the path back to the root [3,40].

The implementation of MT was conducted by Weka3.9 software. To monitor the water
quality status of water bodies, the surveying on the related works proved that applying
multivariate linear equations provided the best performance for training and testing phases
(e.g., [3,41–43]). In this way, we used the following expression to approximate WQI:

WQI = bias + ∑11
i=1 aibi (12)

in which a1, a2, a3,..., a11 were a set of weighing coefficients related to Equation (12).
Performance of MT indicated that 6 input variables were applied to feed M5MT. In this
way, two multivariate linear equations were obtained as follows:

If b6 ≤ 0.021,

WQI = 61.7657− 13.466 b2 + 14.7722 b4 − 30.7064 b6 − 35.6578 b7 − 215.1696 b9 + 0.1109 b11 (13)

Otherwise,

WQI = 65.4074− 9.5862 b2 + 10.5158 b4 − 21.8588 b6 − 25.3835 b7 − 153.1716 b9 + 0.079 b11 (14)

In Equations (13) and (14), b6 was the splitting variable, and the corresponding value
was 0.021. Moreover, Equations (13) and (14) were provided using smoothing and pruning
the trees.

4.2. Multivariate Adaptive Regression Spline

MARS is a linear regression analysis method that Friedman first proposed for solving
high-dimensional problems. The MARS model is a non-parametric technique that can
create polynomial expressions between the independent and response variables to analyze
complex systems [44]. This model is created in two stages. In the forward step, the basic
functions are entered into the model, and the nodes are selected to improve the performance,
and an Overfitted model is obtained. In the backward stage, the terms that had a minor
effect were eliminated one after the other based on the generalized cross-validation (GCV)
value until the best model was created [3,44,45]. The MARS technique was obtained from
an aggregate of basis functions (BFs):

WQI(a set o f spectral indices) = C0 + ∑N
i=1 WCi.BFi[a set o f spectral indices] (15)
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in which WCi, C0, and N were the weighting coefficients (WCs) computed with the
least squares (LS) technique, the constant coefficient (or bias), and the number of basis
functions, respectively.

The MARS technique, as a programming computer-aided-simulation, was imple-
mented using MATLAB 2008a software. To reduce the complexity of the initial adaptive
regression model, the analysis of GCV was performed during the forward and backward
development phases. To perform cross-validation, k-fold was equal to 10. During each
fold, forward and backward stages were carried out, and then, the number of BFs and total
effective parameters were yielded. Having 10 folds performed, the average of prediction
results was computed. From the final step of MARS development, eleven BFs that formed
regression spline equations were obtained:

WQI = 85.592 + 1.1585× BF1 + 876.48× BF2 − 21366× BF3 + 4.6102× 107 × BF4 + 2.2885× 106 × BF5
−1731.8× BF6 + 1.17312× 106 × BF7 − 0.26142× BF8 − 432.97× BF9 − 1.8534× BF10

+8.1124× 105 × BF11

(16)

in which the regression equation consisted of BFs. These BFs were generally quadratic
polynomial expressions, as seen in Table 7. Through the development of the MARS model,
five spectral indices (i.e., b1, b2, b4, b7, and b11) were applied to approximate WQI values,
whereas other spectral indices did not have a role to play. Additionally, the total number
of effective parameters and GCV value were 28.5 and 3.568, respectively. The values of
WC were adjusted with particle swarm optimization (PSO) within 70 iterations and mean
square error [MSE] = 7.484.

Table 7. Basis functions used in the development of MARS model.

Basis Function Formulation

BF1 max(0, b1 − 276.41)

BF2 max(0, 0.02367− b1)

BF3 max(0, 0.1261− b7)

BF4 max(0, 0.1261− b7)×max(0, b2 − 0.07603)

BF5 max(0, 0.1261− b7)×max(0, 0.07603− b2)

BF6 max(0, b1 − 276.41)×max(0, b4 − 0.08869)

BF7 max(0, 0.02367− b1)×max(0, b4 − 0.0891)

BF8 max(0, b1 − 276.41)×max(0, 287.98− b11)

BF9 max(0, 0.02994− b7)×max(0, b1 − 0.05777)

BF10 max(0, b2 − 283.42)

BF11 max(0, 0.02994− b7)×max(0, b4 − 0.08869)

4.3. Gene Expression Programming

GEP is a powerful artificial intelligence model created from the combination and
development of genetic algorithm and genetic programming by Ferreira [46]. The basic
concept of GEP is the same as the genetic algorithm except that separate branches are
used instead of using a single-bit strip. Each branch consists of a set of terminals and
functions [47]. GEP is an evolved genotype/phenotype system where the genotype is
completely separated from the phenotype. Unlike genetic programming, genotype and
phenotype are combined in a frequent system. This system has a high ability to find a
suitable pattern for interpreting complex systems and storing genetic data [46,47].

Solving a problem using GEP involved several steps; the first step was to select
the function needed to create the model. Several statistical parameters, such as root
means square error (RMSE), mean absolute error (MAE), and root relative squared error
(RRSE), could be used to validate this function. In the second step, a set of functions
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(i.e., mathematical operators, nonlinear functions, and terminals) were used to produce
chromosomes. In the next step, an index was created to estimate the accuracy of the
built model. In the fourth step, a system including numerical components and qualitative
variables was determined to control the execution of the model. In the last step, the stopping
criterion of the model, which could be the achievement of the desired fit or the maximum
number of model executions, was included [3,48,49].

The GEP model, implemented with GeneXproTools5 software, resulted in the best
relationship for predicting the water quality index. Values of genetic operators were directly
dependent on the selection of the training strategies: optimal evolution, constant fine-
tuning, model fine-tuning, and sub-set selection. As seen in Table 8, the best performance of
GEP expression occurred for the selection of optimal evolution because this methodology
benefits from the high flexibility of interaction among mathematical operators, values of
genetic operators, and terminals. The Equation (17), which was obtained from four genes,
was expressed as follows:

WQI = (b4 + 8.6769) +
(

b4 −
(

b4 ×
[

1
−3.3012× b1

+ b1 − 2.09326
]))

+

(
1− Exp[b7×49.7054]

2 + b11

2
+ b3

)
(17)

Table 8. Setting parameters of GEP model performance.

Parameters Values

Number of chromosomes 30

Linking function +

Mutation 0.00138

Fixed-Root Mutation 0.00068

Gene-Recombination 0.00068

Gene-Transportation 0.00277

One-Point Recombination 0.00277

Best fitness function 419.5948

Stop condition R-Square Threshold

Maximum depth of subtree 7

Mathematical operators and function ±, ×,/, Ln(x), exp(x), Average (x1, x2)

4.4. Evolutionary Polynomial Regression

EPR, as a newly-extended AI model based on regression analysis, can generally create
a symbolic model to present a robust solution for the simulation of complicated behavior
governing input–output systems [50]. The implementation of the EPR Multi-Objective
Genetic Algorithm (MOGA) consisted of a two-stage process. First, an evolutionary algo-
rithm was used to search for model structures. Second, a linear regression algorithm was
applied to find the optimum model parameters using the least-squares technique. This
multi-objective approach led to the search for optimum models while maintaining a bal-
ance between prediction accuracy and model complexity. EPR resulted in a mathematical
relationship that consisted of several algebraic terms, such as [51–54]:

WQI = bias + ∑M
j=1

[
WCj × (b1)

ESR(j,1) × . . .× (b11)
ESR(j,11) ×H((b1)

ESR(j,1) × . . .×
(

b11)
ESR(j,11)

)]
(18)

in which M was the maximum number of mathematical terms, H was a user-defined-
function that consisted of various mathematical structures (e.g., tangential hyperbolic,
natural logarithm, and exponential functions), and ESR was a vector of exponents defined
by the user.
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Through the development of the EPR model, EPR expressions were provided for
all typical forms of inner functions (i.e., tangent hyperbolics, natural logarithm, expo-
nential function, and secant hyperbolic). The results of the training stages demonstrated
that the use of natural logarithm was more parsimonious than other types of inner func-
tions. On the other hand, secant hyperbolic [Sechx = 2/(ex + e-x)] and tangent hyperbolic
[Tanhx = (ex − e−x)/(ex + e−x)] could provide more complicated EPR expressions in com-
parison with expressions given by natural logarithm and exponential functions. On many
occasions, it is more suitable for engineers to select the lowest complicated expression,
although its accuracy level was marginally lower than other EPR expressions. In this
study, EPR expressions given by exponential function obtained the lowest accurate predic-
tions in the training stage (MSE = 1.603) when compared with EPR expression developed
with no function (MSE = 1.519), secant hyperbolic (MSE = 1.423), and tangent hyperbolic
(MSE = 1.477). EPR models provided highly lower complex equations rather than equa-
tions given by secant and tangent hyperbolic functions in spite of resulting in slightly lower
accurate predictions (MSE = 1.507) than hyperbolic functions. Additionally, 11 logarithm
expressions were produced during the training stage of the EPR model. As seen in Table 9,
each equation included six algebraic terms, and additionally, natural logarithm was em-
ployed as an inner function to approximate the WQI values due to the fact that the pollution
process in the natural streams is generally a complicated process; then, applying a complex
expression could improve accuracy level of predictions in comparison with employing
a simple regression equation. Another important setting parameter is related to multi-
objective genetic algorithm (MOGA), which is applied in the structure of the EPR model in
order to optimize the number of algebraic terms, the number of variables used in the EPR
model, and values of exponent dedicated to each variable. Moreover, Table 10 demonstrates
the setting parameters of all EPR expressions. According to Table 9, Model.8 yielded the
most accurate prediction of WQI (MSE = 1.507) in comparison with other expressions.
Hence, Model.8 was elected for further analysis in the training and testing phases and
robust comparisons with related works.

Table 9. Developed expressions by EPR models.

Model. No Formulation MSE

1
WQI = 0.0016231× 1

b6
2 + 3.54× Ln

(
b0.5

9 × b2
10

)
+ 5.4618× Ln

(
b2

3

b2
7×b2

10

)
+ 0.012942× b11 ×

Ln
(

1
b1.5

7

)
+ 5141.924× b0.5

3
b11
× Ln

(
b2

7 × b10

)
+ 63.1082× b0.5

1 × b7 × Ln
(

b0.5
6

)
+ 128.9703

1.706

2
WQI = 0.014943× 1

b2
6
+ 1.8054× Ln

(
b0.5

9 × b2
10

)
+ 5.114× Ln

(
b2

3

b0.5
7 ×b2

10

)
+ 0.010792× b11 ×

Ln
(

b10

b1.5
7

)
+ 4814.2172× b0.5

3
b11
× Ln(b2

7 × b10) + 57, 955× b0.5
1 × b7 × Ln

(
b0.5

9

)
+ 124.0877

1.588

3
WQI = 0.0014518× 1

b2
6
+ 1.8395× Ln

(
b0.5

9 × b2
10

)
+ 5.103× Ln

(
b2

3×b11

b0.5
7 ×b2

11

)
+ 0.010619× b11 ×

Ln
(

b10

b1.5
7

)
+ 280.4126× b0.5

3

b0.5
11
× Ln

(
b2

7 × b10

)
+ 58.3367× b0.5

1 × b7 × Ln
(

b0.5
9

)
+ 93.3195

1.656

4
WQI = 1.8322× Ln

(
b0.5

9

)
+ 5.4262× Ln

(
b2

3

b0.5
7 ×b2

10

)
+ 0.024901× b11 × Ln

(
b10
b6

)
+ 295.5584× b0.5

3

b0.5
11
×

Ln
(

b2
7 × b10

)
+ 280.1486× b0.5

1 × b7 × Ln
(

b1 × b0.5
6

)
+ 70, 121.1045× b0.5

1 × b1.5
6 × b7 + 125.822

1.585

5

WQI =

0.61063× Ln
(

b9 × b2
10

)
+ 5.024× Ln

(
b2

3

b0.5
7 ×b2

10

)
+ 0.018268× b11 × Ln

(
b10
b6

)
+ 2077.6743× b0.5

3 ×b0.5
6

b0.5
11
×

Ln
(

b2
7 × b10

)
+ 314.7386× b0.5

1 × b7 × Ln
(

b1 × b0.5
6

)
+ 76, 488.31.78× b0.5

1 × b1.5
6 × b7 + 129.5538

1.585

6

WQI = 5.0562× Ln
(

b2
3

b0.5
7 ×b2

10

)
+ 0.75124× Ln

(
b0.5

1 × b9 × b2
10

)
+ 0.017321× b11 × Ln

(
b10
b6

)
+

2103.1284× b0.5
3 ×b0.5

6

b0.5
11
× Ln

(
b2

7 × b10

)
+ 314.0978× b0.5

1 × b7 × Ln
(

b1 × b0.5
6

)
+ 71, 395.4675× b0.5

1 ×

b1.5
6 × b7 + 133.1729

1.521
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Table 9. Cont.

Model. No Formulation MSE

7

WQI = 4.852× Ln
(

b2
3

b0.5
7 ×b2

10

)
+ 0.78368× Ln

(
b0.5

1 × b0.5
2 × b9 × b2

10

)
+ 0.016237× b11 × Ln

(
b10
b6

)
+

2022.4638× b0.5
3 ×b0.5

6

b0.5
11
× Ln

(
b2

7 × b10

)
+ 306.1721× b0.5

1 × b7 × Ln
(

b1 × b0.5
6

)
+ 66, 319.6416× b0.5

1 ×

b1.5
6 × b7 + 133.5218

1.58

8

WQI = 4.9538× Ln
(

b2
3

b0.5
7 ×b2

10

)
+ 0.017425× b11 × Ln

(
b10
b6

)
+ 4.8373× b0.5

6 ×

Ln
(

b0.5
1 × b0.5

2 × b9 × b10

)
+ 2061.653× b0.5

3 ×b0.5
6

b0.5
11
× Ln

(
b2

7 × b10

)
+ 303.5518× b0.5

1 × b7 ×

Ln
(

b1 × b0.5
6

)
+ 61, 065.493× b0.5

1 × b1.5
6 + b7 + 132.2393

1.499

9

WQI = 4.6907× Ln
(

b2
3

b0.5
7 ×b2

10

)
+ 0.015951× b11 × Ln

(
b10
b6

)
+ 5.7518× b0.5

7 ×

Ln
(

b0.5
1 × b0.5

2 × b0.5
3 × b9 × b2

10

)
0.5 + 34, 537.1755× b0.5

3 ×b0.5
6

b11
× Ln

(
b2

7 × b10

)
+ 336.6602× b0.5

1 ×

b7 × Ln
(

b1 × b0.5
6

)
+ 75, 604.5548× b0.5

1 × b1.5
6 × b7 + 133.6116

1.602

10

WQI = 4.7174× Ln
(

b2
3

b0.5
7 ×b2

10

)
+ 0.01511× b11 × Ln

(
b10
b6

)
+ 6.1317× b0.5

7 ×

Ln
(

b0.5
1 × b0.5

2 × b0.5
3 × b9 × b2

10

)
+ 36, 315.0134× b0.5

3 ×b0.5
6

b11
× Ln

(
b2

7 × b10

)
+ 334.1929× b0.5

1 × b7 ×

Ln
(

b1 × b0.5
6

)
+ 299, 003.26× b0.5

1 × b0.5
3 × b1.5

6 × b7 + 136.9156

1.562

11

WQI = 4.6505× Ln
(

b2
3×b0.5

11

b0.5
7 ×b2

10

)
+ 0.014827× b11 × Ln

(
b10
b6

)
+ 6.1112× b0.5

7 ×

Ln
(

b0.5
1 × b0.5

2 × b0.5
3 × b9 × b2

10

)
+ 35, 910.17× b0.5

3 ×b0.5
6

b11
× Ln

(
b2

7 × b10

)
+ 335.2054× b0.5

1 × b7 ×

Ln
(

b1 × b0.5
6

)
+ 303, 430.10.54× b0.5

1 × b0.5
3 × b1.5

6 × b7 × 123.4055

1.507

Table 10. Setting parameters of EPR model performance.

Inner Function Natural Logarithm

Range of exponents [−2, −1.5, −1, −0.5, 0, 0.5, 1, 1.5, 2]

Number of terms 6

Expression structure Sum(ai × x1× x2 × f (x1× x2)) + bias

Regression method Non-negative least squares

Optimum number of Generation [10 40]

Fitness function Mean Square Error

5. Results and Discussion
5.1. Statistical Performance of Soft Computing Techniques

The results of the quantitative evaluation of the training and testing phases are shown
in Table 11. As seen in Table 11, the MARS model indicated the highest level of accuracy
(IOA = 0.992 and RMSE = 0.0.640) in the prediction of WQI for the training phase when
compared with GEP (IOA = 0.964 and RMSE = 1.383), MT (IOA = 0.969 and RMSE = 1.287),
and EPR (IOA = 0.973 and RMSE = 1.194) models. Additionally, values of MAE (0.0059)
and SI (0.0073) proved the superiority of the MARS model [Equation (16)] over other AI
models: GEP (MAE = 0.0104 and SI = 0.0157), MT (MAE = 0.0091 and SI = 0.00146), and
EPR (MAE = 0.0076 and SI = 0.0135). Figure 3a illustrates the qualitative performance of AI
models in the training stage. According to Figure 3a, for observed values of WQI = 82–87,
all the predicted values were concentrated on the best-fit line. Additionally, the majority of
the data points were in the acceptable range of WQI error predictions ( ±25%). EPR and
MT models indicated over-prediction of WQI values for observed values of WQI = 90–93.
It can be inferred that these AI models have the weakest performance compared to MARS
and GEP models.
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Table 11. Performance of various AI models in the training and testing phase for prediction of WQI.

AI Models
Training Phase

IOA RMSE MAE SI

MT 0.969 1.287 0.0091 0.0146

MARS 0.992 0.64 0.0059 0.0073

GEP 0.964 1.383 0.0104 0.0157

EPR 0.973 1.194 0.0076 0.0135

AI Models
Testing Phase

IOA RMSE MAE SI

MT 0.978 1.085 0.0084 0.0146

MARS 0.975 1.165 0.0088 0.0129

GEP 0.978 1.052 0.0093 0.0109

EPR 0.977 1.123 0.0083 0.0135

Figure 3. Performance of AI models in the prediction of WQI for (a) training and (b) testing phases.

The results of the testing phase were given in Table 11. According to statistical criteria,
Equation (17), given by the GEP model, provided a rather more accurate prediction of
WQI (IOA = 0.980 and RMSE = 1.053) than MT (IOA = 0.978 and RMSE = 1.085), EPR
(IOA = 0.977 and RMSE = 1.123), and MARS (IOA = 0.975 and RMSE = 1.165). Although
IOA values were close together, MAE values had marginal differences. Moreover, the SI
value given by the GEP model (SI = 0.0109) was slightly lower than MARS (SI = 0.0129),
EPR (SI = 0.0135), and MT (SI = 0.0146). This means a rather higher performance of the GEP
model in the testing phase than other AI models. Equations (13) and (14), given by MT,
provided a slightly more precise estimation of WQI values (IOA = 0.978, RMSE = 1.085, and
MAE = 0.0084) in comparison with the MARS model (IOA = 0.975, RMSE = 1.165, and MAE
= 0.0088). In fact, multivariate linear regression equations given by MT are quite simple
rather than the second-order polynomial expression [Equation (16)] by the MARS model.
Furthermore, GEP and EPR models provided more accurate predictions with complicated
mathematical structures (e.g., natural logarithm and exponential functions) in comparison
with MT. The qualitative performance of AI models in the testing phase has been depicted
in Figure 3b. Although AI models demonstrated the overprediction of WQI values for the
observed WQI values between 90 and 93, all the predicted values of WQI ranged in the
permissible error band.

In order to comparatively express the efficacy of the present predictive tools, the
analysis of the violin plots was employed. Generally, both training and testing datasets
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were utilized to draw violin plots. Relative Error (RE) values for all AI models have been
computed to evaluate the distribution of error values along with AI models performance:

RE =
1
U ∑U

i=1
WQI (i)Obs −WQI(i)Pre

WQI(i)Obs
(19)

From Figure 4, it was found that all violin plots were relatively symmetrical. RE values
given by the MARS model had a rather narrower range (0.35–0.90) than MT (0.4–1.1), EPR
(0.2–0.95), and GEP (0.4–1.3) models. In addition to this, the median of RE values given by
the MARS plot is lower when compared to other violin plots. As seen in Figure 4, violin
plots presented by the MARS model demonstrated that a large number of RE values intend
to perfect value (zero) in comparison with other EPR, MT, and GEP models. Moreover,
the distribution of RE values given by EPR and MT models was relatively identical. The
maximum width of violin plots produced by the EPR and MARS models were relatively
the same at RE = 0.4, whereas the maximum ones obtained 0.8 and 0.75 for the GEP and
MT, respectively.

Figure 4. Comparison of the performance of AI models with violin plot.

The usability of the statistical measures (i.e., IOA, RMSE, MAE, and SI) is likely to fail to
fully understand the efficacy of AI models in order to approximate WQI values. In this way,
this study employs the Fisher test (F-test) to deeply investigate the evaluation of AI models’
performance. The chief aim of the F-test is to define whether the hypothesis claiming that
“the value of variation calculated with respect to the regression model is greater compared
to that value computed based on averages” is acceptable. In order to obtain this major,
F-test utilizes the F-ratio (F0). Accordingly, the null hypothesis of the F-test stands at the
acceptable level when F0 > Fα,γ,λ in which α is the significant level (0.05) and λ is the
number of spectral indices (γ = 11), and λ denotes U− γ−1 (95−11−1 = 83). In addition
to this, F0 is calculated by MSR/MSE where MSR [SSR/(γ−1)] and MSE [SSE/(U−γ−1)]
denote the mean square regression and the mean square error, respectively. SSR and SSE
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denote the sum of squares regression and the sum of squares error respectively that are
computed as follows:

SSR = ∑U
i=1(WQI(i)Pre −WQI(i)Obs)

2 (20)

SSE = ∑U
i=1

(
WQI(i)Pre −WQI Obs

)2 (21)

In this way, F 0.05,12,83 is roughly equal to 2.112. Table 12 indicated the results of F-test
for all AI models. As inferred from Table 13, MARS (F0 = 0.327), MT (F0 = 1.513), and GEP
(F0 = 0.8771) accept the hypothesis of the F-test, whereas the EPR model did not satisfy the
hypothesis (F0 = 5.639).

Table 12. Results of F-test for AI models.

AI Models SSR SSE MSR MSE F0 Hypothesis States

GEP 170.861 1213.8 13.143 14.985 0.877 Accept

MARS 60.549 1150.9 4.657 14.208 0.327 Accept

EPR 12462 13770 958.587 169.995 5.639 Reject

M5MT 308.959 1272.20 237.766 15.706 1.513 Accept

Table 13. Results of uncertainty analysis for AI models.

AI Models µe Se CL+
e CL−e

Uncertainty Band
(CL+

e − CL−e )

GEP 0.0710 0.8152 0.1419 0.0000003 0.1419

MARS 0.1732 1.5702 0.2755 0.0710 0.2046

EPR 0.2252 1.9852 0.2771 0.1732 0.1039

M5MT 0.2997 2.3734 0.3741 0.2252 0.1489

5.2. Complexity of AI Model-Derived Expressions

The complexity of AI model-based formulations is directly dependent on the number
of setting parameters and the methodologies tuning the parameters. In the GEP model,
there is a wide range of genetic operators that play a key role in controlling the accuracy
level of the GEP formulation. These operators (i.e., mathematical and genetic operators)
would provide more complex expressions rather than mathematical expressions given by
the MARS and EPR models. On the other hand, the setting parameters of the EPR model
were selected before running the model, and it will cause them to reduce the complexity
of the expression extracted by EPR. In contrast, the mathematical expression of the GEP
model changes continuously during the GEP performance because a wide range of setting
parameters was employed. In GEP, determining the genetic operations have four strategies:
optimal evolution, constant fine-tuning, model fine-tuning, and sub-set selection. Among
these operators, the selection of optimal evolution is more suitable for finding function
problems than other operators, although the complexity of the GEP expression increases.
Additionally, the MT has the fastest performance compared to the other AI models. In MT,
the first set of MT-based equations was diminished after smoothing and tuning the tree
of MT. Then, Equations (13) and (14) were generated for the simplest form in comparison
with expressions given by GEP and EPR models. According to the EPR applications in
the WQPs/WQI predictions, it was confirmed that the application of EPR expression
with natural logarithmic inner function could better detect the complexity between WQI
and WQPs rather than the EPR regression model without an inner function. Moreover,
applying three inner functions (exponential, secant, and tangent hyperbolic functions)
provided more complex EPR expressions, although the results of the training stages were
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comparatively accurate. Furthermore, the EPR model included three general mathematical
structures in order to define interactions among input variables: y1 = Sum[ai·x1·x2·f(x1·x2)],
y2 = Sum[ai·f(x1·x2)], and y3 = Sum[ai·x1·x2·f(x1)·f(x2)]. This study employed y1 to receive
more accurate predictions of WQI, although the usability of y1 increased the complexity of
EPR expressions when compared with y2 and y3.

5.3. Variation of WQI Values by AI Models

Figure 5 illustrates spatial changes in the values of the predicted WQI by AI models
for the image taken on 12 March 2021. From Figure 5a–d, it is clear that the WQI values
vary between 81.84 and 88.87, indicating a good grade of surface water quality. In addition,
the spatial variations given by AI models are relatively the same. As seen in Figure 5, WQI
values gradually decreased from the northern section of the reach to the near vicinity of the
river reach middle section, then; the WQI values indicate an upward trend. From west to
east, the water quality increases for all AI models. Moreover, Figure 6 depicts only temporal
variations of the predicted WQI by MT for all dates from 12 March 2021 (dd/mm/yy) to
7 June 2021 because temporal variations given by AI models have a relatively similar trend.
As seen in Figure 6a,b, WQI values gradually increased from 12 March 2021 to 13 April
2021 and then slightly plummeted on 20 April 2021 (Figure 6c). From Figure 6c&d, the class
of surface water quality has remained relatively constant (Class II). After that, the class of
WQI values increased to stand at class I for the excellent state on 15 May 2021, as illustrated
in Figure 6e. In the last month, Figure 6f indicated WQI had a slight decrease compared
to that predicted in the previous month (15 May 2021). Overall, WQI values given by MT
vary between 90 and 93.93.

Figure 5. Spatial variations of WQI predicted by AI models for 12/03/2021: (a) MT, (b) MARS,
(c) GEP, and (d) EPR.
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Figure 6. Temporal variations of WQI predicted by MT for all dates of satellite images: (a) 12/03/2021,
(b) 13/04/2021, (c) 20/04/2021, (d) 06/05/2021, (e) 15/05/2021, and (f) 07/06/2021.

Additionally, the receiver-operating characteristic (ROC) curves are used to evaluate
the overall performance of AI models for both the training and testing stages. In order to
derive the ROC curve, the meaning of sensitivity and specificity should be understood.
These concepts are directly applied to evaluate the performance of AI models. After that,
the area under the curve (AUC) needs to be computed. Detailed descriptions of ROC
curves were presented in the literature [55]. For this purpose, the WQI values predicted by
the AI models were served as the model’s predictions, whereas the turbidity observation
data were employed as the AI model’s control values. In this study, the observed water
quality index was chosen as a control value. Figure 7 illustrated the ROC curves for all AI
models. From Figure 7, it is clear that all AI models have excellent performance with an
AUC greater than 0.97.

In order to quantify the uncertainty related to the AI models (i.e., MT, MARS, GEP,
and EPR), the confidence bands of estimation errors (CL±e ) are computed as follows [56,57]:

CL±e = µe ± Za.Se (22)

in which µe is the mean of estimation errors, and Se is the standard deviation of estimation
errors; Za is the standard normal variable at the 5% of significant level. In order to make
comparisons among the uncertainty values given by the AI models in this study, the
CL±e values at the 5% of the significant level for all datasets (i.e., training and testing
datasets) have been provided in Table 13. From Table 13, it is clear that the AI models
result in overestimated predictions (µe > 0) for WQI values: GEP (0.0710), EPR(0.2252),
MARS(0.1732), and M5MT (0.2997). Additionally, the lowest value of estimation uncertainty
is given by the EPR model with an uncertainty band of 0.0710, whereas the M5MT generates
the highest level of uncertainty (0.2997). Generally, the findings of Table 13 demonstrate
that EPR expression has the most superior performance when compared with other AI
models applied in the current study.
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5.4. Comparisons of the Present Study with the Literature

In this section, the results of the present study were compared with the relevant
literature in terms of various facts: complexity of AI models, accuracy levels of AI models,
and restrictions of satellite images.

Chebud et al. [22] applied ANN and seven bands of Landsat-8 spectral data as input
parameters. They proposed ANN with five hidden neurons in order to predict three WQPs
(i.e., Chlorophyll-a, turbidity, and phosphorus). The ANN given by Chebud et al. [22] was
introduced as a black-box model, whereas the present AI models in this study were white-
box with a high interpretability of information. On the contrary, the present study reported
WQI as a good indicator of various WQPs compared with those WQPs investigated in
Chebud et al. [22]. Additionally, MT [Equations (13) and (14)] and MARS [Equation (16)]
predicted WQI value lower complicated mathematical expressions rather than the ANN
model (7-5-3) by Chebud et al.’s [22] investigations. Zhang et al. [21] employed three
spectral indices of Sentinel-2 images (DI, RI, and NDI) as input parameters to predict
WQI values with the SVM model. From their investigations, the useability of the spectral
indices of water increased the complexity of the SVM model because these indices were
computed with combinations of b values along with various derivative orders (0–3). In
contrast, the present study did not apply combinations of b values due to the decrease
in the computational volume of AI models. In terms of accuracy levels, SVM given
by Zhang et al. [21] predicted the WQI values with R = 0.9 and RMSE = 213.41, called
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the best results with a derivative order of 3. To make a rigid judgment, the present AI
models provided WQI values with a high degree of precision [MARS (R = 0.965 and
RMSE = 1.165), GEP (R = 0.969 and RMSE = 1.052), EPR (R = 0.969 and RMSE = 1.123), and
MT (R = 0.969 and 1.085)] in comparison with Zhang et al. [21] results. Moreover, linear
and second-order regression equations provided expressions in comparison with SVM
given by Zhang et al. [21].

Ariad-Rodriguez et al. [26] utilized powerful machine learning models (SVM and
ELM) and linear regression equations in order to monitor the turbidity of surface water
resources. They used satellite images given by Landsat-8 OLI. From their study, SVM with
the sigmoid kernel (R = 0.748 and RMSE = 27.75) and ELM (R = 0.3464 and RMSE = 9.16)
estimated turbidity with lower accuracy when compared with the present results. ELM
was structured by 10,000 neurons in the hidden layer, providing a highly complex network
for turbidity predictions. On the other hand, linear regression by the least square method
obtained R = 0.8402 and RMSE = 97.64 by considering b2, b5, b6, and b7 as input parameters.
The linear regression equation by Arias-Rodriguez et al. [26] had lower performance
than the multivariate linear equation by MT (R = 0.969 and RMSE = 10.85). The present
study applied AI models (i.e., GEP, EPR, MARS, and MT) to provide an accurate and less
complicated model compared with ELM and SVM models by Arias-Rodriguez et al. [26],
who proved that a remote sensing-based GP model had the acceptable capability to predict
TP with R = 0.761. They used MODIS satellite images, which were not capable of retrieving
WQPs with accurate predictions and finer spatial resolution, as well as Landsat-8.

In Chang et al.’s [23] investigations, the precision level of the GP model was lower than
the present results, such as GEP and EPR with R = 0.969. As a merit, GEP models used a
multi-genes system to provide a non-linear regression equation, which demonstrated a bet-
ter performance than the GEP model, although mathematics expressions given by GEP and
EPR models were complicated. Chen et al. [27] applied six AI models [CatBoost (R = 0.9246
and RMSE = 3.120), XGBoost (R = 0.9143 and RMSE = 4.231), AdaBoost (R = 0.9192 and
RMSE = 4.822), RF (R = 0.912 and RMSE = 5.031), DNN (R = 0.7823 RMSE = 6.347), and
KNN (R = 0.8837 and RMSE = 5.730)] to provide turbidity by predictions, as well as AI
models in this study. The AI models given in Chen et al.’s [27] study come from black-box
and complicated structures when compared with AI models in this study.

Li et al. [19] applied five machine learning models (SVM, RF, ANN, Regression Three
[RT], Gradient Boost Machine [GBM]) to predict the total nitrogen (TN) and total phosphate
(TP) using Landsat-8 images. From their study, the performance of five AI models indicated
low accuracy level for TN [SVM (R = 0.449), RT (R = 0.7), ANN (R = 0.6708), RT (R = 0.4123),
and GBM (R = 0.5)] and TP [SVM (R = 0.7681), RT (R = 0.4582), ANN (R = 0.8185), RT
(R = 0.4898), and GBM (R = 0.6480)] predictions when compared with the present study.
Furthermore, Li et al. [19] used spectral indices of satellite images (e.g., RI, DI, and NDI)
to establish correlations between WQPs and b values. This issue plummeted the accuracy
level of AI models in the prediction of WQPs in comparison with the present study.

6. Conclusions

In this study, AI models were created to estimate 13 WQPs using Landsat-8 images
and observational data of the Hudson River. A dataset containing the estimated values of
the quality characteristics was built by utilizing the developed models and applying them
to satellite images. The creation of the newly produced data set was used to obtain the
CCME water quality index. Four artificial intelligence techniques, MT, MARS, GEP, and
EPR, were utilized to construct a relationship to estimate the water quality index. Overall,
the main findings of the current study were drawn as:

• The correlation coefficients of WQP with single bands revealed that a considerable
number of parameters were highly correlated with Landsat-8 bands 10 and 11;

• The correlation between spectral data and WQP improves when spectral indexes (RI
and NDI) are utilized. In addition, the results showed that the use of spectral indices
in some cases led to an increase in the value of R2 in MLR models;
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• The WQI values were computed from the observed water quality data, which varied
from 84.2 to 96.25 in the Hudson River. The observed WQI values given by CCME
guidelines were indicative of good state of quality;

• The WQI values were predicted with AI models, for which four robust expressions
were provided based on eight bands of Landsat-8 images. All the AI models were
developed along with the optimum selection of the setting parameters;

• Statistical measures (i.e., IOA, RMSE, MAE, and SI) quantified the satisfying perfor-
mance of non-linear multivariate expressions given by AI models (i.e., EPR, GEP, and
MARS) and linear regression model (MT) in the prediction of WQI values for both
training and testing stages. In addition, the results of the F-test and AUC approved
the quantitative performance, and more importantly, the qualitative efficiency of AI
models was statistically studied with violin graphs. Moreover, the uncertainty results
of AI models performance indicated that EPR and MT had the lowest and highest
degrees of uncertainty;

• AI models could efficiently detect both spatial and temporal variations of the WQI
values for the studied reach of the Hudson River. Additionally, the comparisons of
the present results with the literature were done in terms of the accuracy levels of AI
models, the structural complexity of AI models, and the typical use of satellite images.
According to R and RMSE criteria, the results of the present AI models (i.e., EPR, MT,
GEP, and MARS) as white-box models were comparable with studies performed with
SVM, RF, ANN, RT, and GBM models (introduced as black-box models).

In this study, we investigated a practical and economical way of assessing the quality
status of the river. For less developed nations that are dealing with issues like inadequate
equipment, poor budgets, etc., the combination of satellite imagery with AI to assess water
quality may be a particularly acceptable solution.
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