
Citation: Wu, Y.; Shao, C.; Zhang, J.;

Liu, Y.; Li, H.; Ma, L.; Li, M.; Shen, B.;

Hou, L.; Chen, S.; et al. Elevation-

Dependent Contribution of the

Response and Sensitivity of

Vegetation Greenness to

Hydrothermal Conditions on the

Grasslands of Tibet Plateau from

2000 to 2021. Remote Sens. 2024, 16,

201. https://doi.org/10.3390/

rs16010201

Academic Editors: Markus Immitzer

and Kun Jia

Received: 30 September 2023

Revised: 1 December 2023

Accepted: 2 January 2024

Published: 3 January 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing  

Technical Note

Elevation-Dependent Contribution of the Response and
Sensitivity of Vegetation Greenness to Hydrothermal
Conditions on the Grasslands of Tibet Plateau from 2000 to 2021
Yatang Wu 1, Changliang Shao 2, Jing Zhang 3, Yiliang Liu 3, Han Li 3, Leichao Ma 4, Ming Li 4, Beibei Shen 5,
Lulu Hou 2, Shiyang Chen 2, Dawei Xu 2, Xiaoping Xin 2,* and Xiaoni Liu 1

1 Key Laboratory of Grassland Ecosystem, Ministry of Education, Sino-U.S. Centers for Grazing Land
Ecosystem Sustainability, Ministry of Science and Technology, Pratacultural Engineering Laboratory
of Gansu Province, Pratacultural College, Gansu Agricultural University, Lanzhou 730070, China;
wuyatang666@163.com (Y.W.); liuxn@gsau.edu.cn (X.L.)

2 State Key Laboratory of Efficient Utilization of Arid and Semi-Arid Arable Land in Northern China,
National Hulunber Grassland Ecosystem Observation and Research Station, Institute of Agricultural
Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China;
shaochangliang@caas.cn (C.S.); houll94@163.com (L.H.); genghisyang@outlook.com (S.C.);
xudawei@caas.cn (D.X.)

3 National Remote Sensing Center of China, No. 8A Liulinguan Nanli, Haidian District,
Beijing 100036, China; zhangjing@nrscc.gov.cn (J.Z.); liuyiliang@nrscc.gov.cn (Y.L.);
lihan@nrscc.gov.cn (H.L.)

4 Natural Resources Comprehensive Survey Command Center, China Geological Survey,
Beijing 100055, China; laozhuangboy@sohu.com (L.M.); lm18910077797@163.com (M.L.)

5 Aerospace Science and Industry (Beijing) Spatial Information Application Co., Ltd., Beijing 100070, China;
82101191163@caas.cn

* Correspondence: xinxiaoping@caas.cn

Abstract: The interrelation between grassland vegetation greenness and hydrothermal conditions
on the Tibetan Plateau demonstrates a significant correlation. However, understanding the spatial
patterns and the degree of this correlation, especially in relation to minimum and maximum air
temperatures across various vertical gradient zones of the Plateau, necessitates further examina-
tion. Utilizing the normalized difference phenology index (NDPI) and considering four distinct
hydrothermal conditions (minimum, maximum, mean temperature, and precipitation) during the
growing season, an analysis was conducted on the correlation of NDPI with hydrothermal conditions
across plateau elevations from 2000 to 2021. Results indicate that the correlation between vegetation
greenness and hydrothermal conditions on the Tibetan Plateau grasslands is spatially varied. There
is a pronounced negative correlation of greenness to maximum temperature and precipitation in
the northeastern plateau, while areas exhibit stronger positive correlations to mean temperature.
Additionally, as elevation increases, the positive correlation and sensitivity of alpine grassland vegeta-
tion greenness to minimum temperature significantly intensify, contrary to the effects observed with
maximum temperature. The correlations between greenness and mean temperature in relation to
elevational changes primarily exhibit a unimodal pattern across the Tibetan Plateau. These findings
emphasize that the correlation and sensitivity of grassland vegetation greenness to hydrothermal
conditions are both elevation-dependent and spatially distinct.

Keywords: alpine grassland; elevation; greenness; climate change

1. Introduction

Alpine grasslands represent the predominant and distinct ecosystem of the Tibetan
Plateau, crucial in CO2 sequestration and sustaining ecosystem equilibrium [1–4], with im-
plications in global climate change mitigation [5,6]. Characterized by unique hydrothermal
conditions (notably low temperatures and restricted precipitation), these grasslands inhabit
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sensitive eco-climatic zones with pronounced elevation gradients and minimal anthropogenic
disturbances, making them one of the most pronounced indicators of warming and early
warning systems on the Earth’s surface [7–11]. Concurrently, vegetation greenness serves as a
robust marker for climate sensitivity within this ecosystem [12]. The dynamic alterations in
greenness exhibit a pronounced correlation with hydrothermal conditions, with geograph-
ical terrain, particularly elevation gradients, exerting significant influence [11,13–16]. Thus,
Alpine grasslands offer an optimal setting for investigating the interplay between vegetation
greenness dynamics and hydrothermal conditions, modulated by elevation.

Remote sensing (RS) offers the benefits of efficiency, extensive coverage, and diverse
information, establishing itself as the most effective tool for monitoring vegetation green-
ness dynamics at large range [6]. This technique provides a wealth of data for analyzing
climatic responses and sensitivities [17]. The advancements in RS have enabled instru-
ments such as the Moderate Resolution Imaging Spectroradiometer (MODIS) to offer more
expansive coverage, superior temporal resolution, and cost-effective, freely available data.
Moreover, MODIS provides a range of vegetation reflectances [6,12,18,19]. Over the past
few decades, vegetation indices (VIs) derived from these reflectances have emerged as
reliable markers of photosynthetic activity. They adeptly capture the responsiveness and
sensitivity of vegetation greenness to climatic shifts [3,14–16,20]. Most VIs, including the
widely recognized Normalized Difference Vegetation Index (NDVI), are formulated by in-
tegrating the red and near-infrared bands [21]. As a predominant indicator, NDVI exhibits
high sensitivity to grassland growth conditions and has been effectively utilized to explore
the implications of climate change on grassland ecosystems across diverse spatiotemporal
frameworks [16,17,20,22].

The accuracy of NDVI is subject to scrutiny due to its tendency to saturate in areas of
dense vegetation and its susceptibility to soil backgrounds, canopy brightness, and shadows
when coverage falls below 50% [23,24]. Additionally, atmospheric disturbances, such as
aerosols, frequently introduce noise into images generated from red and near-infrared
bands [25]. It is important to note that grasslands typically exhibit lower vegetation
coverage and smaller canopy dimensions, coupled with increased spatial heterogeneity.
This often leads to satellite imagery comprising more bare soil pixels relative to other
ecosystems [26]. Nevertheless, Wang et al. [18] have introduced the NDPI, an innovative
vegetation index designed to discern the difference between green vegetation and soil
backgrounds while attenuating this differentiation. Employing a weighted shortwave
infrared (SWIR) band instead of the red band in NDVI, NDPI is sensitive to vegetation
water content, enabling it to track variations in canopy water content [18]. Crucially, NDPI
merges these two functionalities into a singular VI without compromising its sensitivity
to vegetation greenness [18]. Xu et al. [27] demonstrated NDPI’s superior capability in
estimating aboveground fresh biomass across expansive grassland regions with pronounced
spatial heterogeneity, particularly in reducing the interference of soil background in Inner
Mongolia grasslands. In conclusion, NDPI presents itself as a promising tool for assessing
the greenness of Alpine grassland vegetation.

Numerous studies have investigated the response of vegetation greenness to climate
change at both regional and global scales. For instance, Xu et al. [28] demonstrated that NDVI
changes were significantly correlated with annual temperature (R = 0.52, p < 0.01) across China
but not with annual precipitation (p > 0.1). Additionally, correlations between vegetation
greenness changes and both temperature and precipitation were found to be significant at a
regional scale (p < 0.001). However, many of these studies primarily focus on the annual mean
temperature, neglecting the potential influences of minimum and maximum temperatures
during the growing season. Previous research has also highlighted the significant impact
of elevation on the variations in Alpine vegetation greenness in response to hydrothermal
conditions on the Tibetan Plateau [11,14–16]. Specifically, An et al. [14] identified a pronounced
elevation-dependent relationship between vegetation greenness and temperature during the
growing season (May–September) from 2000 to 2016. Furthermore, Wang et al. [16] noted a
mismatch between the elevational variation rate of NDVI and hydrothermal conditions. At
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altitudes above 2400 m, temperature predominantly influenced the elevational shifts of NDVI
isolines, whereas precipitation was the dominant factor below 2400 m. Wang et al. [16] also
observed that the drought response (SPI/SPEI) of the Enhanced Vegetation Index (EVI)
significantly diminished with increasing elevation (p < 0.001). Despite these findings, the
specific influence of elevation on the response and sensitivity of grassland vegetation greenness
to minimum/maximum temperatures during the Tibetan Plateau’s growing season remains
unexplored. This study seeks to address this gap.

This study addresses a current gap in the literature by (1) examining the sensitivity of
vegetation greenness to hydrothermal conditions, encompassing minimum, maximum, and
mean temperatures, as well as precipitation, on the Tibetan Plateau grasslands from 2000 to
2021, and (2) assessing the impact of hydrothermal factors on grassland vegetation greenness
across various vertical gradient zones of the Plateau. A comprehensive understanding of how
grassland vegetation greenness dynamics respond to hydrothermal conditions, modulated by
elevation, is imperative. Such knowledge will offer valuable scientific insights for sustainable
grassland management and precise restoration in ecologically vulnerable zones, particularly
in regions characterized by significant elevational variations.

2. Materials and Methods
2.1. Study Region

The study region, spanning 26◦00′12′′–39◦46′50′′N and 73◦18′52′′–104◦46′59′′E (as
shown in Figure 1a), is situated in southwestern China, predominantly characterized by
Alpine grasslands, the most prevalent vegetation type in the area. Enveloped by towering
mountains, the region displays an extensive vertical distribution, which results in a distinct
nonzonal Alpine climate. This climate is typified by low temperatures, with the majority of
the area registering a mean annual temperature of less than 0 ◦C, further intensifying with
elevation and exhibiting pronounced susceptibility to warming [10]. Notably, a significant
portion of the region experiences an arid or semiarid climate, with mean annual precipi-
tation falling below 400 mm for over half the area. Rainfall predominantly occurs during
the growing season, spanning May to September. The average elevation exceeds 4000 m
(illustrated in Figure 1b), rendering the plateau both colder and more variable than other
regions sharing the same latitude. Amidst the overarching theme of global climate change,
recent decades in this area have seen discernable climatic shifts: a marked acceleration
in warming, coupled with increased and variable precipitation patterns [29]. Given these
unique characteristics, this region presents an optimal setting for examining the dynamics
of grassland vegetation greenness and its responsiveness to climate fluctuations. As per
the Chinese Grassland Classification System [30], the primary grassland categories found
here include Alpine meadow, Alpine steppe, and Alpine desert (refer to Figure 1c).

2.2. Dataset Processing

The NDPI is described by Equation (1). In this equation, RED, NIR, and SWIR rep-
resent the surface reflectance values in the red, near-infrared, and shortwave infrared
bands (~1.6 µm), respectively. These reflectance data are derived from the MODIS surface
reflectance product (MOD09A1 V006) with a 500 m spatial resolution, offering 8-day com-
posite values of normalized reflectance. This product is sourced from the U.S. National
Aeronautics and Space Administration (NASA) (accessible at http://earthdata.nasa.gov/,
accessed on 2 March 2023). The MOD09A1 was selected to determine the vegetation dy-
namics across the study region, primarily due to its capability to filter out undesirable
values, cloud contaminants, and other data artifacts during processing, ensuring data
quality. For data management, the MODIS reprojection tool (MRT) software (version 41)
facilitated the mosaicking of eight MODIS tiles every 8 days. This tool also projected the
surface reflectance data for the entirety of the study area during the growing seasons (May
to September) from 2000 to 2021, employing the Albers map projection (stored in Geo-Tiff
format). Ultimately, the maximum-value compositing method was utilized to compile the
8-day NDPI data, resulting in a synthesized value for the entire growing season.

http://earthdata.nasa.gov/
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Figure 1. Geographical location (a), elevation (b),grassland type (c) of the study area.

NDPI =
NIR − (0.74 × RED + 0.26 × SWIR)
NIR + (0.74 × RED + 0.26 × SWIR)

(1)

The minimum temperature (Tmin, ◦C), maximum temperature (Tmax, ◦C), mean
temperature (Tmean, ◦C), and mean precipitation (GSAP, mm) during the growing sea-
son were acquired and processed using the A Big Earth Data Platform for Three Poles
(http://poles.tpdc.ac.cn/zh-hans/, accessed on 3 March 2023) [31,32] and the National
Tibetan Plateau/Third Pole Environment Data Center (https://data.tpdc.ac.cn/home,
accessed on 3 March 2023) [33–37]. Data extraction was confined to our study area by
utilizing the vector boundary of the Tibetan Plateau. This boundary dataset was sourced
from the National Geomatics Center of China (http://ngcc.sbsm.gov.cn/, accessed on
3 March 2023).

The Digital Elevation Model (DEM) with a global resolution of 90 m was sourced from
the Shuttle Radar Topography Mission (SRTM) images (available at http://srtm.csi.cgiar.org,
accessed on 3 March 2023). These data were utilized to represent elevation characteristics
across the Tibetan Plateau. To ensure consistency with other datasets, the DEM was resampled
to a 500 m resolution. Additionally, the Albers Equal Area projection was selected for this
analysis. Subsequently, these resampled grids were employed for the study.

2.3. Methods

The spatial distribution map representing the mean grassland NDPI during the peak
of the growing season from 2000 to 2021 was generated by calculating the average value
across the entire study area for each of the 22 years. The coefficient of variation (CV) of
NDPI can serve as an indicator of stability [38]. The trend and significance of NDPI were
discerned, using the Theil–Sen (TS) method combined with the non-parametric rank-based
Mann–Kendall (MK) test [39,40].

To evaluate the interannual variations in the maximum greenness of grassland vegeta-
tion in response to Tmin during the growing season, partial correlation coefficients were
computed between the NDPI and Tmin, considering Tmax, Tmean, and GSAP as control
variables [12]. The apparent sensitivity of NDPI to Tmin was quantified by the coefficient
derived from multiple linear regressions, where the NDPI was regressed against Tmin, Tmax,
Tmean, and GSAP [12]. Similarly, the response and sensitivity of the NDPI to Tmax, Tmean,
and GSAP were assessed.

http://poles.tpdc.ac.cn/zh-hans/
https://data.tpdc.ac.cn/home
http://ngcc.sbsm.gov.cn/
http://srtm.csi.cgiar.org


Remote Sens. 2024, 16, 201 5 of 14

3. Results
3.1. Spatial Patterns of Peak Season NDPI and Hydrothermal Factor Trends

On a grid cell scale, marked heterogeneity is evident in the spatial patterns of the annual
mean grassland NDPI during the peak season spanning 22 years from 2000 to 2021 within the
study area (Figure 2a). The results indicate that the general spatial distribution of the annual
mean NDPI exhibited an incremental trend from the northwestern to the southeastern regions
of the study area. Notably, areas with the lowest values (mean NDPI < 0.3), indicating sub-
optimal vegetation photosynthetic activity, were predominantly located in the northwestern
region of the plateau. Conversely, regions with higher NDPI values (mean NDPI > 0.6), signi-
fying robust vegetation photosynthetic activity, were primarily concentrated in the eastern
and northeastern regions of the plateau. The coefficient of variation (CV) highlights significant
NDPI fluctuations in the southern region of the plateau from 2000 to 2021 (Figure 2b).
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Figure 2c reveals the spatial distribution of the overall trends in annual grassland
NDPI within the study area during the peak season over the past 22 years. A statistical
analysis of the grid cells indicates that 67.92% displayed an upward trend in annual
grassland NDPI. Of these, 19.57% exhibited a significant increasing trend with p < 0.05
(Figure 2d and Table 1). These cells predominantly occur in the northern and northwestern
regions of the Plateau, specifically in counties like Gêrzê and Nyima. In contrast, the
remaining cells demonstrated a downward trend (slope < 0), with a mere 2.97% showing
a significant decrease (p < 0.05). These are primarily dispersed across the southwestern
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regions of the plateau, including Shenzha and Baingoin counties. Over this 22-year period,
trends varied across different grassland types. Alpine meadows, for instance, witnessed
a higher percentage of vegetation greenness increases compared to Alpine steppes and
deserts. Specifically, Alpine meadows comprised 52.79% and 34.53% of the grid cells with
significant increases (p < 0.05) and minor increases (p > 0.05), respectively. This is followed
by Alpine steppe (25.54% and 47.01%) and desert (11.79% and 50.68%) (Table 1).

Table 1. The area percentage of the significance of NDPI trend for different grassland types.

Grassland Types
Area Proportion of the Significance of NDPI(%)

SD NSD NSI SI

Alpine meadow 1.34 11.34 34.53 52.79
Alpine steppe 3.06 24.38 47.01 25.54
Alpine desert 3.05 34.48 50.68 11.79
All 2.97 29.11 48.35 19.57

Note: SD, NSD represent the NDPI decrease at p < 0.05, p > 0.05, respectively. SI, ESI represent the increase at
p > 0.05, p < 0.05, respectively.

Figure 3 presents the spatial distribution and trends of Tmin, Tmax, Tmean, and GSAP.
Overall, Tmin demonstrated an incremental trend from the northwestern to southeastern
regions between 2000 and 2021. The northwestern plateau, particularly in the Ngari and
Nagqu Prefecture, registered the lowest Tmin values. Conversely, the highest Tmin was ob-
served in the northern region (Figure 3a). Both Tmax and Tmean depicted comparable spatial
patterns, indicating a progressive rise from the center towards the periphery. The Golmud
region recorded the lowest values for Tmax and Tmean (Figure 3b,c). GSAP displayed a
decreasing pattern from southeast to northwest. Specifically, the Alpine desert in the north-
western plateau had GSAP values below 80 mm, whereas the southeastern edge exhibited
values exceeding 560 mm (Figure 3d). A notable 64.38% of grid cells presented an annual
declining trend, with a decrease rate in Tmin exceeding 0.03 ◦C/year, particularly in the
northern and northwestern regions (Figure 3e). Contrarily, a pronounced increasing trend
of Tmin, surpassing 0.03 ◦C/year, was evident in the plateau’s eastern region (Figure 3e). A
significant 80.42% of grid cells demonstrated a decreasing trend annually, with Tmax decline
rates surpassing 0.03 ◦C/year in the northwestern plateau (Figure 3f). Intriguingly, 78.64%
of grid cells displayed an annual increase in Tmean, with a rate exceeding 0.06 ◦C/year in
the southwestern region (Figure 3g). However, pronounced decreasing trends in Tmean,
less than −0.03 ◦C/year, were observed in the northwestern plateau (Figure 3g). Over half
the grid cells (54.43%) exhibited a decadal increasing trend, with the GSAP growth rate
exceeding 4 mm/year in the eastern plateau (Figure 3h). Nonetheless, significant declining
trends in GSAP, less than −2 mm/year, were identified on the southeastern frontier of the
study area (Figure 3h).

3.2. Hydrothermal Response and Sensitivity of NDPI

The analysis of partial correlations with hydrothermal conditions, specifically Tmin, Tmax,
Tmean, and GSAP, spanned a period of 22 years on a pixel scale. The delineated spatial patterns
emphasize functional discrepancies (Figure 4a,c,e,g). Over the past 22 years, a predominant
negative correlation between NDPI and Tmin covered the majority of the plateau, accounting
for 58.49% of all grid cells. However, only around 1.89% of these cells exhibited a marginally
significant negative correlation at p < 0.05 (Figures 4a and 5). Conversely, a positive correlation
between NDPI and Tmin was statistically significant in nearly 1.35% of the grid cells from 2000
to 2021 (Figures 4a and 5). Akin to Tmin, the NDPI negative response to Tmax was observed
in 55.06% of grid cells over the 2000–2021 timeframe. Notably, these negative correlations
primarily manifested in the northeastern and western sectors of the plateau, with 8.93% being
significant at p < 0.05 (Figures 4b and 5). For Tmean, a positive correlation was evident in 62.13%
of the grid cells, primarily in the central and eastern regions. Of these, 11.27% were statistically
significant at p < 0.05 (Figures 4c and 5). In a pattern analogous to Tmean, the NDPI’s positive
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response to GSAP was evident in 58.25% of the grid cells, with the central plateau being the
main region of observation. Here, 6.04% of the cells showcased significance at the p < 0.05
threshold (Figures 4d and 5).
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The partial correlations between NDPI and hydrothermal conditions were further
assessed across various grassland types. Figure 5 depicts the percentage area of partial
correlations between NDPI and Tmin, Tmax, Tmean, and GSAP for each of the three distinct
grassland types. The data indicated that the Alpine desert had the highest percentage area
showing a negative response of NDPI to Tmin (Rp < 0), succeeded by the Alpine steppe
and Alpine meadow (Figure 5). For Tmax, the Alpine steppe exhibited the most significant
negative response of NDPI (Rp < 0), with the Alpine desert and Alpine meadow following
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suit (Figure 5). Conversely, the Alpine steppe displayed the highest percentage area of a
positive NDPI response to Tmean (Rp > 0), trailed by the Alpine meadow and Alpine desert
(Figure 5). Comparatively, the Alpine steppe dominated in terms of the positive NDPI
response to GSAP (p < 0.05), with subsequent rankings being the Alpine desert and Alpine
meadow (Figure 5).
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An in-depth assessment was conducted to determine the sensitivity of NDPI to hy-
drothermal factors across all grid cells on the plateau (Figure 4e–h). As anticipated, even
though spatial patterns of sensitivity and correlation varied, they predominantly exhibited
identical signs in the majority of grid cells. The eastern region of the plateau predominantly
displayed a negative sensitivity of NDPI to Tmin, primarily falling below 12 × 10−3 ◦C−1

(Figure 4e). A significant portion, representing 63.66% of all grid cells, exhibited a positive
sensitivity of NDPI to Tmax across the plateau, whereas the northeastern region demon-
strated a more pronounced negative sensitivity, less than −24 × 10−3 ◦C−1 (Figure 4f).
In opposition, the northeastern region manifested a robust positive sensitivity of NDPI
to Tmean, exceeding 12 × 10−2 ◦C−1. Conversely, for other regions of the plateau, the
sensitivity of NDPI to Tmean was notably subdued (Figure 4g). A substantial concentration
of pixels, reflecting a high sensitivity greater than 6 × 10−4 mm−1 of NDPI to GSAP, was
identified in the western region of the plateau. In contrast, other sections presented a
relatively diminished sensitivity (Figure 4h).

3.3. Elevation-Dependent Differences in Hydrothermal Response and Sensitivity of NDPI

Our analysis highlights the pivotal role of elevation in modulating the response and
sensitivity of grassland vegetation greenness to hydrothermal factors (Figure 6). This
response and sensitivity of NDPI with respect to Tmin, Tmax, Tmean, and GSAP were eluci-
dated at 10 m elevation intervals (Figure 6). Overall, the response and sensitivity of NDPI
to hydrothermal factors distinctly fluctuated at elevations below 3000 m and above 5500 m.
Notably, the partial correlation coefficient between NDPI and Tmin surged from −0.26 at an
elevation of 970 m to a positive value (Rp = 0.12, p > 0.05) at 6260 m (R2 = 0.50, p < 0.05)
(Figure 6a). Conversely, the coefficient for NDPI and Tmax declined from a pronounced
positive value (Rp = 0.55, p < 0.05) at 970 m to −0.09 at 6260 m (Figure 6a). The positive
partial correlation coefficient between NDPI and Tmean exhibited a unimodal trend across
elevations, ranging from less than 2000 m to greater than 6000 m (Figure 6c). The correlation
coefficient of NDPI with GSAP demonstrated a marginally declining trajectory (p > 0.05)
(Figure 6d). As anticipated, although the sensitivity profile differed from correlation, they
exhibited analogous trends, maintaining consistent signs with elevation in the majority of
regions (Figure 6e–h).
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4. Discussion
4.1. Estimation of NDPI and Its Hydrothermal Factors

The NDPI exhibited a rising trend during the peak season (Figure 2c), suggesting a con-
sistent improvement in vegetation photosynthetic activity over the past 22 years in this region.
This observation aligns with other studies utilizing NDVI data [7,16,17,20,41,42]. The increase
in NDPI can be attributed to enhanced hydrothermal conditions observed locally over the past
22 years (Figure 3) and the introduction of several protective measures, such as the Protection
and Construction of the National Ecological Security Shelter Zone (PCNESSZ) and the Return-
ing Rangeland to Grassland (RRG) program. Additionally, ecological restoration initiatives
like the Ecological Subsidy and Award System (ESAS) have been rolled out by governments
since 2000 [43]. Nevertheless, a noteworthy decrease in NDPI was observed in 2.97% of the
regions (Figure 2c,d), primarily spanning the Alpine steppe and Alpine desert areas. This
aligns with findings from studies using NDVI data [7,17,20,40,41]. This declining trend likely
stems from water scarcity resulting from the warming–drying climate [17]. While increased
precipitation was recorded in these regions, elevated evapotranspiration due to rising temper-
atures might exacerbate the limitations on vegetation photosynthesis imposed by drought
stress [44]. Notably, when juxtaposed with the grasslands of the Tibet Plateau, the Alpine
grasslands demonstrate a more marked greening, potentially attributable to snowmelt [45].

4.2. Importance of Quantifying Hydrothermal Response and Sensitivity of NDPI

This study revealed that grassland NDPI generally exhibited positive responses to
Tmean and GSAP (Figure 4), implying that the greenness of Alpine grasslands could en-
hance if hydrothermal conditions trend towards being warmer and wetter. This finding
aligns with previous reports [7,17,44]. In the eastern portion of the study area, NDPI
primarily showed a positive response to Tmean (p < 0.05) because temperature primarily
restricts Alpine meadow vegetation growth compared to precipitation [17,46]. However,
since 2000, GSAP has negatively influenced NDPI, indicating that excessive precipitation
adversely affects vegetation growth due to exacerbated soil erosion and diminished soil
organic matter [17,47]. This heightened precipitation also leads to reduced temperature
and radiation, consequently inhibiting plant photosynthesis. From 2000 to 2021, the inter-
annual variation of NDPI displayed negative correlations with both Tmin and Tmax across
the majority of the plateau, suggesting that an increase in both maximum and minimum
temperatures could decrease the greenness of Alpine grasslands. One potential reason
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is that Tmin might impact seed germination and cause direct damage to vegetation cell
structures [12,47,48]. The frozen soil water at Tmin temperatures could also restrict water
uptake by plant roots [12,47]. Conversely, if Tmin rises, it could diminish freezing damage
in plants, reduce seedling mortality, and enhance the photosynthetic capacity and growth
rates, thereby extending the growing season [12]. Tmax, to a degree, might indirectly cause
a reduction in vegetation greenness by augmenting evaporation and respiration, conse-
quently limiting water availability [49]. This could also heighten the risk of chlorophyll
degradation and plant mortality in arid areas [50]. On the contrary, an increased Tmax might
alleviate the cold temperature constraints on vegetation growth in relatively moist and cool
ecosystems [49]. Interestingly, compared to this study. Notably, Shen et al. [12] discovered
that summer vegetation greenness (July to August) on the Tibetan Plateau was strongly
positively correlated with summer Tmin and negatively with Tmax. This discrepancy arises
because our study focuses on the growing season from May to September.

4.3. Vertical Functional Difference of Hydrothermal Factors on NDPI

A comparative analysis of hydrothermal factor effects on grassland vegetation green-
ness across various vertical gradient zones of the Plateau reveals distinct patterns in NDPI
distribution’s response and sensitivity to Tmin, Tmax, Tmean, and GSAP depending on el-
evation. There is an increasing positive response and heightened sensitivity of Alpine
grasslands NDPI to Tmin as elevation rises on the Plateau (p < 0.05). One rationale behind
this trend is that an elevation in Tmin may stimulate enhanced photosynthetic activity
within plant thermal budgets at higher elevations and colder zones [51]. Conversely, there’s
a decreasing positive response and diminished sensitivity of NDPI to Tmax with increasing
elevations (p < 0.05). This can primarily be attributed to the reduced water availability
at higher elevations, potentially constraining or negating the favorable influence of Tmax
on vegetation greening [16,42,44]. The findings demonstrate that NDPI’s response and
sensitivity to Tmean across varying elevations largely depict unimodal patterns on the
Tibetan Plateau, largely due to water availability constraints [42]. Both observations un-
derscore that while temperature might offer optimal benefits, the effects of limited water
availability could curtail vegetation growth. The data further reveal that NDPI’s response
and sensitivity to GSAP, when viewed in relation to elevation, suggest a subtle declining
trend, aligning with the decreased water availability at greater elevations on the Tibetan
Plateau. An alternative perspective posits that vegetation might manifest transient green-
ness influenced by environmental conditions, but extended stability, potentially driven by
other factors such as radiation, CO2, and nitrogen deposition [44,52], could counterbalance
the impacts of changing hydrothermal conditions [42,47].

4.4. Uncertainties, Limitations and Future Perspectives

This study possesses inherent uncertainties and limitations. The primary sources
of uncertainties stem from the quality and sources of data (notably, the remote sensing
and meteorological datasets), as well as the employed analysis methods. Several notable
limitations are as follows: Firstly, GSAP may not accurately represent water availability
on the Tibetan Plateau; thus, the sensitivity of Alpine grassland vegetation greenness
to GSAP variability could potentially be underestimated. Secondly, the study did not
consider the potential lag effects of hydrothermal factors on greenness (for instance, the
influence of hydrothermal factors on grassland greenness prior to the growth season).
Thirdly, due to the absence of such conditions during the study period, the impacts of
hydrothermal extremes on grassland greenness and the greenness’s response and sensitivity
to such extremes were not evaluated [53,54]. Lastly, given data constraints, the study did
not delve into various dimensions such as the influence of radiation on greenness and
hydrothermal conditions, human interventions like grazing, land use and socio-economic
variables [7]. These will be incorporated in subsequent studies. Consequently, a more
comprehensive study and profound analysis are required to address these uncertainties
and limitations, thereby refining the findings. Additionally, attention should be directed
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towards the sensitivity of grassland greenness to extreme hydrothermal events, especially
heat-waves and droughts [20,37,54], in forthcoming research. Notwithstanding these
limitations, the findings from this study stand to aid governments in crafting early warning
systems against Alpine grassland degradation.

5. Conclusions

This study presents a thorough examination of the response and sensitivity of grass-
land vegetation greenness to contemporary hydrothermal conditions on the Tibetan Plateau,
and it broadens sensitivity assessments of greenness along the vertical dimension. For the
growing season spanning 2000–2021, both the response and sensitivity exhibited spatial
heterogeneity. With elevation, the positive response and sensitivity of Alpine grassland
vegetation greenness to minimum temperature increase markedly. In contrast, the response
to maximum temperature exhibits an inverse relationship. The positive response and
sensitivity of greenness to mean temperature, with respect to elevations, display unimodal
patterns across the Tibetan Plateau. These insights are instrumental for evaluating the
ecological repercussions on the Tibetan Plateau due to global climate shifts, especially
in elevationally diverse regions. They also provide guidance in formulating grassland
management strategies, ensuring the preservation of these delicate eco-climatic zones.

Author Contributions: Conceptualization, Y.W., X.X. and X.L.; methodology, Y.W. and B.S.; software,
Y.W., L.H. and S.C.; validation, Y.W. and J.Z.; formal analysis, Y.W. and Y.L.; resources, Y.W., C.S.,
D.X. and H.L.; data curation, Y.W. and L.M.; writing—original draft preparation, Y.W. and B.S.;
writing—review and editing, Y.W., C.S., M.L., H.L. and D.X.; supervision, X.X. and X.L.; project
administration, X.X.; funding acquisition, X.X. All authors have read and agreed to the published
version of the manuscript.

Funding: This study was supported by the National Key Research and Development Program
of China (2021YFD1300500, 2021YFF0703904); the National Natural Science Foundation of China
(32130070, 31971769, 41771205, 42101372); Special Funding for the Modern Agricultural Technology
System from the Chinese Ministry of Agriculture (CARS-34); the Fundamental Research Funds
Central Non-profit Scientific Institution (1610132021016). The Institute of General and Experimental
Biology SB RAS (121030900138-8).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author. The data are not publicly available due to intellectual property.

Acknowledgments: We are grateful to many colleagues with the Hulunber Grassland Ecosystem
Observation and Research Station, Institute of Agricultural Resources and Regional Planning, Chinese
Academy of Agricultural Sciences (CAAS). Acknowledgment is given for the data support from “A
Big Earth Data Platform for Three Poles (http://poles.tpdc.ac.cn/zh-hans/, accessed on 4 March 2023)
and National Tibetan Plateau/Third Pole Environment Data Center (https://data.tpdc.ac.cn/home,
accessed on 4 March 2023)”.

Conflicts of Interest: Author Beibei Shen was employed by the company Aerospace Science and
Industry (Beijing) Spatial Information Application Co., Ltd. The remaining authors declare that the
research was conducted in the absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

References
1. Yang, Y.; Fang, J.Y.; Tang, Y.H.; Ji, C.J.; Zheng, C.Y.; He, J.S.; Zhu, B. Storage, patterns and controls of soil organic carbon in the

Tibetan grasslands. Glob. Change Biol. 2008, 14, 1592–1599. [CrossRef]
2. Zhuang, Q.; He, J.; Lu, Y.; Ji, L.; Xiao, J.; Luo, T. Carbon dynamics of terrestrial ecosystems on the Tibetan Plateau during the 20th

century: An analysis with a process-based biogeochemical model. Glob. Ecol. Biogeogr. 2010, 19, 649–662. [CrossRef]
3. Li, L.H.; Zhang, Y.L.; Wu, J.S.; Li, S.C.; Zhang, B.H.; Zu, J.X.; Zhang, H.M.; Ding, M.J.; Paudel, B. Increasing sensitivity of alpine

grasslands to climate variability along an elevational gradient on the Qinghai-Tibet Plateau. Sci. Total Environ. 2019, 678, 21–29.
[CrossRef] [PubMed]

http://poles.tpdc.ac.cn/zh-hans/
https://data.tpdc.ac.cn/home
https://doi.org/10.1111/j.1365-2486.2008.01591.x
https://doi.org/10.1111/j.1466-8238.2010.00559.x
https://doi.org/10.1016/j.scitotenv.2019.04.399
https://www.ncbi.nlm.nih.gov/pubmed/31075588


Remote Sens. 2024, 16, 201 12 of 14

4. Li, M.; Wu, J.S.; He, Y.T.; Wu, L.; Niu, B.; Song, M.H.; Zhang, X.Z. Dimensionality of grassland stability shifts along with altitudes
on the Tibetan Plateau. Agric. For. Meteorol. 2020, 291, 108080. [CrossRef]

5. Zhong, L.; Ma, Y.M.; Salama, M.S.; Su, Z.B. Assessment of vegetation dynamics and their response to variations in precipitation
and temperature in the Tibetan Plateau. Clim. Change 2010, 103, 519–535. [CrossRef]

6. Camps-Valls, G.; Campos-Taberner, M.; Moreno-Martínez, Á.; Walther, S.; Duveiller, G.; Cescatti, A.; Mahecha, M.D.; Muñoz-Marí, J.;
García-Haro, F.J.; Guanter, L.; et al. A unified vegetation index for quantifying the terrestrial biosphere. Sci. Adv. 2021, 7, eabc7447.
[CrossRef]

7. Chen, J.H.; Yan, F.; Lu, Q. Spatiotemporal variation of vegetation on the Qinghai–Tibet Plateau and the influence of climatic
factors and human activities on vegetation trend (2000–2019). Remote Sens. 2020, 12, 3150. [CrossRef]

8. Gao, Y.H.; Chen, F.; Lettenmaier, D.P.; Xu, J.W.; Xiao, L.H.; Li, X. Does elevation-dependent warming hold true above 5000 m
elevation? Lessons from the Tibetan Plateau. NPJ Clim. Atmos. Sci. 2018, 1, 19. [CrossRef]

9. Li, D.L.; Wu, S.Y.; Liu, L.B.; Zhang, Y.T.; Li, S.C. Vulnerability of the global terrestrial ecosystems to climate change. Glob. Change
Biol. 2018, 24, 4095–4106. [CrossRef]

10. You, Q.L.; Chen, D.L.; Wu, F.Y.; Pepin, N.; Cai, Z.Y.; Ahrens, B.; Jiang, Z.H.; Wu, Z.W.; Kang, S.C.; AghaKouchak, A. Elevation
dependent warming over the Tibetan Plateau: Patterns, mechanisms and perspectives. Earth-Sci. Rev. 2020, 210, 103349.
[CrossRef]

11. Wang, Y.J.; Fu, B.J.; Liu, Y.X.; Li, Y.; Feng, X.M.; Wang, S. Response of vegetation to drought in the Tibetan Plateau: Elevation
differentiation and the dominant factors. Agric. For. Meteorol. 2021, 306, 108468. [CrossRef]

12. Shen, M.G.; Piao, S.L.; Chen, X.Q.; An, S.A.; Fu, Y.H.; Wang, S.P.; Cong, N.; Janssens, I.A. Strong impacts of daily minimum
temperature on the green-up date and summer greenness of the Tibetan Plateau. Glob. Change Biol. 2016, 22, 3057–3066. [CrossRef]
[PubMed]

13. Piao, S.L.; Cui, M.D.; Chen, A.P.; Wang, X.H.; Ciais, P.; Liu, J.; Tang, Y.H. Altitude and temperature dependence of change in
the spring vegetation green-up date from 1982 to 2006 in the Qinghai-Xizang Plateau. Agric. For. Meteorol. 2011, 151, 1599–1608.
[CrossRef]

14. An, S.; Zhu, X.L.; Shen, M.G.; Wang, Y.F.; Cao, R.Y.; Chen, X.H.; Yang, W.; Chen, J.; Tang, Y.H. Mismatch in elevational
shifts between satellite observed vegetation greenness and temperature isolines during 2000–2016 on the Tibetan Plateau.
Glob. Change Biol. 2018, 24, 5411–5425. [CrossRef] [PubMed]

15. Li, P.L.; Zhu, D.; Wang, Y.L.; Liu, D. Elevation dependence of drought legacy effects on vegetation greenness over the Tibetan
Plateau. Agric. For. Meteorol. 2020, 295, 108190. [CrossRef]

16. Wang, Y.; Peng, D.L.; Shen, M.G.; Xu, X.Y.; Yang, X.H.; Huang, W.J.; Yu, L.; Liu, L.Y.; Li, C.J.; Li, X.W.; et al. Contrasting effects of
temperature and precipitation on vegetation greenness along elevation gradients of the Tibetan Plateau. Remote Sens. 2020, 12, 2751.
[CrossRef]

17. Li, P.L.; Hu, Z.M.; Liu, Y.W. Shift in the trend of browning in Southwestern Tibetan Plateau in the past two decades. Agric. For. Meteorol.
2020, 287, 107950. [CrossRef]

18. Wang, C.; Chen, J.; Wu, J.; Tang, Y.H.; Shi, P.J.; Black, T.A.; Zhu, K. A snow-free vegetation index for improved monitoring of
vegetation spring green-up date in deciduous ecosystems. Remote Sens. Environ. 2017, 196, 1–12. [CrossRef]

19. Ding, L.; Li, Z.W.; Shen, B.B.; Wang, X.; Xu, D.W.; Yan, R.R.; Yan, Y.C.; Xin, X.P.; Xiao, J.F.; Li, M.; et al. Spatial patterns and
driving factors of aboveground and belowground biomass over the eastern Eurasian steppe. Sci. Total Environ. 2022, 803, 149700.
[CrossRef]

20. Wang, Z.Q.; Cui, G.L.; Liu, X.; Zheng, K.; Lu, Z.Y.; Li, H.L.; Wang, G.N.; An, Z.F. Greening of the Qinghai–Tibet plateau and its
response to climate variations along elevation gradients. Remote Sens. 2021, 13, 3712. [CrossRef]

21. Rouse, J.W.; Haas, R.H.; Schell, J.A.; Deering, D.W. Monitoring vegetation systems in the Great Plains with ERTS. NASA Spec. Publ.
1974, 351, 309.

22. Peng, S.S.; Piao, S.L.; Ciais, P.; Myneni, R.B.; Chen, A.; Chevallier, F.; Dolman, A.J.; Janssens, I.A.; Penuelas, J.; Zhang, G.X.; et al.
Asymmetric effects of daytime and night-time warming on Northern Hemisphere vegetation. Nature 2013, 501, 88–92. [CrossRef]
[PubMed]

23. Huete, A.R.; Jackson, R.D.; Post, D.F. Spectral response of a plant canopy with different soil backgrounds. Remote Sens. Environ.
1985, 17, 37–53. [CrossRef]

24. Todd, S.W.; Hoffer, R.M. Responses of spectral indices to variations in vegetation cover and soil background. Photogramm. Eng. Remote Sens.
1998, 64, 915–921. [CrossRef]

25. Holben, B.N. Characteristics of maximum-value composite images from temporal AVHRR data. Int. J. Remote Sens. 1986, 7, 1417–1434.
[CrossRef]

26. Purevdorj, T.S.; Tateishi, R.; Ishiyama, T.; Honda, Y. Relationships between percent vegetation cover and vegetation indices.
Int. J. Remote Sens. 1998, 19, 3519–3535. [CrossRef]

27. Xu, D.W.; Wang, C.; Chen, J.; Shen, M.G.; Shen, B.B.; Yan, R.R.; Li, Z.W.; Karnieli, A.; Chen, J.Q.; Yan, Y.C.; et al. The superiority of
the normalized difference phenology index (NDPI) for estimating grassland aboveground fresh biomass. Remote Sens. Environ.
2021, 264, 112578. [CrossRef]

https://doi.org/10.1016/j.agrformet.2020.108080
https://doi.org/10.1007/s10584-009-9787-8
https://doi.org/10.1126/sciadv.abc7447
https://doi.org/10.3390/rs12193150
https://doi.org/10.1038/s41612-018-0030-z
https://doi.org/10.1111/gcb.14327
https://doi.org/10.1016/j.earscirev.2020.103349
https://doi.org/10.1016/j.agrformet.2021.108468
https://doi.org/10.1111/gcb.13301
https://www.ncbi.nlm.nih.gov/pubmed/27103613
https://doi.org/10.1016/j.agrformet.2011.06.016
https://doi.org/10.1111/gcb.14432
https://www.ncbi.nlm.nih.gov/pubmed/30156039
https://doi.org/10.1016/j.agrformet.2020.108190
https://doi.org/10.3390/rs12172751
https://doi.org/10.1016/j.agrformet.2020.107950
https://doi.org/10.1016/j.rse.2017.04.031
https://doi.org/10.1016/j.scitotenv.2021.149700
https://doi.org/10.3390/rs13183712
https://doi.org/10.1038/nature12434
https://www.ncbi.nlm.nih.gov/pubmed/24005415
https://doi.org/10.1016/0034-4257(85)90111-7
https://doi.org/10.1016/S0031-0182(98)00058-3
https://doi.org/10.1080/01431168608948945
https://doi.org/10.1080/014311698213795
https://doi.org/10.1016/j.rse.2021.112578


Remote Sens. 2024, 16, 201 13 of 14

28. Xu, G.; Zhang, H.F.; Chen, B.Z.; Zhang, H.R.; Innes, J.L.; Wang, G.Y.; Yan, J.W.; Zheng, Y.H.; Zhu, Z.C.; Myneni, R.B. Changes in
Vegetation Growth Dynamics and Relations with Climate over China’s Landmass from 1982 to 2011. Remote Sens. 2014, 6, 3263–3283.
[CrossRef]

29. Yao, T.D.; Masson-Delmotte, V.; Gao, J.; Yu, W.S.; Yang, X.X.; Risi, C.; Sturm, C.; Werner, M.; Zhao, H.B.; He, Y.; et al. A review of
climatic controls on δ18O in precipitation over the Tibetan Plateau: Observations and simulations. Rev. Geophys. 2013, 51, 525–548.
[CrossRef]

30. Fan, J.W.; Zhong, H.P.; Harris, W.; Yu, G.R.; Yue, Y.Z. Carbon storage in the grasslands of China based on field measurements of
above-and below-ground biomass. Clim. Change 2008, 86, 375–396. [CrossRef]

31. Peng, S.Z. 1-km monthly minimum temperature dataset for China (1901–2021). In A Big Earth Data Platform for Three Poles;
National Tibetan Plateau/Third Pole Environment Data Center: Beijing, China, 2020. [CrossRef]

32. Peng, S.Z. 1-km monthly precipitation dataset for China (1901–2022). In A Big Earth Data Platform for Three Poles; National Tibetan
Plateau/Third Pole Environment Data Center: Beijing, China, 2020. [CrossRef]

33. Peng, S.Z.; Ding, Y.X.; Wen, Z.M.; Chen, Y.M.; Cao, Y.; Ren, J.Y. Spatiotemporal change and trend analysis of potential evapotran-
spiration over the Loess Plateau of China during 2011–2100. Agric. For. Meteorol. 2017, 233, 183–194. [CrossRef]

34. Peng, S.Z.; Gang, C.C.; Cao, Y.; Chen, Y.M. Assessment of climate change trends over the Loess Plateau in China from 1901 to
2100. Int. J. Climatol. 2018, 38, 2250–2264. [CrossRef]

35. Peng, S.Z. 1-km monthly mean temperature dataset for China (1901–2022). In A Big Earth Data Platform for Three Poles; National
Tibetan Plateau Data Center: Beijing, China, 2019. [CrossRef]

36. Peng, S.Z.; Ding, Y.X.; Liu, W.Z.; Li, Z. 1 km monthly temperature and precipitation dataset for China from 1901 to 2017. Earth
Syst. Sci. Data 2019, 11, 1931–1946. [CrossRef]

37. Ding, Y.X.; Peng, S.Z. Spatiotemporal trends and attribution of drought across China from 1901–2100. Sustainability 2020, 12, 477.
[CrossRef]

38. Bedeian, A.G.; Mossholder, K.W. On the use of the coefficient of variation as a measure of diversity. Organ. Res. Methods 2000, 3, 285–297.
[CrossRef]

39. Mann, H.B. Nonparametric test against trend. Econometrica 1945, 13, 245–259. [CrossRef]
40. Kendall, M.G. Rank correlation methods. Br. J. Psychol. 1990, 25, 86–91. [CrossRef]
41. Li, L.H.; Zhang, Y.L.; Liu, L.S.; Wu, J.S.; Wang, Z.F.; Li, S.C.; Zhang, H.M.; Zu, J.X.; Ding, M.J.; Paudel, B. Spatiotemporal patterns

of vegetation greenness change and associated climatic and anthropogenic drivers on the Tibetan Plateau during 2000–2015.
Remote Sens. 2018, 10, 1525. [CrossRef]

42. Liu, L.B.; Wang, Y.; Wang, Z.; Li, D.L.; Zhang, Y.T.; Qin, D.H.; Li, S.C. Elevation-dependent decline in vegetation greening
rate driven by increasing dryness based on three satellite NDVI datasets on the Tibetan Plateau. Ecol. Indic. 2019, 107, 105569.
[CrossRef]

43. Cai, H.Y.; Yang, X.H.; Xu, X.L. Human-induced grassland degradation/restoration in the central Tibetan Plateau: The effects of
ecological protection and restoration projects. Ecol. Eng. 2015, 83, 112–119. [CrossRef]

44. Wang, S.H.; Zhang, Y.G.; Ju, W.M.; Chen, J.M.; Ciais, P.; Cescatti, A.; Sardans, J.; Janssens, I.A.; Wu, M.S.; Berry, J.A.; et al. Recent
global decline of CO2 fertilization effects on vegetation photosynthesis. Science 2020, 370, 1295–1300. [CrossRef] [PubMed]

45. Choler, P.; Bayle, A.; Carlson, B.Z.; Randin, C.; Filippa, G.; Cremonese, E. The tempo of greening in the European Alps: Spatial
variations on a common theme. Glob. Change Biol. 2021, 27, 5614–5628. [CrossRef] [PubMed]

46. Chen, X.Q.; An, S.; Inouye, D.W.; Schwartz, M.D. Temperature and snowfall trigger alpine vegetation green-up on the world’s
roof. Glob. Change Biol. 2015, 21, 3635–3646. [CrossRef] [PubMed]

47. An, S.; Chen, X.Q.; Zhang, X.Y.; Lang, W.G.; Ren, S.L.; Xu, L. Precipitation and minimum temperature are primary climatic
controls of alpine grassland autumn phenology on the Qinghai-Tibet Plateau. Remote Sens. 2020, 12, 431. [CrossRef]

48. Liu, Y.; Wu, C.Y.; Wang, X.Y.; Zhang, Y. Contrasting responses of peak vegetation growth to asymmetric warming: Evidences
from FLUXNET and satellite observations. Glob. Change Biol. 2023, 29, 2363–2379. [CrossRef] [PubMed]

49. Ganjurjav, H.; Gao, Q.Z.; Gornish, E.S.; Schwartz, M.W.; Liang, Y.; Cao, X.J.; Zhang, W.N.; Zhang, Y.; Li, W.H.; Wan, Y.F.;
et al. Differential response of alpine steppe and alpine meadow to climate warming in the central Qinghai–Tibetan Plateau.
Agric. For. Meteorol. 2016, 223, 233–240. [CrossRef]

50. Yu, F.F.; Price, K.P.; Ellis, J.; Shi, P.J. Response of seasonal vegetation development to climatic variations in eastern central Asia.
Remote Sens. Envion. 2003, 87, 42–54. [CrossRef]

51. Palazzi, E.; Filippi, L.; von Hardenberg, J. Insights into elevation-dependent warming in the Tibetan Plateau-Himalayas from
CMIP5 model simulations. Clim. Dyn. 2017, 48, 3991–4008. [CrossRef]

52. Pastore, M.A.; Lee, T.D.; Hobbie, S.E.; Reich, P.B. Strong photosynthetic acclimation and enhanced water-use efficiency in grassland
functional groups persist over 21 years of CO2 enrichment, independent of nitrogen supply. Glob. Change Biol. 2019, 25, 3031–3044.
[CrossRef]

https://doi.org/10.3390/rs6043263
https://doi.org/10.1002/rog.20023
https://doi.org/10.1007/s10584-007-9316-6
https://doi.org/10.5281/zenodo.3114194
https://doi.org/10.5281/zenodo.3185722
https://doi.org/10.1016/j.agrformet.2016.11.129
https://doi.org/10.1002/joc.5331
https://doi.org/10.11888/Meteoro.tpdc.270961
https://doi.org/10.5194/essd-11-1931-2019
https://doi.org/10.3390/su12020477
https://doi.org/10.1177/109442810033005
https://doi.org/10.2307/1907187
https://doi.org/10.2307/2333282
https://doi.org/10.3390/rs10101525
https://doi.org/10.1016/j.ecolind.2019.105569
https://doi.org/10.1016/j.ecoleng.2015.06.031
https://doi.org/10.1126/science.abb7772
https://www.ncbi.nlm.nih.gov/pubmed/33303610
https://doi.org/10.1111/gcb.15820
https://www.ncbi.nlm.nih.gov/pubmed/34478202
https://doi.org/10.1111/gcb.12954
https://www.ncbi.nlm.nih.gov/pubmed/25906987
https://doi.org/10.3390/rs12030431
https://doi.org/10.1111/gcb.16592
https://www.ncbi.nlm.nih.gov/pubmed/36695551
https://doi.org/10.1016/j.agrformet.2016.03.017
https://doi.org/10.1016/S0034-4257(03)00144-5
https://doi.org/10.1007/s00382-016-3316-z
https://doi.org/10.1111/gcb.14714


Remote Sens. 2024, 16, 201 14 of 14

53. You, Q.L.; Wu, F.Y.; Shen, L.C.; Pepin, N.; Jiang, Z.H.; Kang, S.C. Tibetan Plateau amplification of climate extremes under global
warming of 1.5 ◦C, 2 ◦C and 3 ◦C. Glob. Planet. Change 2020, 192, 103261. [CrossRef]

54. Deng, Y.; Wang, X.H.; Wang, K.; Ciais, P.; Tang, S.C.; Jin, L.; Li, L.L.; Piao, S.L. Responses of vegetation greenness and carbon cycle
to extreme droughts in China. Agric. For. Meteorol. 2021, 298, 108307. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.gloplacha.2020.103261
https://doi.org/10.1016/j.agrformet.2020.108307

	Introduction 
	Materials and Methods 
	Study Region 
	Dataset Processing 
	Methods 

	Results 
	Spatial Patterns of Peak Season NDPI and Hydrothermal Factor Trends 
	Hydrothermal Response and Sensitivity of NDPI 
	Elevation-Dependent Differences in Hydrothermal Response and Sensitivity of NDPI 

	Discussion 
	Estimation of NDPI and Its Hydrothermal Factors 
	Importance of Quantifying Hydrothermal Response and Sensitivity of NDPI 
	Vertical Functional Difference of Hydrothermal Factors on NDPI 
	Uncertainties, Limitations and Future Perspectives 

	Conclusions 
	References

