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Abstract: Wetlands are a critical component of the landscape for climate mitigation, adaptation,
biodiversity, and human health and prosperity. Keeping an eye on wetland vegetation is crucial due
to it playing a major role in the planet’s carbon cycle and ecosystem management. By measuring
the chlorophyll fluorescence (ChF) emitted by plants, we can get a precise understanding of the
current state and photosynthetic activity. In this study, we applied the Extreme Gradient Boost
(XGBoost) algorithm to map ChF in the Biebrza Valley, which has a unique ecosystem in Europe
for peatlands, as well as highly diversified flora and fauna. Our results revealed the advantages of
using a set of classifiers derived from EO Sentinel-2 (S-2) satellite image mosaics to accurately map
the spatio-temporal distribution of ChF in a terrestrial landscape. The validation proved that the
XGBoost algorithm is quite accurate in estimating ChF with a good determination of 0.71 and least
bias of 0.012. The precision of chlorophyll fluorescence measurements is reliant upon determining
the optimal S-2 satellite overpass time, which is influenced by the developmental stage of the plants
at various points during the growing season. Finally, the model performance results indicated
that biophysical factors are characterized by greenness- and leaf-pigment-related spectral indices.
However, utilizing vegetation indices based on extended periods of remote sensing data that better
capture land phenology features can improve the accuracy of mapping chlorophyll fluorescence.

Keywords: chlorophyll fluorescence; wetlands; vegetation monitoring; machine learning; biodiversity;
Sentinel-2

1. Introduction

Monitoring wetland vegetation is one of the major objectives of the remote sensing of
the environment due to its strong relationship with the exchange of atmospheric carbon
dioxide (CO2) with land. Numerous environmental scientists have recognized chloro-
phyll fluorescence as a reliable indicator of a plant’s physiological state, and it is directly
connected to photosynthesis [1–3]. ChF is the visible red and far-red light emitted by
photosynthetic green plant tissues in response to photosynthetically active radiation (PAR)
absorption, which occurs between 400 and 700 nm. ChF emission is characterized by two
broad peaks that stretch from 650 to 800 nm in the red-edge region, with maxima at 690 nm
and 740 nm [4]. Traditionally, the Fv/Fm parameter has been used to measure ChF, which
is the most commonly used chlorophyll fluorescence measuring parameter worldwide [5,6].
Fv/Fm is typically measured with a pulse-amplitude modulation fluorometer using various
active light sources under light-adapted or dark-adapted conditions [7]. It is a sensitive
indicator of a plant’s photosynthetic performance, and lower values may signify stress or
photoinhibition, as well as photosynthesis downregulation [8–10].

For the past few years, scientists have been able to observe and measure chlorophyll
fluorescence in terrestrial ecosystems worldwide using low-resolution remote sensing
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images. This serves as a proxy for plant photosynthesis [11,12]. Nevertheless, recent
studies on conventional ChF retrieval methods in terrestrial ecosystems are challenged by
vegetation heterogeneity, seasonal dynamics, and variations in the physical environment
among different ecosystems [13–16]. Algorithms attempting to extract patterns from
satellite data are still being developed for retrieving and mapping ChF [17–19]. The
latest machine learning (ML) approaches in ChF retrieval from the medium-resolution
Sentinel and Landsat satellite images have been solely extended for inland and coastal
waters [20–23]. Therefore, it is critical to evaluate novel ML methodologies that enable us
to analyze and map the spatio-temporal distributions of plant chlorophyll fluorescence at
wetlands frequently using satellite data from the Earth Observation Programme.

Wetland ecosystems are crucial for preserving Europe’s biodiversity and mitigating
greenhouse gas levels by acting as carbon repositories. Proper ecosystem management of
local water resources requires addressing the issue of wetland restoration. The largest and
best preserved of its type in Central and Western Europe is the Biebrza Valley, extending in
north-eastern Poland. Unfortunately, this region still faces serious problems in the field
of water management and protection of the open fen areas [24,25]. Collecting data on
the vegetation and biophysical properties of wetlands using satellite imagery is crucial,
as it allows for the management of areas that are difficult or impossible to access for on-
site observations. Several studies on the application of remote sensing techniques for
environmental monitoring at Biebrza Wetlands have been developed [26–28]. Thus, finding
the appropriate algorithm to estimate chlorophyll fluorescence accurately is crucial for
studying the impact of stress on photosynthesis.

The aim of our study is to determine whether it is possible to use such a machine
learning algorithm that is applicable to Sentinel-2 imagery to retrieve ChF data and map this
biophysical indicator over wetlands. In situ measurements acquired during the growing
season were evaluated and applied for retrieving ChF using a machine learning algorithm
utilizing the spectral bands. These latter relations of ChF derived from the field and satellite-
imagery-based retrievals were examined for cross-validation. The manuscript follows with
the next analyses on (1) how the different spectral bands of Sentinel-2 contribute to the
ChF model results, (2) the influence of using a machine learning method, and (3) how this
study’s findings can be useful for wetland science and for mapping chlorophyll fluorescence
using Earth Observation data.

2. Materials and Methods
2.1. Test Site

The study area is located in north-eastern Poland (Figure 2). Biebrza Wetlands is a
unique ecosystem being under RAMSAR Convention for peatlands, as well as its highly
diversified flora and fauna, especially reeds and sedges with grasses. The Biebrza National
Park was established (in 1993) within the study area as a wetland site of global networking
program NATURA 2000. The study area covers a total area of 59,223 ha of which 45% are
wetlands. The area is mostly flat, with an elevation of approximately 105 m above sea level.
The Biebrza River, which runs through the area, is a naturally occurring lowland river that
provides a distinctive reference point for lowland valley mires and river floodplains [29].
There are approximately 70 various types of natural and semi-natural plants documented
in vegetation reports [30,31]. To better understand the ecological value of wetlands, we
focused on several dominant habitats, such as rush, sedge, sedge moss, and reed communi-
ties. According to the European Environment Agency’s (EEA) latest report on wetlands,
certain areas of the wetlands still require restoration, particularly those that have been
degraded. Our study investigated three main types of plant communities found within the
wetland ecosystem: peatlands dominated by sedges, sedge mosses, and reeds (Figure 1).
The research site is situated in one of the coolest regions in Poland, where the average daily
air temperature throughout the year is only 6.6 ◦C due to the prevailing temperate conti-
nental climate. The coldest month is January, when the average air temperature is around
−4.2 ◦C, and the warmest month is July, with an average temperature of 17.5 ◦C. Snow



Remote Sens. 2023, 15, 2392 3 of 18

coverage usually lasts for a maximum of 140 days, and the average annual precipitation
ranges from 550 to 650 mm. Additionally, the growing season in the wetlands is less than
200 days, making it one of the shortest in the country [32].
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Figure 1. Major types of wetland vegetation with predominance of sedges (left), sedge mosses
(middle), and reeds (right). Photo credit: Marcin Kluczek.

2.2. Field Measurements

During 2022, five field campaigns were conducted at different times between April
and October to collect in situ data, coinciding with Sentinel-2 satellite overpasses around
noon local time. Ten sites were selected across various wetland habitats and both sides of
the Biebrza River (as shown in Figure 2), and their geographic coordinates were determined
using a GNSS receiver. The vegetation’s growth stage was also recorded during each field
campaign. The OS5p+ Pulse Modulated Chlorophyll Fluorometer was used to measure ChF
in this study [7]. The instrument registers the maximum quantum yield (Fv/Fm) through
a dark-adapted test, which is a ratio that represents the maximum potential quantum
efficiency of photosystem II (PSII) if all capable reaction centers were open. It estimates the
maximum portion of absorbed quanta used in PSII reaction centers [33]. For best results, a
dark adaptation time of 20–30 min is recommended [34], and the system provides a series
of ten dark-adaption white clips to measure this. After dark adaptation, the end of the fiber
optic bundle is placed in the cylindrical opening, and the dark slide of the clip is opened
to expose the sample to the fiber optic bundle. Optimal values of Fv/Fm for most land
plant species vary within the range of 0.79 to 0.83, while lower values indicate plant stress,
particularly photoinhibition [2,8].

2.3. Satellite Data Acquisition

The study area covers two Sentinel-2 granules: 34UFE and 34UEE available from
orbits no. 36, 136, and 79 allowing image acquisition every 5–6 days. Satellite images from
Sentinel-2A and Sentinel-2B at processing level-2A were retrieved automatically using
Google Earth Engine (GEE), i.e., cloud-based platform that provides geospatial data, tools,
and computing power for developers to analyze and visualize the world’s satellite imagery
and other geospatial data. Users can access and analyze using various programming
languages such as Python and JavaScript. It also provides a suite of tools for processing
and analyzing the data, including machine learning algorithms for image classification and
time-series analysis [35]. For the current study, JavaScript API was used in Earth Engine
Code Editor. The average cirrus and cloud cover for the granules in 2022 was 52.15%
(Figure 3), whilst the climate in the region is moderate with continental elements, which
means that the growing season is short, snow and ice last for a long time, and there is
a significant amount of cloud cover. As a result, to create comprehensive images of the
area, mosaics were created using images captured by the Sentinel-2 satellite. To combine
Sentinel-2 (S-2) data into a mosaic, Google Earth Engine (GEE) uses an algorithm that
calculates a high-dimensional weighted geometric median. This approach ensures that
the spectral relationships across all the S-2 bands are maintained in the resulting mosaic.
Cloudless satellite image mosaics were run spanning around ten days before and after
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ground measurements. Full list of periods selected for temporal mosaicking of Sentinel-2
images in 2022 over study area is presented in Table 1.

1 

 

 

Figure 2. Locations of field measurements conducted within Biebrza National Park highlighted by
red dots and presented on Sentinel-2 median mosaic comprising cloudless satellite images from
June–July 2022.

2.4. Vegetation Index Calculation

To map the vegetation condition of wetlands using Sentinel-2 data, a total of forty
vegetation indices (VIs) were selected and calculated from S2 median mosaics covering
the study area. Initially, the most commonly used spectral vegetation indices that describe
various aspects of plant growth and health, such as greenness, leaf chlorophyll content,
pigments, and water content in the canopy, were identified for the study. These VIs were
then arranged into four groups and listed in Table 2.
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Figure 3. Cloud area distribution during growing season in 2022 at Sentinel-2 scenes covering Biebrza
Wetlands study area (source code: [36]).

Table 1. Sentinel-2 imaging periods used for generating cloudless median mosaics.

Name Start Date End Date No. of Sentinel-2 Acquisition
Dates Used for Mosaic

April–May 25 April 2022 12 May 2022 7
June–July 20 June 2022 7 July 2022 9

July–August 20 July 2022 4 August 2022 7
August–September 20 August 2022 8 September 2022 10
September–October 20 September 2022 28 October 2022 14

Table 2. List of spectral-vegetation-index-dedicated Sentinel-2 bands used for the study.

Application Abbreviation Name Equation Citation

Spectral Indices
of Greenness

AFRI1600 Aerosol Free Vegetation
Index 1600 AFRII1600 = R842 − 0.66× R1610

R842+0.66×R1610
[37]

ARVI Atmospherically Resistant
Vegetation Index ARVI = R842−R665−0.069×(R 665−R490)

R842+R665−0.069×(R 665−R490)
[38]

CTVI Corrected Transformed
Vegetation Index CTVI = NDVI+0.5

|NDVI+0.5| ×
√
|NDVI + 0.5| [39]

EVI Enhanced Vegetation Index EVI = 2.5× R842−R665
R842+6.0×R665−7.5×R490+1.0 [40]

GDVI Green Difference
Vegetation Index GDVI = R842 − R560 [41]

GI Greenness Index GI = R560
R665

[42]

GNDVI
Green Normalized

Difference
Vegetation Index

GNDVI = R842−R560
R842+R560

[43]

mNDVI Modified NDVI mNDVI = R842−R665
R842+R665−2.0×R443

[44]

NDVI Normalized Difference
Vegetation Index NDVI = R842−R665

R842+R665
[45]
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Table 2. Cont.

Application Abbreviation Name Equation Citation

rNDVI Renormalized Difference
Vegetation Index rNDVI = R842−R665√

R842+R665
[46]

NDRE Normalized Difference
NIR / Red Edge NDRE = R842−R705

R842+R705
[47]

PPR
Normalized Difference

550/450 Plant
Pigment Ratio

PPR = R560−R443
R560+R443

[48]

PVR
Normalized Difference
550/650 Photosynthetic

Vigour Ratio
PVR = R560−R665

R560+R665
[48]

RENDVI
Red Edge Normalized

Difference
Vegetation Index

RENDVI = R740−R705
R740+R705

[49,50]

SAVI Soil Adjusted
Vegetation Index SAVI = R842−R665

R842+R665+0.725 × (1.0 + 0.725) [51]

SLAVI Specific Leaf Area
Vegetation Index SLAVI = R842

R665+R2190
[52]

SR Simple Ratio 842/665 SR = R842
R665

[53,54]

SRT Simple Ratio 1610/2190 SRT = R1610
R2190

[55]

S2REP Sentinel-2 Red-Edge
Position Index S2REP = 705 + 35× ((R665+R783)÷2)−R705

(R740−R705)
[56]

Leaf Chlorophyll
Content

CCCI Canopy Chlorophyll
Content Index CCCI = (R 842−R705)÷(R 842+R705)

(R 842−R665)÷(R 842+R665)
[57]

CVI Red-edge-band
Chlorophyll Index CVI = R842×R664√

R560
[58]

IRECI Inverted Red-edge
Chlorophyll Index IRECI = R842−R665

R740÷R705
[56]

LCI Leaf Chlorophyll Index LCI = R842−R705
R842+R665

[59]

MCARI
Modified Chlorophyll

Absorption in
Reflectance Index

MCARI = 1.2×
[2.5× (R842 − R665)− 1.3× (R842 − R560)]

[60]

TCARI Transformed Chlorophyll
Absorption Ratio

TCARI =
3× [(R705 − R665)− 0.2× (R705 − R560)]×

(R705 ÷ R665)
[61]

TCI Triangular
Chlorophyll Index

TCI = 1.2× (R 705 − R560)−1.5× (R 665 − R560)×√
(R 705 ÷ R665)

[62]

Leaf Pigments

ARI Anthocyanin
Reflectance Index ARI = 1

R560
− 1

R705
[63]

BGI Blue Green Pigment Index BGI = R443
R560

[64]

BRI Browning
Reflectance Index BRI =

1
R560
− 1

R705
R842

[65]

CI Coloration Index CI = R665−R490
R665

[58]

GLI Green Leaf Index GLI = 2×R560−R665−R490
2×R560+R665+R490

[66]

PBI Plant Biochemical Index PBI = R842
R560

[67]

PSRI Plant Senescence
Reflectance Index PSRI = R665−R490

R720
[68]
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Table 2. Cont.

Application Abbreviation Name Equation Citation

SIPI Structure Insensitive
Pigment Index SIPI = R842−R443

R842+R665
[69]

Canopy Water
Content

GVMI Global Vegetation
Moisture Index GVMI = (R 842+0.1)−(R 2190+0.2)

(R 842+0.1) +(R 2190+0.2)
[70]

MSI Moisture Stress Index MSI = R1610
R842

[71]

NDII Normalized Difference
Infrared Index NDII = R842−R1610

R842+R1610
[72]

NDWI Normalized Difference
Water Index NDWI2 = R842−R2190

R842+R2190
[73]

NMDI Normalized Multi-band
Drought Index NMDI = R865−(R1610−R2190)

R865+(R 1610−R2190)
[74]

SIWSI Shortwave Infrared Water
Stress Index SIWSI = R865−R1610

R865+R1610
[75]

2.5. Model Establishment and Evaluation

The XGBoost algorithm was investigated to build a model for estimation of chlorophyll
fluorescence, which is an open-source software library for gradient boosting algorithms
that is designed to be highly efficient, flexible, and scalable. It is a popular machine learning
framework that is widely used in industry and academia for supervised learning tasks, such
as classification and regression. The XGBoost algorithm works by combining multiple weak
models to create a strong model. It trains each model iteratively by adjusting the weights
of misclassified samples, with the aim of minimizing a loss function. The final model is
a weighted sum of all the models, with the weights determined by their performance on
the training data [76]. XGBoost is known for its speed and performance, and it supports
regularization, uses the power of parallel processing, handles missing values, and performs
cross-validation [77].

The input for the model was an array containing r rows and c columns, where r
represents the total number of observations with available data on predictors (vegetation
indices) and references (Fv/Fm), and c represents the number of columns with predictors
calculated for each growth stage. All the predictors were scaled to a range of values between
zero and one. The proposed model in supervised learning referred to the mathematical
structure by which the prediction was made from the satellite-based vegetation indices
(listed in Table 2). A linear prediction model was created, which calculates predictions
based on a combination of weighted satellite-derived data and parameters. The available
dataset was split into a training set and a validation set in a ratio of 80:20. To improve the
accuracy of the prediction model, the XGBoost algorithm was fine-tuned using tenfold
cross-validation and learning curve methods during the training phase to determine the
best parameter configuration.

In order to evaluate the performance of the model, a cross-validation was carried out
using the leave-one-out approach, which is a variant of k-fold cross-validation, where k
is equal to the number of observations in the dataset. It should be noted that the feature
selection process was repeated at each iteration to prevent the model from benefiting from
knowledge of the data used for validation. The model performance was assessed using
various metrics, including the coefficient of determination (R2), which is the square of the
correlation coefficient, as well as the mean absolute error (MBE), root mean square error
(RMSE), and relative root mean square error (RRMSE).
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3. Results
3.1. Analysis of Ground-Measured Chlorophyll Fluorescence

The variations in maximum quantum yield (Fv/Fm) characterizing chlorophyll flu-
orescence in different vegetation growth periods at the wetlands in 2022 are shown in
Figure 4. The most ChF records were made in late June and early July (115), while due to
unfavorable weather conditions in the period September–October, only 48 field measure-
ments were carried out. The Fv/Fm reached its maximum value (0.82) at the late flowering
stage in August–September. It was noted at its lowest at the late beginning and at the end of
the growing season (0.76), in the periods April–May and September–October, respectively.
The lowest standard deviations appeared in the mid-season (July–August–September),
at 0.010–0.011, whilst the highest standard deviations appeared in the early (April–May)
and late stages (September–October) of wetland vegetation development, at 0.026 and
0.029, respectively.
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The box plot shows the median value (line dividing the box plot), the 25th to 75th percentile range
(green rectangle), and the mean value (represented by a black cross) of the field measurements (n).

3.2. Features Selected by Algorithm for Mapping ChF

The initial feature set is composed of 19 greenness-related vegetation indices, 7 indices
characterizing leaf chlorophyll content, 8 features concerning leaf pigments, and 6 indices
on canopy water content. Each feature parameter in the feature set is analyzed individually,
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and Figure 5 shows the correlation coefficient between each of these parameters. It can
be noted that the overall features have high positive and negative correlations with the
other ones. The water content, leaf pigments, and canopy structure of herbaceous plants
in wetlands exhibit clear changes that can be used to monitor their growth dynamics.
Additionally, measuring the chlorophyll content of the canopy is a sensitive method for
accurately determining vegetation growth patterns. Among all analyzed features, the
indices based on Sentinel-2 spectral bands of near-infrared (NIR) and shortwave-infrared
(SWIR) received the most correlations among each other. The parameters related to the
water content of the canopy, such as the area and amplitude of the edges in the near-infrared
(NIR) and shortwave-infrared (SWIR) regions, exhibit significant changes in response to
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In this study, we examined the use of XGBoost for automating the feature selection
process on the initial feature set. The outcome of this process is presented in Figure 6. It can
be observed that the Simple Ratio on the 1610 and 2190 bands (SRT) has the highest impor-
tance, while the importance of the ARVI is slightly lower. Both indices reflect vegetation
growth dynamics and temporal changes in photosynthetic capacity. The vegetation indices
ARI, CI, and BRI, which reflect plant senescence, can detect even minor changes in leaf
pigments and capture the phenomenon of vegetation browning. When herbaceous plants
are exposed to various environmental stresses such as seasonal flooding, high variations in
salt levels, low soil oxygen levels, and waves over time, their cell viability and biochemical
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composition change, which can affect the morphology of leaves, the distribution of leaf
inclination, and the structure of the canopy. Therefore, the SRT, which shows healthy and
unhealthy vegetation, has a distinct response to environmental conditions. According
to a previous study [34], it was found that under saturation conditions, the variation in
far-red fluorescence is mainly influenced by the structure of the canopy. The variability
in the broadband light spectrum ranging from 641 to 800 nm, which is included in the
ARVI and ARI indices, is mainly influenced by the optical properties of leaves and the
structural characteristics of the canopy [15]. Finally, these spectral vegetation indices can
reflect the vigor of wetland vegetation linked to the changes in leaf and canopy structure
and subsequently to chlorophyll fluorescence.
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3.3. Evaluation of the Model Performance

To evaluate the XGBoost algorithm results, we compared the predicted chlorophyll
fluorescence Fv/Fm with reference data, collected in situ during the growing season in
2022. The evaluation of the model performance is presented in Figure 7. It is worth
noting that high coefficients of determination at R2 = 0.71 and low errors at the levels
of RMSE = 0.012, rRMSE = 0.016, and MAE = 0.009 were found with the used algorithm.
These findings indicate quite good prediction, especially having the short time span of
analysis (April–October 2022). The evaluation results indicate that the XGBoost algorithm
has high monitoring accuracy, which is consistent with the results of a previous study [78]
that used different models. This suggests that the XGBoost algorithm is not only universal
but also scalable for vegetation monitoring.
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3.4. Spatial and Temporal Patterns of Chlorophyll Fluorescence

The estimated spatial changes in ChF from April to October 2022 are shown in Figure 8.
The areas with non-wetland vegetation such as forests, arables, and meadows were ex-
cluded using classification from previous studies [79,80]. Most of the greening areas are
in the Biebrza Lower Basin, consistent with the previous studies [26,27,32]. In addition,
the spatial estimations on wetland vegetation with high ChF also confirm the results on
mapping gross primary productivity (GPP) with remote sensing data from 2022 [80].

Spatio-temporal changes for five periods are presented in Figure 9. The periods of
April–May and June–July exhibit a significant increase in vegetation cover in the Biebrza
Valley, particularly in the wild regions of the Biebrza Lower Basin, whilst at the turn of the
months July–August, the majority of the Biebrza Valley shows insignificant ChF decreases,
with some noticeable browning. This is in agreement with the study of Okruszko, 1990 [29].
During the following month August until October, areas with significant ChF changes were
dominated by browning trends under the temperate climate. This is also supported by
other studies on Cepkeliai wetlands in Lithuania that are located 200 km from the Biebrza
Valley [81]. Moreover, Simanauskiene et al. 2019 [81] found that the summit of the growing
season of herbaceous plants is noted in June, while vegetation index variations in July
reflect environmental changes indicating browning. The findings suggest that there are
significant fluctuations in the spatial distribution of ChF changes across different time
periods. We observe an overall greening development stage at a maximum ChF of 0.84 and
browning at 0.70.
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4. Discussion

The research on a time series of combined optical Sentinel-2 and field remote sensing
data led to providing maps of chlorophyll fluorescence over wetlands in a large area. So far,
several studies have documented the potential of remote sensing data to map chlorophyll
fluorescence [13,16,79]. Whilst Sinha et al. [18] used medium-resolution remote sensing im-
agery for estimating seasonal fluorescence dynamics at deciduous forests, we mapped the
areas difficult to access with high water-level fluctuations. Therefore most studies examined
relatively homogeneous areas such as forests; however, larger heterogeneous landscapes
with high biodiversity and conservation practices pose a challenge. Nevertheless, the
application of Sentinel-2 imagery to estimate chlorophyll fluorescence at wetlands remains
underexplored. In this context, we endeavor to figure out the potential of Sentinel-2 multi-
spectral data for estimating the plant state reflecting seasonal variations in phenology at the
areas being protected under the Ramsar Convention in Poland. We studied the XGBoost
algorithm supported by the combination of Fv/Fm field data to select the most appropriate
satellite-derived features for the spatio-temporal monitoring of chlorophyll fluorescence.

Our study demonstrates the potential of 10 m satellite imagery for estimating the
chlorophyll fluorescence parameter, which could not be assessed directly from remote
sensing data. Comparing coarse-resolution MODIS satellite imagery, Simanauskiene et al.
2019 [81] found that commonly used NDVI values can be recognized as an appropriate
indicator for finding degraded peatland areas. However, early detection of degrading
peatlands with high spatial and temporal resolution still meets the challenge. Moreover,
a suitable algorithm for accurate chlorophyll fluorescence estimation to find the effect of
stresses on the photosynthetic process is still required for management practices [82–84].
Our study showed a novel approach for mapping ChF and subsequently indicated spatio-
temporal greening and browning variations. The features selected by XGBoost enable us to
identify plant phenology shifts, such as greening and browning.

Many studies have used the XGBoost algorithm for monitoring environmental changes
with remote sensing data [22,23,85]. Jing et al. 2022 [85] found that data collected from one
year provide satisfactory results; however, in order to improve the accuracy of prediction on
features by XGBoost, more data characterizing meteorological and environmental variables
could be included. In our study, spectral vegetation indices and field data were also
collected as features with a higher importance in one analyzed year. We are aware that the
more field data we collect in subsequent years, the higher accuracy of the model we might
assess. The reasons we applied XGBoost are as follows: small dataset (one-year collection),
model architecture (decision trees), structured data (Fv/Fm and vegetation indices), and
feature importance scores (straightforward and easy to understand). XGBoost and deep
learning models are both machine learning algorithms, but they differ in several ways:
(a) Model architecture: XGBoost uses an ensemble of decision trees as base learners, whereas
deep learning models use artificial neural networks that are composed of multiple layers.
(b) Input data format: XGBoost is well-suited for structured data that are arranged in rows
and columns, while deep learning models can handle both structured and unstructured
data, such as images and text. (c) Computational requirements: deep learning models
typically require more computational resources than XGBoost, such as GPUs or TPUs,
and can take longer to train. (d) Interpretability: XGBoost provides more interpretability
than deep learning models, as it can output feature importance scores and decision rules.
In contrast, deep learning models are often considered “black box” models, as it can
be difficult to interpret them and understand how they arrive at a particular prediction.
(e) Performance on small datasets: XGBoost can perform well on small datasets, whereas
deep learning models typically require large amounts of data to perform well.

We utilized Sentinel-2 median mosaics due to cloud coverage frequency at the study
site. This process allowed us to reduce the dimensionality of the input array consisting of
satellite daily images and adjust the periods of temporal mosaics covering field campaigns
at the Biebrza Valley. Results on the quality of the compositions from Sentinel-2 satellite
images by Shepherd et al. 2020 [86] confirmed the use of improved cloud-free and composed
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daily, weekly, or monthly mosaics for regular land monitoring. Regarding unfavorable
weather conditions in the study area, Sentinel-2 median mosaics were taken into account
as well. In our study, we did not explicitly consider the impact of view zenith angle
difference and its derivative consequences on the model performance in temporal pattern
prediction [87]. However, this is an important factor to consider in future studies. Therefore,
we recommend that future studies investigating temporal patterns in remote sensing data
should consider this factor and explicitly evaluate its impact on model performance.

However, some limitations must be mentioned in next future studies. Even though
the XGBoost algorithm effectively detected ChF patterns at the local site and the method
presented might be applied to other areas, the parameters require further optimization.
In this context, the XGBoost model will be developed applying additional parameters
characterizing high water-level fluctuations, e.g., surface roughness and soil moisture
establishments from satellite radar data. Additionally, regarding weather and optical
satellite daily image constraints, the obtained median mosaics were few, and the coverage
was limited. Therefore, this study did not focus on large-scale environmental monitoring
or detecting stress periods. However, including meteorological information such as air
temperature, precipitation, and humidity derived from ERA-5 Land reanalysis could be
valuable for future research.

Our study aimed to emphasize the possibility of applying free-of-charge Sentinel-2
imagery for mapping chlorophyll fluorescence with fine resolution. Considering the reports
on the state of European wetlands from the EEA and the anthropogenic influence on the
wetland biodiversity and sustainable management of the Biebrza Valley in Poland [25,84],
the proposed study might support biodiversity conservation and management practices
that are the subject of investigations from other academic units [88,89].

5. Conclusions

Our study demonstrates the feasibility of mapping chlorophyll fluorescence for an area
of terrestrial wetlands using remote sensing indices derived from the Sentinel-2 satellite
with high accuracy (R2 = 0.71, RMSE = 0.012). However, fluorescence information has so
far most often been related point-wise to specific study locations. We have shown that by
using ground-based field measurements, it is possible to use machine learning techniques
(XGBoost algorithm) to relate the solution spatially, enabling the analysis of wetland condi-
tions and wetland phenological changes (growth, full vegetation development, dieback).
The conducted feature selection showed that among the most important remote sensing
indices in the wetlands were a group of leaf pigment (Anthocyanin Reflectance Index, Col-
oration Index, Browning Reflectance Index, Blue Green Pigment Index) and water indices
(Normalized Multi-band Drought Index, Shortwave Infrared Water Stress Index, Moisture
Stress Index). In detail, the group of water indices shows a strong relationship between
water content and chlorophyll fluorescence, which demonstrates the high dependence
of photosynthesis on water conditions in wetlands, which are an important absorber of
atmospheric carbon dioxide, and drainage could adversely affect this potential. Generally,
regarding our results and F1 scores presented in Figure 6, the Simple Ratio Index based
on Sentinel-2 Short Wave Infrared (B11 and B12) bands revealed the highest importance
in the model. AFRI1600 based on Infrared and Short Wave Infrared (Sentinel-2 B8 and
B11) is among the crucial features to model as well. However, we are aware that other
vegetation indices, such as the ARVI and ARI, which are based on spectral reflections in
the visible blue and green bands, also significantly influenced the estimation of chlorophyll
fluorescence. Therefore, it is recommended to conduct analyses using a wide range of
indices and other biophysical parameters for research purposes. It is important to note
that the specific bands used for fluorescence modeling may vary depending on the type of
plant or vegetation being studied, as well as the environmental conditions being assessed.
This research is a contribution to further fluorescence mapping studies, especially in the
context of the upcoming European Space Agency mission, the FLuorescence EXplorer
(FLEX), which will aim to determine fluorescence data for the globe on a continuous basis.
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Further surveys will allow the proposed solution to be extended to other plant ecosystems
(forests, agricultural fields), which is particularly important in view of climate change and
sustainable agriculture. A possible future direction for the research will be to combine the
fluorescence data with other biophysical variables as well as climatic conditions, identifying
the relationship between them and their influence on chlorophyll fluorescence.
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