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Abstract: Global navigation satellite systems (GNSSs) applied to intelligent transport systems in
urban areas suffer from multipath and non-line-of-sight (NLOS) effects due to the signal reflections
from high-rise buildings, which seriously degrade the accuracy and reliability of vehicles in real-time
applications. Accordingly, the integration between GNSS and inertial navigation systems (INSs)
could be utilized to improve positioning performance. However, the fixed GNSS solution uncertainty
of the conventional integration method cannot determine the fluctuating GNSS reliability in fast-
changing urban environments. This weakness becomes solvable using a deep learning model for
sensing the ambient environment intelligently, and it can be further mitigated using factor graph
optimization (FGO), which is capable of generating robust solutions based on historical data. This
paper mainly develops the adaptive GNSS/INS loosely coupled system on FGO, along with the fixed-
gain Kalman filter (KF) and adaptive KF (AKF) being taken as comparisons. The adaptation is aided
by a convolutional neural network (CNN), and the feasibility is verified using data from different
grades of receivers. Compared with the integration using fixed-gain KF, the proposed adaptive FGO
(AFGO) maintains the 100% positioning availability and reduces the overall 2D positioning error by
up to 70% in the aspects of both root mean square error (RMSE) and standard deviation (STD).

Keywords: GNSS; urban canyon; deep learning; multipath effect; factor graph optimization (FGO)

1. Introduction

Global navigation satellite systems (GNSSs) are a widely recognized navigation tech-
nology that has been applied in various fields, including robotics, the military, and agricul-
ture. Intelligent transport systems (ITSs) are one of the most popular research areas due to
the prosperity of autonomous vehicles. However, the system performance highly depends
on positioning accuracy. In urban canyons, GNSS signals are susceptible to multipath
and non-line-of-sight (NLOS) effects due to the reflection and blockage of signals from
high-rise buildings [1]. The multipath effect may cause meters of positioning error, while
an NLOS signal can seriously deteriorate the GNSS positioning accuracy to errors of a
hundred meters [2,3].

Numerous research has been proposed to enhance the accuracy and reliability of
GNSS positioning results. The 3D-mapping-aided (3DMA) GNSS approach is one of
the popular methods applied in urban areas. Researchers [4,5] employed a 3D building
model incorporated with the ray tracing technique to predict the transmission path of
the GNSS signal and correct the NLOS delay. Lee et al. [6] developed an algorithm that
matches images taken by a fisheye camera with skymasks generated by 3DMA to decide
the position and heading of the fisheye image. However, this method requires an up-
to-date 3D building model and strong computational power to simulate the path and
process the image. Another popular approach is multi-sensor fusion. The development
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of GNSSs, inertial navigation systems (INSs), and light detection and ranging (Lidar)-
integrated systems have enhanced the positioning continuity and accuracy during GNSS
outage periods and under challenging environments [7,8]. Wan et al. [9] adaptively fused
GNSS, Lidar, inertial measurement unit (IMU), and real-time kinematic (RTK) sensors
according to an uncertainty estimation algorithm to prevent system failures in various
scenes. Cao et al. [10] proposed a tightly coupled GNSS–visual–inertial fusion system to
cope with challenging environments for positioning. However, incorporating multiple
sensors results in increased cost, which forms a barrier to integration into commercial
products, whereas GNSS/INS integration is more economical and widely applicable in
the industry. Enhancing the positioning accuracy of GNSS/INS integration using various
algorithms has attracted researchers’ interest. The coupling methods can be divided into
loosely coupled (LC), tightly coupled (TC), and ultra-tightly coupled (UTC) depending on
the type of GNSS data used to perform integration. LC integration utilizes the position
information of GNSS receivers, while TC integration uses the raw GNSS measurements
such as pseudo-range and Doppler observables [11,12]. In UTC integration, in-phase (I)
and quadrature-phase (Q) components of the signal are directly fed into the filter [13].
However, it requires adjustment on receiver architectures, which limits its applicability
with general equipment. The traditional KF method and its extensions, such as extended
Kalman filter (EKF), unscented Kalman filter (UKF), and cubature Kalman Filter (CKF), are
the most common integration algorithms. The effectiveness and robustness of KF-based
algorithm have been verified by several studies [14–21]. Kim et al. [17] employed EKF to
integrate linearized correlator outputs and INS measurements. Nevertheless, EKF might
cause large errors during the linearization process. Instead of approximating non-linear
functions by a Taylor series expansion, UKF adopts probability distribution to represent
the non-linearity [18]. A derivative UKF of TC integration was proposed by Hu et al. [19]
to achieve at least a second-order accuracy of the Taylor series. CKF features more accurate
state estimation using the cubature technique [20], and the research work by Liu et al. [21]
proved that CKF further reduces the positioning error and computational time compared
with UKF. Particle filter (PF) is another filtering technique that utilizes importance sampling
to draw particles from the selected importance density and calculate the corresponding
weight of each particle. Unlike the KF-based algorithms, this method can handle non-
linear systems and non-Gaussian noise [22]. Researchers usually incorporate PF with other
techniques in GNSS/INS integration. For example, the unscented PF proposed by Seo et al.
combines the benefits from UKF and PF and shows superior noise reduction capability [23].
However, the intrinsic disadvantage of PF, such as being more receptive to measurement
noise in resampling [24] and significantly rising computational load when the number of
particles increases [25], make it less favorable than KF.

Approximating non-linear functions may still cause errors, and the optimization proce-
dure is applied to the current state without considering the wide range of historical data. To
further improve the performance of state estimation, the use of factor graph optimization
(FGO) has attracted researchers’ attention. It is a novel integration method that maximizes
a posterior probability of system states [26]. All sensor measurements are considered as
related state variables (i.e., factors) of the factor graph, which are used to construct the
function of maximization problems. This technique is widely used in a variety of fields
such as simultaneous localization and mapping (SLAM), artificial intelligence, and wireless
networking [15,27]. Studies have also shown that FGO can remarkably enhance the posi-
tioning performance in GNSS/INS integration compared with the KF-based methods [28].
A recent work proposed by Wen et al. [11] showed that FGO outperforms EKF in terms
of positioning accuracy in both LC and TC integration. Chang et al. [29] incorporated
GNSS/INS/LiDAR-SLAM with FGO, and the results showed that FGO achieves a lower
than 1-meter root mean square error (RMSE) in urban areas. Li et al. [30] suggested the
auto-regressive integrated moving average (ARIMA) auxiliary model to supply GNSS data
during the GNSS outage period, and the integration results conducted by factor graph
algorithm have a better performance compared with EKF. Zeng et al. [31] suggested a
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multi-sensor fusion algorithm based on FGO, which fuses information from the GNSS
receiver, barometric altimeter, magnetometer, optic flow sensor, and sonar sensor. These
research studies show that FGO has great potential in increasing positioning accuracy. In
the aspect of data processing, rather than considering only the previous epoch like KF,
FGO utilizes all historical data to improve the accuracy of estimation [32], which increases
the resistance against outliers and enhances estimation accuracy. However, the fact that
FGO considers all historical information and uses more complex optimization techniques
leads to higher computational complexity, which becomes an obstacle to the application
in real time. Another advantage of FGO is that the graphical model has a straightforward
architecture and therefore enables a more flexible “plug and play” integration of GNSS and
INS information.

Despite the great advantage brought by various GNSS/INS integration algorithms, the
measurement reliability of different GNSS receivers may still be challenging to determine
properly. Fast-changing urban environments can significantly deteriorate GNSS positioning
and result in fluctuating solution quality; therefore, the GNSS solution uncertainty can
hardly be regarded as fixed. In contrast, adaptively changing the value of uncertainty can
largely improve the fused solution quality in the urban environment [33]. This conception
comes with different practices of adaptive KF (AKF). Wu et al. [15] proposed an adaptive
EKF model to adjust the covariance matrix of EKF based on dilution of precision (DOP).
Zhang and Hsu [16] employed machine learning to determine the noise covariances of
KF. Such environment-dependent functionality can also be enabled by the deep learning
approach, which has been proven effective in solving different types of problems and
applied in many research of GNSS field over the recent years [6,34–36]. CNN, as one of
the most popular deep learning algorithms, is inspired by human brain neurons and has
the significant advantage of capturing complex patterns and spatial information through
functions such as filtering and pooling. Moreover, for the same dimension of inputs, CNN
contains a fewer total number of trainable parameters than the conventional fully connected
neural network, thus appearing to be less prone to overfitting [37,38].

Motivated by strengths brought from the FGO algorithm and CNN, the proposed
AFGO approach first extracts some features from GNSS measurements and then predicts
the GNSS solution uncertainty used in the adaptive GNSS/INS integration with the trained
CNN model. Moreover, it is considered that the carrier phase measurement is popular in
precise positioning, but its performance can be significantly degraded in urban areas due
to cycle slips and the poor measurement quality of consumer-grade devices [39]. Thus,
this study was focused on using the code measurement rather than the carrier phase
measurement for positioning. The contribution of this paper is fourfold: (1) we developed
an adaptive GNSS/INS integrated positioning algorithm implemented by MATLAB based
on the FGO architecture to achieve better accuracy and robustness; (2) we employed deep
learning to predict the GNSS solution uncertainty during its integration with INS; (3) we
assessed and compared the performance of conventional KF and FGO with the open-source
large-scale datasets, UrbanNav [40] in terms of different grades of receivers; and (4) we
validated the feasibility of the proposed algorithm using the preceding large-scale datasets
with different environments (i.e., different urbanization levels) and receiver grades.

The rest of this paper is structured as follows: Section 2 demonstrates the mechanisms
of GNSS/INS coupling methods, while Section 3 will discuss how the adaptive functions
operate in multi-sensor coupling. The validation of the proposed algorithm will be pre-
sented using experiments in Section 4, along with a further evaluation of results in Section 5.
Section 6 will finally itemize some limitations of current work, summarize this study, and
propose prospective research areas.

2. System Architecture of Adaptive GNSS/INS Integration by FGO

The proposed adaptive FGO (AFGO) approach integrates two sensors’ inputs, in-
cluding the absolute positioning from GNSS and relative positioning from INS. Figure 1
essentially shows the workflow, which contains scenarios of both the adaptive and fixed
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integration based on the settings of GNSS solution uncertainty. As depicted in the workflow
of Figure 1, the adaptive uncertainty comes from the prediction of the trained CNN regres-
sion model, whose input features are extracted from GNSS. Combined with the FGO-based
algorithm, the adaptive uncertainty AFGO is carried out for analysis.

Figure 1. Flowchart of the proposed AFGO approach.

2.1. Basic Parameters about GNSS, INS, and the State Vector

At epoch t, the system state vector St depicted in Equation (1) contains the infor-
mation of positions Xece f

t , orientation Φ
body
t , velocity V ece f

t , and INS bias Bbody
t,INS, whose

specifications [11,16] are displayed as:

St =
[

Xece f
t , Φ

body
t , V ece f

t , Bbody
t,INS

]T
(1)

Xece f
t =

[
xece f

t , yece f
t , zece f

t

]
(2)

Φ
body
t =

[
ψ

body
t , θ

body
t , ϕ

body
t

]
(3)

V ece f
t =

[
vx

ece f
t , vy

ece f
t , vz

ece f
t

]
(4)

Bbody
t,INS =

[
Bbody

t, f , Bbody
t,ω

]
=

[
bN

body
t,acc , bE

body
t,acc , bD

body
t,acc , bN

body
t,gyro, bE

body
t,gyro, bD

body
t,gyro

]
(5)

where “ecef” denotes the global coordinates based on the Earth’s center and “body” means
the North-East-Down (NED) frame based on the body centroid. The raw sensor data from
both the accelerometer and gyroscope, denoted by Abody

t,INS, are shown as the following:

Abody
t,INS =

[
Abody

t, f , Abody
t,ω

]
=

[
AN

body
t,acc , AE

body
t,acc , AD

body
t,acc , AN

body
t,gyro, AE

body
t,gyro, AD

body
t,gyro

]
(6)

Therefore, the INS measurement input Ut at epoch t (originated from previous epoch t − 1)
can be expressed as:

Ut = Aece f
t−1,INS = TGB

(
Abody

t−1,INS − Bbody
t−1,INS

)
(7)
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where TGB is a transformation matrix from body frame to global frame, and Abody
t−1,INS

and Bbody
t−1,INS represent raw sensor data and bias from the previous epoch, respectively.

Moreover, the absolute position measurement from GNSS, Zt,GNSS, is shown as:

Zt,GNSS =
[

xece f
t,GNSS, yece f

t,GNSS, zece f
t,GNSS

]T
(8)

2.2. Kalman Filter

For each epoch t, the basic KF formulation [24] mainly consists of an INS state tran-
sition in Equation (9) and GNSS measurement update in Equation (12). Additionally, the
error covariance matrix Pt in Equation (10) introduces the system noise covariance Qt , and
the GNSS measurement in Equation (11) is assumed to satisfy Gaussian distribution with
the measurement noise covariance matrix Rt , which represents exactly the GNSS solution
uncertainty to be tuned in this study. The process noise, given GNSS information, can be
calculated by Equation (13).

Ŝ−
t = Ft−1Ŝ+

t−1 + Ut−1 (9)

P̂−
t = Ft−1P̂+

t−1FT
t−1 + Qt−1 (10)

Zt,GNSS = Ht Ŝ−
t +N (0, Rt) (11)

Ŝ+
t = Ŝ−

t + Kt

(
Zt,GNSS − Ht Ŝ−

t

)
(12)

P̂+
t = (1 − Kt Ht)P̂−

t (13)

(“+” and “−” means before and after GNSS measurement update, while “ˆ” highlights
estimated variables. Ft−1 and Ht stand for the state transition matrix and measurement
matrix, respectively. Kt is the Kalman gain, calculated using Ht, P̂−

t , and Rt.)
Because this study focuses on the post-processing of the positioning solutions, a Rauch–

Tung–Striebel (RTS) smoother [24,41] has been employed after the filter to improve the
smoothness of trajectories. The backward process has been expressed in Equation (14)–(16),
where the overscript “s” stands for the smoothed variables.

Ks
t = P̂+

t FT
t

(
P̂−

t+1

)−1
(14)

Ŝs
t = Ŝ+

t + Ks
t

(
Ŝs

t+1 − Ŝ−
t+1

)
(15)

P̂s
t = P̂+

t + Ks
t

(
P̂s

t+1 − P̂−
t+1

)
(Ks

t )
T (16)

2.3. Factor Graph Optimization

In the factor graph, GNSS and INS data participate in the coupling as connected factors
(i.e., f GNSS and f INS) of the undirected structure, as depicted in Figure 2. The example
graph shows the state vector S from initial epoch 1 to the final epoch n, with an example
section at epoch t being specially displayed.

Figure 2. The schematics of a GNSS/INS factor graph. Circles and rectangles represent the states
and factors, respectively. The example section at epoch t is displayed to illustrate formulations
from (17) to (22).
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In the loosely coupled structure, the GNSS factor represents the measurement con-
straints between the estimated states and the measurements obtained from GNSS. At epoch
t, GNSS factor ft,GNSS comes from the position measurement updated by the receiver with
a Gaussian noise N(0, ΣGNSS) assumption. With the GNSS observation function denoted as
hGNSS(·) and GNSS solution represented by Zt,GNSS, the GNSS factor can be modeled as:

ft,GNSS = Zt,GNSS = hGNSS(St) + N(0, ΣGNSS) (17)

where ΣGNSS exactly represents the GNSS solution uncertainty and can be tuned to achieve
both fixed and adaptive coupling. This is comparable with the measurement covariance
Rt in KF, and the detailed settings will be specified in Section 4.1. Moreover, the discrep-
ancy between the measurement and the prediction constitutes the error function of the
GNSS factor:

||et,GNSS||2ΣGNSS
= ||Zt,GNSS − hGNSS(St)||2ΣGNSS

(18)

Similar to the GNSS factor, the INS factor demonstrates the relationship between the
states S and INS inputs U. It models the motion and enables tracking on the object’s move-
ment at all epochs, even when the GNSS signal is temporarily unavailable. Mathematically,
the states St at current epoch t is obtained based on the states St−1 and INS measurements
Ut−1, which contain the processed accelerometer and gyroscope measurements in global
coordinates at the previous epoch t − 1. The INS factor ft,INS is defined as:

ft,INS = St = hINS(St−1, Ut−1) + N(0, ΣINS) (19)

where N(0, ΣINS) denotes the assumed Gaussian noise model with zero mean and noise
covariance of ΣINS and hINS(·) is the INS observation function. Correspondingly, the error
function is given as:

||et,INS||2ΣINS
= ||St − hINS(St−1, Ut−1)||2ΣINS

(20)

Combining the above, the FGO algorithm is designed to maximize the posterior
probability of the system states given the GNSS and INS information, as shown in the
equation:

Ŝ = arg max
S

P(S|Z, U) (21)

where S is the set of state vectors, Z is the set of GNSS solutions throughout all of the
epochs, and U is the set of INS inputs, respectively. Such an objective function can further
be transformed to minimize the summation of error functions of both the GNSS and INS
factors [11]:

Ŝ = arg min
S

∑
t
(||et,GNSS||2ΣGNSS

+ ||et,INS||2ΣINS
). (22)

At each epoch, FGO estimates the state by conducting optimization (i.e., Equation (22))
iteratively according to the information from all historical epochs from the first epoch to
the current epoch t. Meanwhile, KF only employs the INS propagation from epoch t − 1
and the GNSS measurement at the current epoch t for estimation. With more historical
information being considered in state estimation, FGO is proven to outperform KF in terms
of accuracy and smoothness for the positioning solutions [11].

3. Adaptive GNSS Uncertainty Estimation by CNN

This section will mainly discuss the selected features in deep learning, the settings
of the proposed CNN structures, and the mechanisms used to tune the GNSS solution
uncertainty adaptively. This uncertainty requires adjustment of the GNSS solution noise
covariance (ΣGNSS) in Equation (17). The purpose of adaptation is to help improve the
positioning accuracy of GNSS/INS integration compared with the methods with fixed
solution uncertainty. In each second during the selected path, the truth 2D positioning
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error is obtained by comparing between the GNSS receiver’s solution and the ground
truth position.

3.1. Features Related to GNSS Measurement Quality

During each available epoch, the eight proposed features that are discussed in the
following will be extracted and then utilized as the inputs for the subsequent CNN model.

• Feature 1: Ratio of number of received satellite signals to the total number of
available satellite signals
The ephemeris data obtained from reference stations provides the PRN codes of all
existing satellites in the sky. However, the received satellite number is always lower
due to the blockage of GNSS signals by buildings. Therefore, the ratio of the number
of received satellite signals to the total number of satellites in ephemeris data can
indicate the obstruction level from buildings (i.e., the measurement quality).

• Feature 2: Mean elevation angles of satellites
Research [42] has shown that when the elevation angle of a transmitter is lower than
15 degrees, 97% of the signals are blocked by the buildings in an urban environment.
Signals are less likely to be blocked or reflected by buildings with high elevation
angles, thus proving the mean elevation angle to be a critical feature for filtering
NLOS signals.

• Feature 3 and 4: Mean and standard deviation of carrier-to-noise Ratio C/N0
C/N0 represents the received signal strength, which is largely attenuated by reflection
and blockage. A higher value of mean C/N0 indicates less likelihood of an NLOS
signal and thus better positioning performance. Given that the standard deviation
shows the outlier signal, both the average and standard deviation of C/N0 among the
satellites could be adopted as features to identify the signal quality in each epoch.

• Feature 5 and 6: Mean and standard deviation of pseudo-range residuals
A pseudo-range residual is used to provide information about the fitness of the least
squares method [43], and a smaller pseudo-range residual reveals higher consistency
between the measurement and the estimated positioning results. The pseudo-range
residual (ϵ) is defined as the differences between the estimated pseudo-range (ρ̂) and
the measured pseudo-range (ρ). The equation is:

ϵ = ρ − ρ̂ = ρ − Gx̂ (23)

where G is a matrix consisting of the unit vector along LOS from user to satellites and
x̂ is the converged state vector of users calculated by least squares estimation:

x̂ = (GTG)−1GTρ (24)

• Feature 7 and 8: Mean and standard deviation of pseudo-range rate consistency
Pseudo-range rate consistency is defined as the difference between the delta pseudo-
range and the product of the pseudo-range rate and a unit time. Its mean and standard
deviation can reflect the positioning performance of the receiver. The equation of
pseudo-range rate consistency (δ) is written as:

δ =| ∆ρi
t − ρ̇i · ∆t | (25)

Delta pseudo-range is the difference of the pseudo-range between two epochs, and it
is measured through the code tracking loop. The equation is expressed as:

∆ρi
t = ρi

t − ρi
t−1 (26)

The pseudo-range rate is computed using the Doppler shift as:

ρ̇i = − c
fL1

· f i
Doppler
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where c is speed of light, fL1 is the GPS L1 band frequency (1575.42 MHz), and f i
Doppler

is the Doppler frequency obtained by the carrier tracking loop.

3.2. Positioning Error Prediction by CNN

Given the proposed eight features, the CNN model further outputs prediction (PCNN)
of the GNSS solution uncertainty. Figure 3 exhibits the overview of the whole structure.
Specifically, the first convolutional layer receives the input feature in dimension of 8× 1× 1
and filters it with 64 kernels in the size of 2 × 1 with unit stride. After a MaxPooling layer
is applied, the second convolutional layer repeats the settings of the first one, and the
data are further max pooled by 64 (size 2 × 1) kernels. This network utilizes the activation
function rectified linear unit (ReLU) to guarantee non-negative feature values, and batch
normalization and regularization are also applied to speed up the convergence [44]. Finally,
followed by the 64 × 1 fully connected neural network, the model outputs the predicted
uncertainty through a regression layer. The rationale of using a convolutional layer lies in
its ability to extract local features, which can further constitute more complex patterns, and
the MaxPooling layer is adopted to reduce dimensions of the feature map and improve
the network’s robustness to variations and noise of input data while keeping the most
essential information inside. The regression layer enables the CNN to generate continu-
ous value prediction, which coincides with the expectation on continuous outputs of 2D
positioning errors.

As for the training data preparation, different datasets holding the extracted features
are combined together sequentially epoch-by-epoch for shuffling after normalization on
the feature values. Such normalization is also applied on the testing dataset when making
predictions to guarantee that training and testing datasets are processed in the same way. It
is worth mentioning that, strictly speaking, the inputs of this model are not images but a
1D array with GNSS feature values. The main idea of using CNN falls on its advantages,
including exploring the correlation across different features and the higher-level efficiency
of parameter usage through weight sharing to prevent overfitting, as mentioned in the
Section 1. The training samples are the eight features extracted from the GNSS dataset and
the label is the 2D error of the receiver positioning results with respect to the ground truth.
The loss using the mean square error (MSE) method gives:

Loss =
1
R

ΣR
i=1(yi − PCNN,i)

2 (27)

where R is the number of samples, yi indicates target output, and PCNN,i is the predicted
output at ith sample. The learning objective is to determine the coefficients and biases in the
neural network that can minimize the loss. The above CNN model will generate regression
results that represent the estimated GNSS 2D positioning error, which also indicates the
solution uncertainty in this study.

Figure 3. Overview of the proposed CNN network, where PCNN denotes output from the CNN model.

3.3. Uncertainty Adaptation

If GNSS 2D positioning solutions are not available, the INS measurement still prop-
agates the receiver’s location. When having GNSS information, the algorithm employs
loose coupling between GNSS and INS data. Unlike the fixed integration, which uses the
same uncertainty value throughout all the integration epochs, adaptive integration applies
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different uncertainty in different epochs. It is noted that two kinds of extreme uncertainty
are designed during this process. “Max uncertainty” performs as the upper bound used
when extremely large pseudo-range rate consistency measurements exist. It is embodied
in epochs with GNSS positioning whilst without valid CNN prediction because of the
abnormal pseudo-range rate consistency (i.e., extreme values occur in Feature 7 and 8). In
contrast, the “Min uncertainty” is assumed to be the lower limit for predictions, and any
predicted uncertainty below this threshold is adjusted to the value of “Min uncertainty”.
Both “Max uncertainty” and “Min uncertainty” are user-defined fixed values and vary
according to different types of receivers. Apart from the extreme cases, all other epochs take
the corresponding GNSS uncertainty based on CNN predictions, where the estimated 2D
positioning error is considered equivalent to the GNSS uncertainty. The logic of adaptive
uncertainty adjustment can be shown in the flow chart Figure 4 below, where PCNN denotes
the CNN-predicted uncertainty. Along with the fixed uncertainty, parameters in adaptive
integration are set differently across the receiver type, which will further be specified in the
experimental part.

Figure 4. Illustration of the adaptive uncertainty mechanism.

4. Performance Assessment and Validation
4.1. Experiment Setup

GPS and Beidou system data provided in the “UrbanNav” dataset are adopted in this
study [40]. The Tsim Sha Tsui and Whampoa subsets are chosen as training data for deep
learning, while another GNSS dataset from Kowloon Bay (depicted in Figure 5) with similar
collection procedures is used as testing data and to validate the GNSS/INS integration.
Especially, data from three commercial GNSS receivers, including U-Blox F9P, Xiaomi 8,
and NovAtel Flexpak6 (noted as U-Blox, Xiaomi, and NovAtel later in this paper), are
considered and utilized as the representatives of different level receivers. Additionally, a
separate ground truth trajectory is given by NovAtel SPAN-CPT after inertial explorer (IE)
post-processing for reference. As for the solution uncertainty parameters of each receiver,
fixed uncertainty and min uncertainty are set based on the typical positioning performance
of the receivers or data-processing experience. Based on that, max uncertainty is chosen
at a value higher than two times the fixed uncertainty, indicating a situation of extremely
large uncertainty. Details on such settings are presented in Table 1.

Table 1. GNSS solution uncertainty settings.

Parameters U-Blox Xiaomi NovAtel

Fixed uncertainty [m] 30 60 20
Max uncertainty [m] 65 130 45
Min uncertainty [m] 1.5 4 1

Apart from the GNSS receivers, the Xsens MTi-10 device and the smartphone built-in
IMU device are chosen as the sensors that provide INS data for this study. The Allan
Variance method [45] showcases the characteristics of the noise process and is used for IMU
error analysis. It is applied in this study to obtain the INS bias and noise parameters for
both the accelerometer and gyroscope [46], as summarized in Table 2.
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This study analyses an almost completely end-to-end car trajectory. The whole dura-
tion is 920 s, but different receivers might have a different total number of available GNSS
epochs. As depicted in Figure 5, four sections, with the labels and estimated durations
1–2 (1–255 s), 2–3 (256–605 s), 3–4 (606–770 s), and 4–5 (771–920 s), constitute the whole
trajectory in an anticlockwise manner. Section 1–2 has tall buildings on both sides, while
section 4–5 has one side with tall buildings and another side with an open-sky environment.
Similar surroundings happen in section 2–3 and 3–4, where buildings are on both sides
with less density than section 1–2. Points A, B, and C denote junctions where the car stops
for some time, and they happen roughly in the time periods 110–130, 290–350, and 630–730
(in second), respectively. Additionally, the 920 s trajectory passes through various typical
urban scenarios for positioning. Figure 5 highlights three types of urban environments:
(1) light urban: region with quasi-open-sky environment or with open-sky view on one
side of the street; (2) medium urban: region surrounded by buildings with height of less
than 40 m; (3) harsh urban: region surrounded by buildings taller than 40 m or with streets
less than 10 m in width.

Table 2. INS noise and bias parameters.

Parameters Value

Gyroscope noise term [rad2] 2.5 × 10−5

Gyroscope bias term [rad2/s2] 4 × 10−11

Accelerometer noise term [m2/s2] 6.4 × 10−5

Accelerometer bias term [m2/s4] 1 × 10−5

Figure 5. The anticlockwise ground truth trajectory (green) in Kowloon Bay, Hong Kong. It is
separated by breakpoints 1–5 (marked in red) and junctions A, B, and C (marked in yellow). The light,
medium, and harsh urban areas are shaded in blue, orange, and purple backgrounds, respectively.

4.2. Experiment Results
4.2.1. Deep Learning Results

The training processes for all receivers show convergence, with the final loss being less
than 0.1. The stochastic gradient descent method (SGDM) was used to search for optimal
learnable parameters and biases that minimize the loss function [47]. The initial learning
rate of SGDM was set to 1 × 10−5, and after every 400 samples, the learning rate will drop
by a factor of 0.5 as summarized in the following Table 3. The prediction and truth result of
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the 2D error for the three GNSS receivers are shown in Figure 6. The prediction accuracy is
indicated by the root mean square error (RMSE), defined by:

RMSE =

√
1
N

ΣN
i (xi

prediction − xi
truth)

2, (28)

where N stands for the total number of calculated epochs and i is the epoch index at which
xi

prediction and xi
truth denote the predicted and true uncertainty values.

Table 3. Training parameters in the CNN model.

Parameters Details

Minimization algorithm Stochastic gradient descent momentum
Minimum batch size [samples] 100

Initial learning rate 1 × 10−4

Learning rate drop factor 0.5
Learning rate drop period [samples] 400

The overall evaluation in RMSE has also been summarized in Table 4. The RMSE for
Xiaomi data (52.71 m) is the highest, while NovAtel is the lowest (8.78 m) and U-Blox lies
in the middle (13.50 m). The main reason may come from the different qualities of the
three receivers. Xiaomi has the most and highest noise in the positioning, while NovAtel
has the least and U-Blox has the middle level. The CNN model with limited training
datasets can hardly generate precise extreme predictions in epochs with occasionally large
positioning errors (higher than 100 m). Therefore, the overall RMSE will be elevated for the
receiver with more significant noise, especially for the performance of Xiaomi. Nevertheless,
the different performance of CNN prediction across the three receivers would differently
impact the adaptation quality on solution uncertainty for GNSS/INS integration.

Table 4. Training parameters in the CNN model.

Metrics U-Blox Xiaomi NovAtel

RMSE[m] 13.50 52.71 8.78
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Figure 6. CNN predicted and true 2D positioning error for the three GNSS receivers. The subplot for
the Xiaomi receiver has been zoomed in for better illustration. The highest 2D error for the Xiaomi
receiver is around 170 m.
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It is noted that a different total number of epochs exists for the data of three receivers
due to the different GNSS availability. This is defined by the ratio between the number
of available GNSS epochs (NGNSS ) and the number of all calculated epochs (NAll), as in
the expression:

GNSS Availability =
NGNSS

NAll
. (29)

4.2.2. Integration Validation Using U-Blox Data

The 2D trajectories of ground truth and different navigation solutions (i.e., GNSS, KF,
AKF, FGO, and AFGO) are shown in Figure 7, while Figure 8 provides the 2D positioning
error of these solutions along the whole path. Based on the results of the 2D solutions, the
RMSE throughout 920 s and the standard deviation (STD) of the 2D errors are proposed
for evaluation and are shown in Table 5 along with the information of the number of
available GNSS epochs and integration time. The smaller the values of RMSE and STD, the
more accurate the navigational solutions and the smoother trajectory there could be. Some
features in U-Blox outcomes will be analyzed as the following. At all three junctions A, B,
and C stated in Figure 5, the 2D trajectories in Figure 7 show observable drifts, and Figure 8
shows that the 2D positioning errors in the shaded junction periods increase compared
with the surrounding epochs. Especially at junction C (roughly second 630–730), large drift
and a 2D positioning error of over 350 m happens for integration methods when missing
multiple GNSS epochs. This could be caused by the INS transition without a GNSS update,
and error is thus accumulated with time elapsing. However, FGO and AFGO significantly
outperform KF-based methods by avoiding the large drifts shown in the shaded area C in
Figure 8. This can be connected with the advantage of FGO, which estimates states more
precisely by considering all historical epochs.
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Figure 7. Trajectories of different positioning solutions using U-Blox data, with the large drift at
junction C being pointed out by the magenta arrow.

Additionally, although Figure 8 shows that the performance of the four GNSS/INS
integration methods (i.e., KF, AKF, FGO, and AFGO) varies on the time frame, the overall
RMSE and STD results in Table 5 proves that accuracy and smoothness improve across the
integration methods (from KF to AFGO). Both RMSE and STD using AFGO are reduced to
less than 33.3% of those based on KF. It is noted that the RMSE (26.39 m) and STD (22.30 m)
of GNSS prove to be smaller than those of KF (70.18 m RMSE and 61.72 m STD) and AKF
(66.84 m RMSE and 59.19 m STD). This is acceptable because only 852 epochs with available
positioning information are evaluated in the GNSS solution. In contrast, as for integration
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methods, all 920 epochs are processed with either GNSS/INS coupling or INS propagation,
thus inducing a larger calculated RMSE and STD. Moreover, the average computational
time for each of the integration methods has been calculated using the equation:

Average computational time =
ttotal
920

(30)

where ttotal refers to the total computational time for the GNSS/INS integration of 920 epochs.
This decreasing update rate from KF to AFGO indicates an increasing total computational
time. This coincides with our expectation that the FGO algorithm and adaptive uncertainty
settings will take extra time.

Figure 8. 2D positioning errors of different positioning solutions using U-Blox data throughout
920 epochs with the periods at junctions A, B, and C being shaded in gray. The upper subplot depicts
the full range of 2D errors, while the lower one shows the zoom-in view from 0 to 100 m.

Table 5. Overall evaluations on GNSS solutions and GNSS/INS integration, including KF, AKF, FGO,
and AFGO, for U-Blox data.

Metrics GNSS KF AKF FGO AFGO

2D RMSE [m] 26.39 70.18 66.84 24.35 19.35

2D STD [m] 22.30 61.72 59.19 18.71 14.09

Number of epochs
with available solutions 852 920 920 920 920

Average computational
time [s] – 7.93 × 10−3 8.13 × 10−3 7.38 × 10−1 7.52 × 10−1

Notably, although the trajectory of this study covers multiple urban environments,
it has the constraints of short duration (920 s in total) and a limited number of measured
epochs (852 epochs). The evaluation for the other two receivers (i.e., Xiaomi and NovAtel)
with similar cases will be discussed in the following paragraphs.
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4.2.3. Integration Validation Using Xiaomi Data

The 2D trajectories shown in Figure 9 overall fluctuate more significantly away from
truth than the U-Blox results, and an extremely large (over 1000 m) 2D error from GNSS
and KF-based integration methods can be found in some epochs in Figure 10. Compared
with the U-Blox receiver, the results of Xiaomi in Table 6 also exhibit larger values in both
the RMSE and STD for each of the integration methods. All of those indicate a larger
positioning error and less smoothness and coincides with the expectation that Xiaomi has a
larger solution uncertainty than U-Blox.
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Figure 9. Trajectories of different positioning solutions using Xiaomi data, with the large drift at
junction C being pointed out by the magenta arrow.

Figure 10. 2D positioning errors of different positioning solutions using Xiaomi data throughout
920 epochs, with the periods at junctions A, B, and C shaded in gray. The upper subplot depicts the
full range of 2D errors, while the lower one shows the zoom-in view from 0 to 100 m.
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The results also depict that the 2D error at all junctions are larger than those of U-Blox.
It is noted that at junction C, significant drift in Figure 9 from the truth trajectory and
an extremely large (over 1500 m) 2D positioning error in Figure 10 occurs. Similar to
U-Blox, this large drift can be caused by the propagation with INS data only when GNSS
becomes unavailable. Other reasons behind it may involve the longest waiting time (i.e.,
around 100 s) without GNSS information among the three junctions as well as the large
uncertainty characteristics of the Xiaomi GNSS receiver and the poor-quality built-in IMU.
Nevertheless, due to the robustness given by more historical information, the FGO-based
methods still eliminate the large drift (corresponding to the shaded area C in Figure 10)
occurring in KF and AKF solutions. AFGO outperforms the original GNSS positioning and
still provides the best positioning solutions in terms of both RMSE and STD among the
GNSS/INS integration methods. Moreover, the GNSS information of Xiaomi becomes less
available compared with the U-Blox receiver, and this may result in shorter computational
time for all integration methods, as demonstrated in Table 6.

Table 6. Overall evaluations on GNSS solutions and GNSS/INS integration, including KF, AKF, FGO,
and AFGO, for the Xiaomi data.

Metrics GNSS KF AKF FGO AFGO

2D RMSE[m] 84.30 140.61 108.47 42.85 23.89

2D STD[m] 79.32 128.99 98.47 33.49 14.88

Number of epochs
with available solutions 795 920 920 920 920

Average computational
time [s] – 6.92 × 10−3 7.01 × 10−3 5.97 × 10−1 6.33 × 10−1

4.2.4. Integration Validation Using NovAtel Data

Among the three receivers, NovAtel misses the most GNSS epochs. With only 622 re-
maining epochs available, integration methods using NovAtel data cost the shortest com-
putational time as well. Among the three discussed receivers, although NovAtel with the
lowest GNSS availability of 67.6% (i.e., 622/920) generates the highest RMSE and STD
shown in Table 7, this receiver provides the closest fit trajectory to the ground truth as de-
picted in Figure 11 and the lowest 2D error according to Figure 12 when GNSS information
becomes available. Likewise, the large positioning drifts of KF-based methods shown in
Figure 11 are mitigated by the more robust FGO algorithm, and this significantly improves
the accuracy and smoothness. This is reflected in Table 7, where the RMSE and STD levels
of FGO and AFGO are approximately 10% of those in AKF and AKF, respectively.

Table 7. Overall evaluations of GNSS solutions and GNSS/INS integration, including KF, AKF, FGO,
and AFGO, for NovAtel data.

Metrics GNSS KF AKF FGO AFGO

2D RMSE[m] 10.36 424.52 358.47 40.26 38.20

2D STD[m] 8.24 374.62 320.72 33.61 31.00

Number of epochs
with available solutions 622 920 920 920 920

Average computational
time [s] – 6.54 × 10−3 6.76 × 10−3 5.65 × 10−1 5.76 × 10−1
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Figure 11. Trajectories of different positioning solutions using NovAtel data, with the large drift at
junctions B and C being pointed out by the magenta arrow.

Figure 12. 2D positioning errors of different positioning solutions using NovAtel data throughout
920 epochs, with the periods at junctions A, B, and C shaded in gray. The upper subplot depicts the
full range of 2D errors, while the lower one shows the zoom-in view from 0 to 100 m.

For a more detailed analysis of the two existing drifts, at junction A (roughly second
110–130), neither a significant trajectory drift nor large 2D error occur, but these appear
at junctions B (roughly second 290–350) and C (roughly second 630–730) given that many
epochs with GNSS positioning are missing. Available GNSS epochs are particularly sparse
around junction B, and the positioning performance of the NovAtel receiver is even nega-
tively impacted after passing the crossroad (i.e., shaded area of Junction B in Figure 12).
This even results in a larger error accumulated using the INS transition only, thus causing a
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more extreme positioning drift than those at the subsequent junction C. This comparison is
reflected in the two large drifts in Figure 11 and the two peaks around roughly second 500
and 730 of Figure 12.

5. Further Analysis and Evaluation
5.1. Comparisons between Receivers and across Integration Methods (KF-Based vs. FGO-Based)

This section compares the positioning results across the three GNSS receivers in
terms of the RMSE of the solutions and STD of the 2D error. With reference to KF, the
positioning improvement on the RMSE and STD of the other three integration methods are
introduced in:

RMSEimprovement% =
RMSEmethod − RMSEKF

RMSEKF
× 100%, (31)

STDimprovement% =
STDmethod − STDKF

STDKF
× 100%, (32)

where the subscript “method” may denote AKF, FGO, or AFGO. It is noted that the RMSE
and STD of the GNSS solution are not taken as the reference because those should have
been infinity given the missing GNSS epochs; thus, further improvement based on GNSS is
unreasonable to evaluate.

Combined with Figure 13a showing the GNSS availability defined in Equation (21),
graphs on the RMSE and STD of different integration methods are given in Figures 13b and 13c,
respectively. It is displayed that GNSS availability decreases from U-Blox (92.61%) to Xiaomi
(86.41%) to NovAtel (67.61%), whereas the bar charts about RMSE and STD improvement
for each receiver basically show the opposite relationship, which rises from U-Blox (red)
to Xiaomi (magenta) to NovAtel (blue). Overall, compared with KF, the less the GNSS
availability, the greater the improvements in both RMSE and STD tend to happen for
each of the methods (i.e., AKF/FGO/AFGO). Despite the anomaly for the AKF method
where Xiaomi has greater improvements in the RMSE and STD than NovAtel, the results
could reflect that the receiver with less GNSS availability would potentially benefit more
from GNSS/INS integration in terms of positioning accuracy and smoothness as greater
improvements would be achieved according to Figure 13b,c.
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Figure 13. (a) GNSS availability of the three receivers; improvement of solution performance com-
pared with KF in terms of (b) 2D RMSE and (c) 2D STD. The only anomaly is that for the AKF method,
Xiaomi has greater improvements than NovAtel. This is expected because greater improvement
comes with lower GNSS availability, which is based on empirical observation rather than strict rules.

Moreover, in Figure 13, the improvements from AKF (all below 25%) appear less
significant than those given by FGO-based methods (all over 65%). Possible explanations
may lie in that the GNSS unavailability causes free propagation using INS data. In contrast
from KF-based methods, which accumulate the errors during INS transition, FGO-based
solutions are less constrained on the missing GNSS epochs and are less likely to produce
positioning drifts, thus giving higher improvement in both the RMSE and STD. This is
also revealed in the bar chart in Figure 14, which summarizes the 2D RMSE and STD of
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the four integration methods during all 920 s. The FGO and AFGO methods have less 2D
RMSE and less 2D STD for all three receivers, which means a higher accuracy and smoother
solutions compared with KF and AKF. Especially for Xiaomi and NovAtel, as shown in
Figure 14, FGO-based solutions have a significant decrease (approximately ranging from
70% to 95%) in both the RMSE and STD from KF-based ones, and these are also reflected
in the results of Figure 13b,c. Additionally, according to Figures 7, 9 and 11, at junctions
where large trajectory drifts exist, the 2D positioning error results in Figure 8 (Junction
C), Figure 10 (junction C), and Figure 12 (junction B and C) roughly reveal that the FGO
and AFGO curves are far below those of KF and AKF. For Xiaomi and NovAtel, which
have more extreme positioning drifts than U-Blox, this situation seems more evident. It
should also be mentioned that AFGO (FGO-based) proves to be the most accurate and
stable method amongst all integration methods, having the lowest 2D RMSE and STD for
all grades of GNSS receivers.
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Figure 14. Summary of integration methods in terms of the 2D RMSE and STD for the three receivers
during all 920 epochs. The data regarding the RMSE and STD come from Tables 5–7.

Apart from the discussion on the overall 920 epochs, the evaluation comparing re-
ceivers and integration methods is given in Figure 15 only using epochs with available
GNSS information. It depicts that all GNSS/INS integration methods still outperform
GNSS in terms of the 2D RMSE and STD for Xiaomi. As for U-Blox and NovAtel, inte-
gration methods (e.g., KF in U-Blox, and methods except FGO in NovAtel) may perform
either less accurately (higher RMSE) or less smoothly (higher STD) than GNSS. Possible
explanations are that integration methods applied on the certain receiver still require the
GNSS updates for several additional epochs once GNSS becomes available again after
outage before coming back to the normal level of positioning errors. Such “recovery peri-
ods”, counted as the GNSS-available epochs for the evaluation in Figure 15, would elevate
the overall RMSE and STD. Different from the full evaluation using 920 epochs, the only
anomaly in Figure 15 stopping us from concluding that AFGO generates the best solutions
is that AFGO has a higher RMSE and STD than FGO for the NovAtel receiver. This is
anticipated because of NovAtel’s worst GNSS availability while having the most accurate
GNSS positionings among the three receivers when free from outage. Balance between
these two aspects would demand instant and precise uncertainty adaptations based on
CNN predictions. However, such low-tolerance targets would hardly be feasible with
our limited-quality CNN model when helping to further improve FGO towards a better
performance than the GNSS solutions with low RMSE and STD. Nevertheless, in terms
of the overall performance of 920 epochs (in Figure 14), which contains both the GNSS
outage and GNSS-available scenarios, AFGO still provides the best performance among
integration methods for NovAtel data.
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Figure 15. Summary of integration methods in terms of the 2D RMSE and STD for the three receivers
during all 920 epochs.

5.2. Analysis between Fixed and Adaptive Integrations

As mentioned above, considering all 920 s, adaptive uncertainty solutions (i.e., AKF
and AFGO) have a lower RMSE and STD than the corresponding fixed uncertainty so-
lutions (i.e., KF and FGO), which indicates that adaptive solutions have more accuracy
and smoothness. This could be explained, incorporated with Figure 16, that adaptive
solutions provide uncertainty (marked in blue) that are tailored by the fast-changing urban
environment and are closer to the actual 2D error or truth uncertainty (marked in green).
These can potentially handle more scenarios than solutions with a single fixed uncertainty
(marked in red) throughout the period.
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Figure 16. GNSS solution uncertainties of fixed integration (red) and adaptive integration (blue)
and the true 2D positioning error indicating the truth uncertainty (green) throughout the time frame
for the three receivers. For each receiver, the uncertainties during the GNSS-unavailable period are
omitted on all three curves, and only INS propagation is processed. Moreover, the epochs without
CNN predictions are particularly omitted on the truth uncertainty curve.

Figure 17 presents the adaptive, fixed, and truth uncertainty for all discussed receivers.
The curves are sometimes discontinuous due to the lack of available GNSS epochs and
the uncertainties without CNN prediction due to extreme feature values are set to be
the “Max uncertainty”, while “Min uncertainty” is employed as the allowable lowest
value of uncertainty. A typical short duration from second 162 to 167 in Figure 17 has



Remote Sens. 2024, 16, 181 20 of 22

been particularly selected as the example to showcase the differences between fixed and
adaptive settings on the solution uncertainty. It can be seen in the subfigures of Figure 17a
about U-Blox and Figure 17c about NovAtel that adaptive uncertainty is closer and shares a
similar decreasing trend with the truth compared with the curve of fixed uncertainty. As for
Xiaomi, shown in Figure 17b, the missing CNN prediction from second 164 to 167 indicates
the poor data quality. The fixed uncertainty will not change according to the GNSS context,
while the adaptive uncertainty surges intelligently to the “Max uncertainty” 130 m, which
is assumed to be more approximated to the true uncertainty.
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Figure 17. Zoom-in subfigures from Figure 16 during the period 162–167 (second) for the receiver of
(a) U-Blox, (b) Xiaomi, and (c) NovAtel.

6. Conclusions and Future Research Direction

This paper compares different GNSS/INS integration methods based on KF and
FGO to process data from different levels of receivers (i.e., U-Blox, Xiaomi, and NovAtel).
Despite being impacted by the quality of the trained deep learning model, the choice
of uncertainty parameters (e.g., fixed, min, and max uncertainty), and limited duration
(920s) with less evaluated epochs, the proposed MATLAB-implemented AFGO shows the
promising capability to adaptively generate the most accurate (in terms of RMSE) and
smooth (in terms of STD) solutions for all level of receivers among all discussed integration
methods (i.e., KF, AKF, FGO, and AFGO).

The current limitations partly come from a diversity of GNSS receivers because CNN
models are trained separately across different receivers and are then employed to adaptively
assist GNSS/INS integrations. Future work should include a generalized adaptation model
in the AFGO architecture for all grades of receivers and should validate the feasibility and
advantages of AFGO in a wider range of urbanization scenarios. Additionally, there can be
large residuals between the truth and predicted solution uncertainty, indicating the neces-
sity to propose better-functioning deep learning models. This could be potentially realized
through various methods, including introducing more effective features, upgrading the
network structure using methods such as optimizing the types and number of layers, and
training through a larger amount of urban GNSS data. Moreover, the GNSS measurements
like Doppler are related to the user dynamics. Thus, extending the proposed network for
GNSS-based motion detection to compensate for INS error is worth investigating in the
future. The implementation of the proposed algorithm in practical applications is also
worth investigating in the future, where additional algorithms to reduce the computation
load, such as the sliding window [11], may need to be developed.
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