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Abstract: The Upper Jinsha River (UJSR) has great water resource potential, but large-scale active
landslides hinder water resource development and utilization. It is necessary to understand
the spatial distribution and deformation trend of active landslides in the UJSR. In areas of high
elevations, steep terrain or otherwise inaccessible to humans, extensive landslide studies remain
challenging using traditional geological surveys and monitoring equipment. Stacking interferome-
try synthetic aperture radar (stacking-InSAR) technology, optical satellite images and unmanned
aerial vehicle (UAV) photography are applied to landslide identification. Small baseline subset
interferometry synthetic aperture radar (SBAS-InSAR) was used to obtain time-series deformation
curves of samples to reveal the deformation types of active landslides. A total of 246 active land-
slides were identified within the study area, of which 207 were concentrated in three zones (zones
I, II and III). Among the 31 landslides chosen as research samples, six were linear-type landslides,
three were upward concave-type landslides, 10 were downward concave-type landslides, and
12 were step-type landslides based on the curve morphology. The results can aid in monitoring
and early-warning systems for active landslides within the UJSR and provide insights for future
studies on active landslides within the basin.

Keywords: the Upper Jinsha River; active landslide; integrated remote sensing; spatial distribution;
time-series deformation curves

1. Introduction

Since the Middle Pleistocene, with the uplift of the Qinghai-Tibet Plateau (QTP),
downcutting of rivers, and concentrated high rainfall, the peripheral area of the plateau has
become an area with some of the most serious landslide disasters in China [1,2]. The Jinsha
River (JSR) is located on the southeastern edge of the QTP, and its upstream section is a
hotspot for the development of hydropower projects in China [3]. At present, the layout of
planned and under-construction hydropower stations is characterized as “one reservoir
and thirteen stages” [4,5]. Hydroelectricity is a viable source of environmentally friendly
and high-quality energy. Nevertheless, the advancement of hydropower is limited by active
landslides [6,7]. In the Upper JSR (UJSR), a number of historical landslide-flood events have
taken place and caused significant damage [8]. For instance, two high-locality landslides
occurred in the UJSR near the village of Baige in Jiangda County, Tibet, on 11 October 2018
and 3 November 2018. Large rock masses blocked the JSR, which subsequently impounded
a 290 million m3 lake, affecting more than 20,000 residents and causing enormous economic
losses and social impacts [9].
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After the Baige landslide blocked the river, much research has been carried out on
active landslides in the UJSR. Numerous studies have concentrated on large landslides
that pose a threat to the UJSR [10]. The failure mechanism and deformation trends of
the Woda landslide [11,12], Xiongba landslide [13], Xiaomojiu landslide [14], Wangda-
long landslide [15] and “unstable blocks” of the Baige landslide [16–18] were analyzed
through field examination and numerical simulation. Alternatively, some scholars have
been able to detect active landslides in the UJSR by employing remote sensing technology,
including high-resolution optical satellite images, InSAR, and UAV photography [19–21].
The above studies represent good references for the study of active landslides in the
UJSR, but the systematic research results on the deformation types of active landslides
are relatively lacking.

A number of surface deformation features will appear during landslide development.
These deformation signals can be detected and monitored using certain types of technology
and equipment, including total stations [22], borehole inclinometers [23], time domain
reflectometry (TDR) [24], optical fiber sensing technology [25], global navigation satellite
systems (GNSS) [26], RGB-D sensors [27] and others. Then, the collected data are plot-
ted on time-series deformation curves to observe the displacement trend of the landslide.
Miao et al. [28] classified landslides into four categories based on the time-series defor-
mation curves: steady-type landslides, accelerated-type landslides, step-like landslides,
and convergent-type landslides. Xiong et al. [16] and Carlà, T. et al. [29] detected clear
trends of accelerating displacement prior to the failure of the Baige landslide and the Xinmo
landside. Currently, the most common method for collecting high-accuracy and real-time
displacement data is to install GNSS in the high-risk area. However, the surface-installed
equipment is limited to measuring the displacement of a single landslide. Furthermore,
some of these systems are costly, and the installation is challenging in high-elevation valley
locations [26,30]. Satellite-based interferometric synthetic aperture radar (InSAR) can be
used to measure wide-area surface deformation at the millimeter scale [31]. The insensitiv-
ity of SAR images to weather and the fact that the European Space Agency (ESA) has made
the C-band Sentinel-1A data available for free since 2014 enables the periodic acquisition of
SAR images [31–35].

The reservoir area of the Benzilan-Gangtuo ten-stage hydropower station on the UJSR
was selected as the study area. The identification of active landslides was first realized
step-by-step using comprehensive remote sensing technologies such as stacking-InSAR
technology, optical satellite remote sensing images, and UAV images. Second, SBAS-InSAR
technology was used to obtain the time-series deformation curves of active landslide
samples to reveal the deformation types of active landslides. These research results are
able to provide guidance for the monitoring and early warning of active landslides in the
UJSR, serve the construction of major projects, and act as a reference for the study of active
landslides in the basin.

2. Study Area

The study area lies on the southeastern rim of the QTP and the UJSR, extending from
Penziban town in Deqin County, Yunnan Province to Gangtuo town in Gangda County,
Tibet. It encompasses nine county-level administrative areas, comprising Shangri-La and
Deqin in Yunnan Province; Derong, Batang, Baiyu, and Dege in Sichuan Province; and
Mangkang, Gongjue, and Jiangda in Tibet. The main stream of the JSR has a river channel
length of approximately 535 km, covering an area of approximately 18,294 km2 (Figure 1a,b).
The study area is situated in the transitional area between the first and second topographic
steps in China, located in the northern part of the Hengduan Mountains. Elevations range
from 1914 to 5823 m, with a gradual descent in the terrain from north to south. The hy-
dropower plan for the UJSR states that the hydropower stations currently planned and
under construction will adopt a “one reservoir and thirteen stages” layout. From down-
stream to upstream, the hydropower stations are Benzilan, Xulong, Changbo, Suwalong,
Batang, Lawa, Yebatan, Bolo, Yanbi, Gangtuo, Guotong, Saila, and Xirong [5]. The study
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area spans the ten hydropower station levels from Benzilan to Gangtuo (Figure 1c). Due
to the complex topography, the climate in the area is varied and includes tropical mon-
soon, subtropical monsoon, and plateau monsoon climates. The study area experiences
an annual rainfall of approximately 850 mm to 1500 mm (Figure 1b). The area’s climate is
characterized by distinct wet and dry seasons, with the rainy season occurring from June
to September annually. The stratigraphy, shown in Figure 1d, spans from the Proterozoic
(Pt) to the Quaternary (Q), with the main stratigraphic ages being Triassic (T), Permian (P),
Carboniferous (C), and Devonian (D). Lithologies in the area predominantly comprise slate,
shale, gneiss, sandstone, and limestone. Influenced by the uplift of the QTP, the area under
investigation is tectonically complex (Figure 1e). It has developed numerous deep and
broad fracture zones, such as the Jinsha-Honghe fracture zone, the Delai-Dingqu fracture
zone, and the Zigasi-Yangla fracture zone [36]. Seismic events occur frequently. According
to statistics on the website of the US Geological Survey (USGS), earthquakes in the study
area are more concentrated near Deqin and Batang. Between 24 May 1929 and 1 February
2019, a total of 62 earthquakes of varying magnitudes occurred in the study area, 23 of
which were magnitude 3 or above.
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Figure 1. Map of the study area. (a) Location of the study area in China; (b) administrative divisions 
and rainfall map; (c) map of topography and hydropower stations; (d) stratigraphic map; (e) tectonic 
and seismic map. The topographic elevation data are from STRM, 30 m DEM; the rainfall data are 

Figure 1. Map of the study area. (a) Location of the study area in China; (b) administrative divisions
and rainfall map; (c) map of topography and hydropower stations; (d) stratigraphic map; (e) tectonic
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and seismic map. The topographic elevation data are from STRM, 30 m DEM; the rainfall data
are from National Tibetan Plateau/Third Pole Environment Data Center (Reprinted/adapted with
permission from Ref. [37]. 2020, Shouzhang, P.); the stratigraphic dataset is from the National
Geological Archives of China; and the historic earthquake data are from USGS.

3. Data
3.1. SAR Images and Visibility
3.1.1. SAR Images

We collected radar images from Sentinel-1A, including path 99 ascending images, path
33 descending images, and path 106 descending images, taken over the study area (Figure 2).
The SAR dataset’s basic parameters and data volume are listed in Table 1. To reduce external
errors, the precise orbit data corresponding to the time of each Sentinel-1A image view
were downloaded for this research. These data were used for precision alignment and
the elimination of systematic errors resulting from phase orbit errors. Meanwhile, the
ALOS DEM data with a 12.5 m resolution for the study area were acquired to remove the
terrain phase during InSAR processing, aid geocoding, and determine the overlay mask
and shadow area.
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Table 1. Information on SAR data parameters in the study area.

Orbital Direction Number of Path Number of Frame Data Span Volume of Images

Ascending 99
1285/1280 12 January 2018–19 August 2022 248
1275/1270 12 January 2018–30 October 2022 266

Descending 33 497/492/487 7 January 2018–6 November 2022 429
106 486/481 12 January 2018–11 November 2022 192

3.1.2. Visibility Evaluation

Alterations in terrain relief will impact the sequence in which the ground-reflected
radar signals reach the imaging system, leading to geometric abnormalities such as perspec-
tive contraction, shadowing, and superimposed masking in the SAR image. The objective
of visibility evaluation was to statistically determine the distributions of the data from
the Sentinel-1A ascending and descending trajectories that covered the visible study area.
The study area contained masked and shadowed areas, as shown in Figure 3a,b, respec-
tively, alongside the distribution of visible and nonvisible regions in the joint monitoring of
Sentinel-1A ascending and descending tracks (Figure 3c).
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The results of the SAR visibility analysis indicate that the study area has visible
areas comprising 84.64% of the Sentinel-1A ascending data and 89.15% of the descending
data. The area covered by the superposition mask is more concentrated along the two
sides of the main stream of the JSR, with superposition mask ratios of 14.74% and 9.71%,
respectively. Notably, based on a combination of Sentinel-1A ascending and descending
orbit data for detecting the study area, the visible area accounts for 97.72%, while the area
of superimposed masks and shaded regions accounts for only 2.28%. This approach can
effectively compensate for the limitations of single-orbit detection and significantly increase
visibility within the study area, which meets the detection requirements more effectively.
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3.2. Optical Satellite Images

With attention to the coverage and precision of the optical satellite images, GF-1 and
GF-6 optical satellite image data with a 2 m resolution were gathered, covering a portion
of the study area. Figure 2 displays the collected data. The identification of spectral
characteristics of active landslides was challenging using a single image. To overcome this
obstacle, we aimed to select images from various periods whenever possible. Limited to
the availability and cloud coverage ratio of archived images (<5%), the acquisition dates for
GF-1 images were 1 February 2019 and 13 February 2019, and those for GF-6 images were
17 August 2019, 15 October 2019, and 1 January 2020. Historical images from Sky Map (91
weitu v19.3.4) and Google Earth Pro (v7.3.6.9345) were collected for areas not within the
coverage area of the GF-1 and GF-6 images.

3.3. UAV Images

UAV data were primarily employed to acquire the topography and geomorphology of
the landslides, the indications of deformation, and the structural attributes of the slopes.
On the one hand, the study utilized UAV-inclined photogrammetry and 3D modelling
techniques to procure 3D models of eight active landslide hazards spanning a total area
of 19.3 km2. The UAV image was taken at a relative height of 850 m with a resolution of
approximately 0.2 m. On the other hand, light detection and ranging (LiDAR) techniques
provided data from airborne LiDAR point clouds of four active landslide hazards spanning
a total area of 7.1 km2. The digital orthophoto map (DOM) and digital elevation model
(DEM) data were acquired simultaneously and have a 0.1 m resolution.

4. Methods

The workflow in this study is as follows: initially, the deformation area was identified
through stacking-InSAR. Then, we eliminated non-landslide deformation and identified
active landslide boundaries by analyzing morphological features and macro deformation
based on high-resolution optical satellite images. Subsequently, field investigations were
conducted using UAVs, airborne LiDAR, and traditional methods to confirm landslides.
Finally, SBAS-InSAR technology was used to obtain the time-series deformation curves of
the strong deformation zones of the landslides, and the active landslides were classified
based on the curve morphology (Figure 4).
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4.1. Identification of Active Landslides

Active landslides are slopes that display macroscopic or microscopic deformation.
Typically, macroscopic signs can be identified through conventional field investigations [22].
In China, more than 65% of the land is in mountainous regions, and many active landslides
originate at high elevations, increasing the challenge of early detection. Currently, remote
sensing technology is extensively utilized in analyzing the spatial distribution of landslides.
It integrates data from multiple sources to obtain more accurate landslide information [38].

4.1.1. Deformation Detection

InSAR technology can continuously monitor ground deformation across a large area
and is effective in identifying landslides situated in remote or sparsely populated re-
gions [22]. Conventional differential InSAR (DInSAR) is prone to atmospheric delays and
incoherence, resulting in substantial inaccuracies in deformation measurements. However,
stacking-InSAR is a weighted averaging of de-entangled phases obtained via DInSAR. It
can effectively ameliorate the impacts of random orbital errors, topographic errors, and
atmospheric phase delay errors. It can better capture the range of deformation and morpho-
logical characteristics of deformation in space and is capable of detecting landslides with
smaller magnitudes of deformation. Hence, stacking-InSAR is appropriate for monitoring
surface deformation in mountainous terrain [39].

Figure 5 displays a representative stacked phase map of the research area produced
by stacking-InSAR technology. In the stacked phase map, numerous regions exhibit dense
interference fringes and have significant variations in color. These are interpreted as
deformation anomalies (yellow circled area). The white area in the image represents an
invisible area.

Remote Sens. 2024, 16, x FOR PEER REVIEW 8 of 22 
 

 

landslides originate at high elevations, increasing the challenge of early detection. Cur-
rently, remote sensing technology is extensively utilized in analyzing the spatial distribu-
tion of landslides. It integrates data from multiple sources to obtain more accurate land-
slide information [38]. 

4.1.1. Deformation Detection 
InSAR technology can continuously monitor ground deformation across a large area 

and is effective in identifying landslides situated in remote or sparsely populated regions 
[22]. Conventional differential InSAR (DInSAR) is prone to atmospheric delays and inco-
herence, resulting in substantial inaccuracies in deformation measurements. However, 
stacking-InSAR is a weighted averaging of de-entangled phases obtained via DInSAR. It 
can effectively ameliorate the impacts of random orbital errors, topographic errors, and 
atmospheric phase delay errors. It can better capture the range of deformation and mor-
phological characteristics of deformation in space and is capable of detecting landslides 
with smaller magnitudes of deformation. Hence, stacking-InSAR is appropriate for mon-
itoring surface deformation in mountainous terrain [39]. 

Figure 5 displays a representative stacked phase map of the research area produced 
by stacking-InSAR technology. In the stacked phase map, numerous regions exhibit dense 
interference fringes and have significant variations in color. These are interpreted as de-
formation anomalies (yellow circled area). The white area in the image represents an in-
visible area. 

 
Figure 5. Stacked phase map created using stacking-InSAR technology (the yellow circled area is 
the deformation area). 

4.1.2. Landslide Mapping 
1. Non-landslide Deformations 

It is assumed that variables such as vegetation cover, topographical effects, and inac-
curacies in data processing are fully eliminated. In addition to landslides, ground surface 
deformation frequently results from snow and ice melting, anthropogenic activities, etc. 
Consequently, the deformation region identified by stacking-InSAR technology should 
not be immediately regarded as a landslide. We excluded three types of non-landslide 
deformations observed in the optical satellite images. The first type was the deformation 
resulting from the melting of snow and ice, which was evident as a clustered strip area in 
high-elevation regions (generally greater than 4500 m) with steep gradients (Figure 6a,b). 
The second type of deformation involved dispersed small-scale changes. This included 
the source area of a debris flow (Figure 6c,d), seasonal changes on the surface due to var-
iations in the water content of the loose sediment, and alterations to the ice layer on the 
lake surface, among others. The third type of deformation was caused by human 

Figure 5. Stacked phase map created using stacking-InSAR technology (the yellow circled area is the
deformation area).

4.1.2. Landslide Mapping

1. Non-landslide Deformations

It is assumed that variables such as vegetation cover, topographical effects, and
inaccuracies in data processing are fully eliminated. In addition to landslides, ground
surface deformation frequently results from snow and ice melting, anthropogenic activities,
etc. Consequently, the deformation region identified by stacking-InSAR technology should
not be immediately regarded as a landslide. We excluded three types of non-landslide
deformations observed in the optical satellite images. The first type was the deformation
resulting from the melting of snow and ice, which was evident as a clustered strip area in
high-elevation regions (generally greater than 4500 m) with steep gradients (Figure 6a,b).
The second type of deformation involved dispersed small-scale changes. This included the
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source area of a debris flow (Figure 6c,d), seasonal changes on the surface due to variations
in the water content of the loose sediment, and alterations to the ice layer on the lake
surface, among others. The third type of deformation was caused by human engineering
activities, primarily targeting construction sites with low-relief topography and gentle
slopes (Figure 6e,f).
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2. Landslide Characteristics in Optical Satellite Images

After removing non-landslide deformation, the focus of this study was on the deforma-
tion caused by active landslides. Nonetheless, it is important to note that the deformation
boundary could not be directly applied as the landslide boundary since the InSAR tech-
nique may detect only a section of the landslide, which does not represent its complete
shape. For instance, we used the stacking-InSAR technique to acquire a stacking phase map
of the landslide in Guxue village. This highlighted two elliptical and strong deformation
zones (Figure 7a). We also discovered that the slope on which Guxue village is situated
appeared to be a complete ancient landslide stack upon examination of the optical satellite
image (Figure 7b). Ultimately, we delineated the boundary of the Guxue landslide and
identified the strong deformation zone detected through InSAR as an ancient landslide
reactivation. Therefore, it is necessary to define the boundaries of landslides using optical
satellite imagery.
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According to the history of landslide activity, active landslides in the study region
can be broadly classified into two types: reactivated ancient landslides and landslides in
gestation. Ancient landslides generally refer to those with a lengthy formation period,
and they are the result of a lengthy, complex evolutionary process of slopes and may
reactivate due to human activities, heavy rainfall, and earthquakes [40]. Due to their age,
ancient landslides generally do not differ greatly from their surroundings in color and
tone. However, they have distinctive features in terms of microgeomorphology, such as
landslide wall and body. The landslide wall is distributed at the rear and sides of the
landslides, which are usually steep and high, and typically appear as shadows on optical
satellite images (Figure 8a). The middle portion is usually broad, with a gentle topography
and high vegetation cover, and is frequently utilized as cultivated land. Settlements and
temples are also distributed in this zone (Figure 8b). The landslide body comprises the
primary segment formed by the accumulation of landslide material. The topography of the
leading edge becomes steeper and more pronounced than the surrounding terrain. This
squeezes the river channel as it joins the river and forms what is known as a “landslide
tongue” (Figure 8c). The morphological features of a landslide in gestation are not always
apparent and typically lack a distinct chair-like shape. Signs indicating its presence are
primarily manifested through deformation features such as cracks (tension and shear),
avalanches, and slide damage. Differences in color, shadow, and texture when compared
to the surrounding environment are also noticeable, with predominantly grey-brown
and greyish-white tones and rough textures. The tensile cracks primarily appear in the
central and rear regions of the landslide. On optical satellite images, these cracks exhibit
mostly curved and jagged shapes on both flanks. Shear cracks are predominantly situated
in the shear outlets and sidewalls at the leading edge of the landslide and exhibit an
irregularly curved and jagged appearance in the image (Figure 8e). The development
of a multistage landslide bench is attributed to the further progression of tensile cracks,
primarily distributed in the central and rear sections of the landslide and characterized
as bench-shaped (Figure 8f). The outcomes of boundary delineation of typical active
landslides in the study region are presented in Figure 9.

4.1.3. Field Investigation

After completing the mapping of landslides in the study area, field investigations
typically proceed using UAV aerial photography and airborne LiDAR in conjunction with
regional geologic data. The primary investigations include the following. (1) Geological
environmental conditions, such as slope structure and stratigraphic lithology. (2) Landslide
boundaries and macrodeformation indicators. (3) The impact of external factors, including
rainfall, earthquakes, floods, and human engineering activities, on landslides. (4) This
section evaluates the effectiveness of current monitoring equipment, treatment facilities,
and other measures used for the prevention and control of landslides. (5) A preliminary
assessment is conducted to determine the stability of active landslides. Figure 10 illus-
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trates the field investigation drone and camera photographs depicting a typical landslide,
specifically the Aluogong landslide.
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4.2. Time-Series Deformation Analysis of Active Landslides

Numerous studies have demonstrated that SBAS-InSAR technology is more applicable
to valley areas than other time-series radar interferometry technologies [38,41,42]. The
basic process of SBAS-InSAR is as follows. Initially, SAR images in single look complex
(SLC) format are used to establish an interferometric pair network by applying a specific
spatiotemporal baseline threshold. Then, differential interference processing is performed
on each interference image pair to obtain the correct unwrapping phase. Next, the least
square method or singular value decomposition (SVD) is used to calculate the deformation
phase and residual phase of the model. Finally, the atmospheric delay phases and nonlinear
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deformation are separated through filtering techniques [31]. Figure 11 displays the average
annual deformation rate of a representative region detected by SBAS-InSAR technology in
combination with ascending and descending Sentinel-1A radar images. This region has
17 landslides, and L106 is one of the largest.
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5. Results
5.1. Identification of Active Landslides

A total of 246 active landslides were identified in the study area, and the spatial distri-
bution is shown in Figure 12a. The relationship between active landslides and reservoir
areas is as follows: 5 in front of the Benzilan Dam, 14 in the Benzilan Reservoir area, 44 in
the Xulong Reservoir area, 7 in the Changbo Reservoir area, 13 in the Suwalong Reservoir
area, 1 in the Batang Reservoir area, 29 in the Lawa Reservoir area, 14 in the Yebatan
Reservoir area, 57 in the Boluo Reservoir area, 35 in the Yanbi Reservoir area, and 27 in the
Gangtuo Reservoir area. The results of Gaussian kernel density analysis of landslides are
shown in Figure 12b. They indicate the presence of three zones with concentrated active
landslide occurrences (zones I, II, and III) in the study area. Table 2 provides an overview
of the three zones’ basic features. These zones experienced 207 landslides, accounting for
84.1% of the total landslides in the area. The average landslide density is about 32.9/103

km2. Zone I is situated in the Xulong–Suwalong region, covering an area of approximately
1.5 × 103 km2. This zone had 51 landslides in total, with an average density of approxi-
mately 34 landslides/103 km2. This accounts for 24.6% of the landslides in the three areas
and 20.7% of the total number of landslides in the study area. The Wangdalong landslide
is a typical example of landslides that have occurred in Zone I. Zone II is situated in the
Yebatan region and covers an area of approximately 1.1 × 103 km2. The number of land-
slides recorded in this zone is 29, with an average density of approximately 26.4 landslides
per 103 km2, constituting 14.0% of the total landslide count in the three areas and 11.8% of
the overall landslide count in the study area. Typical landslides found in Zone II include
the Xiongba landslide. Zone III is situated within the Yanbi–Gangtuo section, covering
approximately 3.6 × 103 km2. This zone had 127 landslides in total, with an average density
of approximately 32.9 landslides/103 km2. This represents 61.4% of all landslides in the
three areas and 51.6% of landslides in the study area. Additionally, typical landslides, such
as the Baige landslide and Woda landslide, were observed.
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Table 2. Statistical table of concentration zones of active landslides.

Zone I II III Total

Area (×103 km2) 1.5 1.1 3.6 6.3
Number of landslides 51 29 127 207

Average density (/103 km2) 34 26.4 35.3 32.9
Percentage of landslides in centralized zones 24.6% 14.0% 61.4% 100%

Percentage of total landslides 20.7% 11.8% 51.6% 84.1%

Typical landslides Wangdalong landslide Xiongba landslide Baige landslide,
Woda landslide

5.2. Deformation Types of Active Landslides
5.2.1. Linear Type

L064 is situated on the left bank of the JSR, 2 km upstream of the Changbo hydro-
power station. L148 is located on the right bank of the JSR, 30 km upstream of Boluo
Hydropower Plant. Deformation values of points P1, P2, P3, and P4 were obtained within
the strong deformation zones of landslides L064 and L148. Figure 13 shows the curves,
indicating a near-linear progression with an essentially identical rate of deformation, while
the cumulative deformation gradually increases. Yearly average deformation rates of
22.3 mm/a and 21.2 mm/a were observed for points P1 and P2. Similarly, it was found that
the average annual deformation rates for P3 and P4 were 89.4 mm per year and 87.6 mm
per year, respectively.
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the cumulative deformational variables, the same as below); (c) ascending SBAS-InSAR map of L148;
(d) time-series deformation curves at points P3 and P4.

5.2.2. Upward Concave Type

L018 is situated 1 km downstream from Xulong Hydropower Station on the right
bank of JSR in the Benzilan reservoir area. L106, known as the Xiongba landslide, is
positioned 20 km downstream from Yebatan hydropower station and on the left bank of
the JSR. It is evident that these two landslides are experiencing accelerated deformation,
characterized by the exponential increase in deformation value, based on the time-series
deformation curves for points P5, P6, P7, and P8 situated in the strongly deformed
zones of landslides L018 and L106 (Figure 13). Taking the case of the characteristic
point P7 on L106, from January to October 2018, a gradual deformation was observed,
culminating in a total deformation of about 27 mm at a rate of roughly 36.0 mm/a.
Between October 2018 and March 2019, the deformation at P7 demonstrated an increasing
trend affected by the Baige landslide incident, resulting in a cumulative deformation
of 74 mm and a deformation rate of about 128.4 mm/a. Since March 2019, P7 has
experienced uniform deformation. By the end of the monitoring period, the cumulative
deformation had increased to approximately 668 mm, with an average deformation
rate of around 170.5 mm per annum. We collected GNSS data from December 2021 to
August 2022 and calculated using them for the radar line of sight. Figure 14e illustrates
a strong correlation between the GNSS data and Point P7, with a correlation coefficient
(CC) of 0.933. Presently, the curve displays an upward trend without any indication of
convergence.

5.2.3. Downward Concave Type

L116, known as the Baige landslide, lies 18 km downstream of the Polo hydropower
station, whereas L122 is located 4 km upstream of L116 on the right bank of the JSR within
the Yebatan reservoir area. Figure 15 depicts the time-series deformation curves of points
P9, P10, P11, and P12 in the strong deformation zones of landslides L116 and L122. The
curves show a downward concave shape, gradually decreasing in steepness after a sharp
increase. Taking the example of the characteristic point P9 on L116, it can be observed
that the deformation of this point was slow between January and October 2018, with a
total deformation of merely 8 mm and an average deformation rate of approximately
10.7 mm/a. However, from October 2018 to October 2019, the deformation of point P9
increased steeply, with a total deformation of 194 mm and an average deformation rate
of approximately 190.7 mm/a. Subsequently, from October 2019 to October 2020, there
was a cumulative deformation of only 8 mm at the monitoring point. From October
2020 to October 2021, the monitoring point experienced a cumulative deformation of
approximately 163 mm, with an average deformation rate of approximately 160.2 mm/a.
During the same period, the monitoring point showed a deformation of 93 mm, with
an average deformation rate of approximately 94.7 mm/a. As of October 2021 (August
2022), the cumulative deformation measures 58 mm, with an average deformation rate.
It is clear that the initial slide of L116 took place on 11 October 2018, which explains
the sharp increase in the deformation curve at point P9. With continued ground stress
adjustments, the slope is now gradually stabilizing.
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5.2.4. Stepped Type

L093 is located on the right bank of the JSR and belongs to the Lawa reservoir area.
L197, known as the Woda landslide, is situated on the same bank of the JSR, around 9 km
upstream of the Yanbi hydropower station. Deformation curves were acquired from points
P13, P14, P15, and P16 within the strongly deformed zones of both L093 and L197. These
curves exhibit a step shape and are divided into multiple deformation stages according
to the difference in deformation rate (Figure 16). The highest average deformation rate
observed for P13 was 108.7 mm/a, whereas the lowest was 9.3 mm/a. P15 showed a peak
average deformation rate of 115.5 mm/a and a minimum of 0.05 mm/a.

5.2.5. Classification of Active Landslides

According to the time-series deformation curve, landslides can be categorized into
four types: linear type, upward concave type, downward concave type, and stepped type
(Figure 16). Linear-type landslides have a consistent deformation speed and a cumulative
deformation curve that rises slowly with a stable growth trend. The slope may be in
the initial deformation or isotropic deformation stage (Figure 17a). The rate of upward
concave-type landslide deformation exhibits exponential growth, with a cumulative de-
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formation curve forming a downward concave arc. The slope is in a stage of accelerated
deformation, which generally poses a higher risk of landslide instability (Figure 17b). In
contrast, downward concave-type landslide deformation rates display rapid growth that
gradually slows down and ultimately stabilizes. The time-series deformation curve forms a
downward convex arc (Figure 17c). The deformation curve for a time-series of stepped-type
landslides resembles a ladder, with clear instances of acceleration followed by stabilization.
The stepped-type shape of the curve may be attributed to the existence of a locking section
of the sliding surface or the influence of external factors such as heavy rainfall, fluctuations
in water levels, or cyclical effects (Figure 17d).
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Thirty-one landslides were selected as study samples in the examined area (Figure 12a).
There were six linear-type landslides, three upward concave-type landslides, 10 downward
concave-type landslides, and 12 stepped-type landslides (Table 3).
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Table 3. Classification of active landslides.

Type Landslides

Linear type L005, L017, L064, L068, L101, L148
Upward concave type L018, L052, L106(Xiongba landslide)

Downward concave type L012, L038, L044, L094, L095, L099, L100, L114, L116(Baige
landslide), L122

Stepped type L006, L093, L103, L104, L124, L133, L150, L178, L197(Woda
landslide), L198, L215, L241

6. Discussion

Integrated remote sensing technology has proven effective in the UJSR. First, the
combination of ascending and descending SAR images for deformation detection signif-
icantly increased the visible area in the study area. Second, the use of high-resolution
optical satellite images effectively removed non-landslide deformation and delineated the
landslide boundary. However, we gathered only C-band Sentinel-1A data. If we aimed
to further decrease the rate of misjudgment and omission of active landslides, we could
utilize multisource SAR data for deformation detection.

The SBAS-InSAR technique obtains the projection of the true landslide deformation
in the line-of-sight (LOS) direction of the radar satellite, which is not equivalent to real
landslide deformation and solely serves to determine its deformation trend. If InSAR is
utilized to acquire actual landslide deformation, multiple-orbital radar satellite data can be
employed for collaborative detection, resolving three-dimensional landslide deformation
information.

The current classification of landslides only summarizes the trends of the surface
deformation, without including geological background information such as landform,
lithology, structure, geotechnical characteristics, landslide morphology, and deformation
mechanism. Future research will combine detailed field investigations, indoor model
testing, and numerical simulations to thoroughly study the factors that control landslide
displacement [43,44].

According to C. Juez et al., sediments supplied over short time-scales tend to be large
sediment contributors relative to the long-term time-scale mean [7]. Landslides deliver
a large amount of sediment to rivers in the short-term, posing a challenge to reservoir
management. For instance, the first and second Baige landslides alone delivered 23 million
m3 and 3.5 million m3 of sediment, respectively, into the JSR [10]. This further highlights
the significance of identifying the spatial distribution and deformation characteristics of
active landslides in the UJSR.

7. Conclusions

Landslide identification was carried out using stacking-InSAR technology, optical
satellite remote sensing images and UAV data. SBAS-InSAR was employed to obtain time-
series deformation curves of samples to illustrate the deformation characteristics of active
landslides. A total of 246 active landslides were identified in the UJSR through integrated
remote sensing techniques and field surveys. The active landslides were concentrated in
three zones, with a total of 207 landslides distributed within these three zones. Thirty-
one landslides in the study area displayed large deformations and were chosen as the
study samples. Based on SBAS-InSAR technology, time-series deformation curves of
landslides with intense deformation zones between 2018 and 2022 were collected. The
curve morphology enabled us to classify the landslide samples into four categories. Six
linear-type landslides, three upward concave-type landslides, 10 downward concave-type
landslides, and 12 stepped-type landslides were identified.
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