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Abstract: When it comes to the application of the photon data gathered by the Ice, Cloud, and Land
Elevation Satellite-2 (ICESat-2), accurately removing noise is crucial. In particular, conventional
denoising algorithms based on local density are susceptible to missing some signal photons when
there is uneven signal density distribution, as well as being susceptible to misclassifying noise photons
near the signal photons; the application of deep learning remains untapped in this domain as well.
To solve these problems, a method for extracting signal photons based on a GoogLeNet model fused
with a Convolutional Block Attention Module (CBAM) is proposed. The network model can make
good use of the distribution information of each photon’s neighborhood, and simultaneously extract
signal photons with different photon densities to avoid misclassification of noise photons. The CBAM
enhances the network to focus more on learning the crucial features and improves its discriminative
ability. In the experiments, simulation photon data in different signal-to-noise ratios (SNR) levels
are utilized to demonstrate the superiority and accuracy of the proposed method. The results from
signal extraction using the proposed method in four experimental areas outperform the conventional
methods, with overall accuracy exceeding 98%. In the real validation experiments, reference data
from four experimental areas are collected, and the elevation of signal photons extracted by the
proposed method is proven to be consistent with the reference elevation, with R2 exceeding 0.87.
Both simulation and real validation experiments demonstrate that the proposed method is effective
and accurate for extracting signal photons.

Keywords: ICESat-2; signal photon extraction; photon data transformation; GoogLeNet; CBAM

1. Introduction

As a new-generation surface exploration satellite developed by NASA, ICESat-2 carries
an Advanced Topographic Laser Altimeter System (ATLAS), which enables it to calculate
the distance between the satellite and the Earth surface by measuring the propagation time
of the laser pulse, deriving the change in land topography and providing high-precision
surface elevation information [1]. Carrying the ATLAS at an orbital altitude of 500 km,
ICESat-2 operates at 532 nm and emits three pairs of beams with a spacing of 3.3 km and a
distance of 90 m between the two pairs of beams. Each pair of beams consists of a strong
beam and a weak beam, with the intensity of the strong beam being four times greater than
that of the weak beam. For intensive sampling and the efficient capture of elevation changes,
each beam is designed with a diameter of 17 m and a sampling interval of 0.7 m along the
track. Due to its exceptional ability to provide highly precise surface elevation data, the
ICESat-2 photon data has been utilized in a diverse range of current research studies. In
terms of shallow sea bathymetry inversion, photon data can offer numerous high-precision
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and extensive coverage bathymetric control points [2–7]. Additionally, in forested areas,
photon data are also a reliable source for canopy height information over large regions,
which is conducive to various studies such as surface biomass estimation [8–12]. In urban
areas, photon data can also be utilized to provide information about the height of urban
buildings, which assists in the detection of changes in urban areas [13,14]. In polar and
alpine regions, photon data can also be applied to detect the elevation changes of alpine
and polar glaciers [15–19].

The ATLAS system receives not only its own impulse signals but also noise caused
by atmospheric scattering, solar radiation, and instrument artifacts. The initial collected
photon data exhibits a significant amount of random noise that is distributed around the
signal photons. Only after removing these random noises to get the clear signal photons
can the data be utilized for various applications. As for the ICESat-2 photon data, the
photon density within the neighborhood of a signal photon is significantly higher than that
of a noise photon. Therefore, some conventional algorithms have been developed for noise
photon removal, most of which are derived from the threshold segmentation algorithms
based on local density or local distance. Among them, the most used one is Density-
Based Spatial Clustering of Applications with Noise (DBSCAN) [20]. In order to include
more signal photons in the search neighborhood, the circular neighborhood is commonly
replaced by an elliptical neighborhood when the DBSCAN algorithm is applied [21–26].
Chen et al. [21] proposed an adaptive variational ellipsoidal filtering bathymetry method
which processes histogram statistics in the depth direction to separate surface photons from
bottom ones, and adaptive variable ellipsoid filters allow the method to extract more signal
photons at deeper regions. Leng et al. [22] adopted a kernel density statistical approach to
separate land and water, with the elliptical neighborhood flexibly rotated to accommodate
more signal photons. This method can somewhat increase the local density gap between
signal and noise photons. Nan et al. [23] proposed a method that combines local denoising
with global denoising to effectively eliminate outliers, which improves the denoising
accuracy by means of secondary denoising. Yang et al. [24] proposed backward elliptic
distance (BED) to solve the signal photons fluctuate problem by rotating the elliptic domain,
thus minimizing the points in the neighborhood. This method can obtain good results in
mountainous areas. Zhang et al. [25] proposed an algorithm which uses a genetic algorithm
to find the optimal denoising thresholds. As opposed to using empirical thresholds, this
method allows for adaptive selection of thresholds based on the real situation. Zhu et al. [26]
applied the Ordering Points to Identify the Clustering Structure (OPTICS) algorithm, which
is similar to the DBSCAN algorithm, during processing procedure. But, compared with the
DBSCAN algorithm, OPTICS is less sensitive to data parameters.

Despite this, all the conventional methods above, which are based on local density or
local distance, only utilize a feature where the overall local density of signal photons is
much denser than that of the noise photons. The position and shape features of the photons
in the neighborhood of the signal and noise photons are not fully exploited. Meanwhile,
there are also signal photons with different local densities in the same data. Such a data
local point density histogram does not conform to the typical bimodal distribution, but
there may be multi-peak distribution. Therefore, it is difficult to separate all the signal and
noise well using the threshold segmentation methods.

The ICESat-2 photon data are morphologically similar to a 3D point cloud in that
the data patterns are all scattered. There is some similarity between the two in terms of
data analysis. Nowadays, deep learning methods have been widely used for 3D point
cloud denoising. These existing methods can be divided into two categories, one being
the network structure based on the PointNet framework [27–30]. This type of PointNet
framework takes the 3D coordinates of the point cloud as the input to obtain the feature
vector through a multilayer perceptron network, feature transformation network, and
maximum pooling layer. Then, the classifier is used to perform classification based on these
features. The other category converts the 3D point cloud data into voxel data or projects
them onto a 2D depth map. Then, the Convolutional Neural Network (CNN) model is
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used for feature learning and classification [31–34]. Theoretically, both types of network
structures can make full use of the position, shape, geometry, and other features of the 3D
point cloud data. However, the amount of geometric feature information of ICESat-2 pho-
tons is significantly reduced compared with the 3D point cloud data. Consequently, direct
application of CNNs designed for 3D point clouds to the ICESat-2 photons is challenging
to achieve accurate results. Therefore, deep learning methods have not yet been widely
applied to ICESat-2 photons.

To solve these problems, a novel CNN-based ICESat-2 signal photon extraction method
is proposed in this article. Firstly, it transforms each photon into a 2D image with a
specific aspect ratio to preserve feature information in its neighborhood. Subsequently, a
GoogLeNet fused with a CBAM is trained from the photon image data, which specializes
in capturing the detailed original feature information of the photon image data across
different scales and achieves a more comprehensive feature representation. As a result, not
only local densities features, but also position and shape features of the signal and noise
photons are well learned, which enables a constant increase in the feature gap between
signal photons and noise photons. In addition, the CBAM [35] enhances the network’s
ability to focus more on learning the crucial features and improves its discriminative ability.
Ultimately, the proposed method can overcome the obstacles encountered when extracting
signal photons using the conventional approach, which can be proven in both simulation
and real reference experiments.

This paper consists of six sections. Section 1 primarily introduces basic informa-
tion about ICESat-2 photon data and the limitations of conventional methods. Section 2
describes the basic information of the study areas and data. Section 3 specifically compre-
hensively describes the method proposed in this paper, which is mainly divided into two
parts: photon data transformation and CNN network modeling. Section 4 presents the
experimental results comparing the proposed method with the conventional methods to
demonstrate the superiority of the proposed method. Section 5 conducts a comparative
analysis between classical CNN models and those incorporating an attention mechanism.
Finally, Section 6 concludes by summarizing the proposed method presented in this paper.

2. Data
2.1. Experimental Area and Data

Figure 1 presents an overview of the experimental area for this paper. Four distinct sets
of ICESat-2/ATL03 data are utilized in this study, which are shown in Table 1. Experimental
Areas A and B are both located in the Cibola National Forest. Specifically, experimental area
A is located in the central Sedgwick Mountains of New Mexico, while experimental area B
is located in the northern San Mateo Mountains of New Mexico. Covered by forests, the
density of ground photons in such areas are much denser than that of vegetation canopy
photons. Experimental area C is located in close proximity to the Ramrod Island Reef in
the Florida Keys. By utilizing water surface and bottom signal photons, topographical
information of the shallow water bottom can be obtained. However, the signal photon
density at the water surface is much denser than at the water bottom due to the gradual
laser energy propagation inside the water. The conventional methods often fail to fully
extract the signal photons from the water bottom, resulting in a lack of topographical
information [24–26]. Experimental area D is located near Sanostee, within the state of New
Mexico. The land surface in this area is essentially devoid of feature cover and the signal
photon composition is unitary in the data from this area, which are primarily utilized to
test the denoising ability of different methods on simple data.
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Table 1. Information on ICESat-2/ATL03 data used.

Experimental Area ICESat-2/ATL03 Data Acquisition Time Track Used

A ATL03_20200914131032_12400802_005_01.h5 14 September 2020
14:13:10 gt1L/gt2L/gt3L

B ATL03_20191114034331_07370502_005_01.h5 14 November 2019
3:43:31 gt1R/gt2R/gt3R

C ATL03_20190807063856_06140401_005_01.h5 7 August 2019
6:28:56 gt1L/gt2L/gt3L

D ATL03_20221111233317_07981702_006_01.h5 11 November 2022
23:33:17 gt1R/gt2R/gt3R

2.2. Real Validation Data

In order to validate the correctness of the signal photons obtained by the proposed
method, a Digital Terrain Model (DTM) raster, Digital Elevation Model (DEM) raster, and
bathymetric raster are used to validate. The DTM raster is obtained from the Goddard’s Li-
DAR, Hyperspectral and Thermal Imager (G-LiHT) dataset with a spatial resolution of 1 m
(https://glihtdata.gsfc.nasa.gov/, accessed on 7 December 2023). The G-LiHT dataset [36]
was collected by the NASA science team using the G-LiHT system. G-LiHT is a portable
airborne imaging system containing LIDAR, hyperspectral, and thermal imager sensors
that simultaneously map the composition, structure, and function of terrestrial ecosystems.
The bathymetric raster is obtained from the 2018–2019 NOAA NGS Topobathy Lidar DEM
Hurricane Irma project [37] which are collected by three Riegl systems and then used to
create raster data with a spatial resolution of 1 m (https://coast.noaa.gov/htdata/raster2
/elevation/NGS_FL_Topobathy_PostIrma_MiamiToMarquesas_2019_9060/, accessed on
7 December 2023). The DEM raster is obtained from The Terra Advanced Spaceborne

https://glihtdata.gsfc.nasa.gov/
https://coast.noaa.gov/htdata/raster2/elevation/NGS_FL_Topobathy_PostIrma_MiamiToMarquesas_2019_9060/
https://coast.noaa.gov/htdata/raster2/elevation/NGS_FL_Topobathy_PostIrma_MiamiToMarquesas_2019_9060/
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Thermal Emission and Reflection Radiometer (ASTER) Global Digital Elevation Model
(GDEM) Version 3 [38]. The geographic coverage of the ASTER GDEM extends from 83◦

north to 83◦ south. Studies to validate and characterize the ASTER GDEM confirm that
accuracies for this global product are 20 m at a 95% confidence for vertical data and 30 m at
a 95% confidence for horizontal data.

2.3. Trianing Dataset

Since there is no universally applicable training dataset for ICESat-2 signal photon
data, in order to train the model and test the performance of the proposed method, we
designed simulation data for the training dataset.

The data construction process is as follows: first, for a given original dataset, we
manually extract photons with high confidence as signal photons using validation data
such as DEM as a reference. These photons are used as signals in the training dataset.
Subsequently, in order to simulate the real situation where the noise levels in different
photon data are different, we introduced Gaussian white noise with different signal-to-noise
ratios (SNR) into the above extracted signal photons. In practice, Gaussian white noise
with SNRs of 60, 70, 80, and 90 (dB) are added to the signal photons as noise in the training
dataset, respectively. Eventually, four simulation data are generated from one original data,
which are used to simulate the original photon data with different noise levels in the real
situation and at the same time. With the powerful learning and generalization ability of
the neural network, the network model can discriminate the abilities of different original
data noise in the real situation. All simulation data are divided into two parts: a training
dataset and a validation dataset. The training dataset is used to train the proposed model.
The validation dataset is used to compare the denoising performance of different methods.
Finally, real data validation experiments are conducted and the results further illustrate the
correctness of the proposed method in this paper.

3. Methods

As illustrated in Figure 2, the proposed method consists of four main steps. Firstly,
ICESat-2/ATL03 datasets are collected in various experimental areas, and the information in
the along-track direction, including elevation and incident angle, are extracted to generate
the photon distribution map. Secondly, transformed photon images are derived through a
three-step process involving image size determination, feature information extraction, and
feature information combination. Subsequently, each photon and its neighborhood photons
are transformed into a photon image. Thirdly, during the CNN network training process,
the CNN network model used in the article is the GoogLeNet model with CBAM module.
Training samples of the transformed photon images are utilized to train the model. Finally,
the results are validated by both simulation and real reference experiments. Simulation
validation experiments utilize multiple datasets of different SNR levels, which are then
denoised by the proposed method to demonstrate its effectiveness. In the real validation
experiments, the extracted information from denoised signal photons is compared with the
reference data to further demonstrate the effectiveness of the proposed method.

3.1. Photon Data Transformation

Due to the inherent properties of ICESat-2 photon data, only two types of information
can be derived from the photon data, namely the along-track distance (X coordinates) and
elevation values (Z coordinates). The conventional threshold segmentation method works
well only if the neighborhood range and direction fit the distribution of signal photons and
the local density of signal photons is highly concentrated. However, the distribution of real
photon data is often more complicated. When the neighborhood is inconsistent with the
trend of signal photons, such photons are often misclassified as noise. Meanwhile, if there
are two groups of signal photons but with different degrees of clustering, signal photons
with relatively low clustering will be misclassified as noise photons. Besides, the noise



Remote Sens. 2024, 16, 203 6 of 30

photons near the signal photons will be misclassified as signal photons because of the large
number of signal photons in its neighborhood.
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To solve these problems, the initial photon and its adjacent photons are transformed
into a 2D image with dimensions determined by the distribution range of the signal photons’
along-track distance and limited fluctuation elevation. The overall process is shown in
Figure 3. Typically, the distance along the track direction is much greater than the elevation
direction, resulting in a transformation range that is a rectangular domain rather than a
normal square domain. It allows for good description of the location and shape distribution
of photons within each photon neighborhood in the along-track distance direction, as well
as good separation of signal and noise photons in the elevation direction, ultimately making
the image samples more distinguishable from each other.
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The feature information of all photons in the neighborhood is transformed into a
feature matrix, wherein three types of features are calculated: the number of photons
(Num), the mean deviation of photon elevations from that of the center photon (DMh), and
the distance between each photon to the center photon (D).

Num = Count(p1, p2, . . . , pi, . . . , pk)

DMh =
∑k

i=1 Hpi
k − Hp0

D =
√(

L − Lp0

)2
+

(
H − Hp0

)2
(1)

where pi is the ith photon in one grid of the 2D image; Count is the number statistics
functions; Hpi is the elevation of each photon; Hp0 is the elevation of the photon at the
center of the grid p0; L and H are the along-track distance and the elevation of the center
of each cell; and Lp0 and Hp0 are the along-track distance and elevation of the grid center
photon p0. These three feature matrices are first normalized separately and they are
combined to construct a three-band image, then the transformation is completed.

3.2. CNN Model

The 2D transformed photon image can be effectively utilized to train the CNN. In the
article, GoogLeNet [39] serves as the backbone network for deep learning. Previous studies
of network structures aimed to improve the training results by increasing the depth (layers)
of the network, while excessive layers may lead to negative effects, such as overfitting,
gradient disappearance, gradient explosion, etc. [39].

Therefore, the Inception module is proposed to enhance the training results by op-
timizing computational resource utilization and extracting more features with the same
amount of computational workload. By incorporating convolutional kernels of varying
sizes within a single layer, the Inception module expands the “width” of the network
model and improves performance in capturing detailed original feature information across
different scales, ultimately achieving more comprehensive feature representation. In the
signal photon images, there are variations in shape and position features among different
Earth surface scenes. The Inception module is capable of extracting the distinct features
of the signal photon images, allowing the network to discriminate them from the noise
photon images. The schematic of the Inception module is depicted in Figure 4:

Remote Sens. 2023, 15, x FOR PEER REVIEW 8 of 32 
 

 

 

Figure 4. Schematic diagram of the Inception module [39]. 

To enhance the ability of GoogLeNet to learn more effective features from the train-

ing sample images, the CBAM is further introduced into the network backbone. The 

CBAM, consisting of the Channel Attention Module (CAM) and the Spatial Attention 

Module (SAM), focuses on “attention” to improve the performance of the network by al-

lowing the network to learn which information to emphasize or suppress, thereby facili-

tating effective information flow [35]. Figures 5 and 6 show the specific structures of CAM 

and SAM, respectively. Specifically, the CAM identifies meaningful channels in input fea-

tures, while SAM determines relevant features at spatial positions. The initial input fea-

tures are sequentially passed through the CAM and SAM modules, during which the out-

put features need to be multiplied pixel by pixel with the input features, resulting in the 

final CBAM-weighted features. 

 

Figure 5. Schematic diagram of the CAM module [35]. 

 

Figure 6. Schematic diagram of the SAM module [35]. 

In this study, as shown in the third part of Figure 2, the primary network structure 

of GoogLeNet is applied to construct the network, with the incorporation of the CBAM 

module. The first and second parts of the network consist of both convolutional (Conv1 

and Conv2 in Figure 2) and max-pooling layers (Max pool in Figure 2), with one and two 

convolutional layers, respectively. The CBAM modules are introduced after these convo-

lutional layers. The third, fourth, and fifth parts of the network are predominantly com-

posed of Inception modules, with the numbers 3, 4, and 5 corresponding to them. Each 

Inception module is succeeded by a CBAM and a max-pooling layer. As the output layer, 

the sixth part consists of an average-pooling layer (Avg Pool in Figure 2) and a fully con-

nected layer (FC in Figure 2). 

  

Figure 4. Schematic diagram of the Inception module [39].

To enhance the ability of GoogLeNet to learn more effective features from the training
sample images, the CBAM is further introduced into the network backbone. The CBAM,
consisting of the Channel Attention Module (CAM) and the Spatial Attention Module
(SAM), focuses on “attention” to improve the performance of the network by allowing
the network to learn which information to emphasize or suppress, thereby facilitating
effective information flow [35]. Figures 5 and 6 show the specific structures of CAM and
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SAM, respectively. Specifically, the CAM identifies meaningful channels in input features,
while SAM determines relevant features at spatial positions. The initial input features
are sequentially passed through the CAM and SAM modules, during which the output
features need to be multiplied pixel by pixel with the input features, resulting in the final
CBAM-weighted features.

Remote Sens. 2023, 15, x FOR PEER REVIEW 8 of 32 
 

 

 

Figure 4. Schematic diagram of the Inception module [39]. 

To enhance the ability of GoogLeNet to learn more effective features from the train-

ing sample images, the CBAM is further introduced into the network backbone. The 

CBAM, consisting of the Channel Attention Module (CAM) and the Spatial Attention 

Module (SAM), focuses on “attention” to improve the performance of the network by al-

lowing the network to learn which information to emphasize or suppress, thereby facili-

tating effective information flow [35]. Figures 5 and 6 show the specific structures of CAM 

and SAM, respectively. Specifically, the CAM identifies meaningful channels in input fea-

tures, while SAM determines relevant features at spatial positions. The initial input fea-

tures are sequentially passed through the CAM and SAM modules, during which the out-

put features need to be multiplied pixel by pixel with the input features, resulting in the 

final CBAM-weighted features. 

 

Figure 5. Schematic diagram of the CAM module [35]. 

 

Figure 6. Schematic diagram of the SAM module [35]. 

In this study, as shown in the third part of Figure 2, the primary network structure 

of GoogLeNet is applied to construct the network, with the incorporation of the CBAM 

module. The first and second parts of the network consist of both convolutional (Conv1 

and Conv2 in Figure 2) and max-pooling layers (Max pool in Figure 2), with one and two 

convolutional layers, respectively. The CBAM modules are introduced after these convo-

lutional layers. The third, fourth, and fifth parts of the network are predominantly com-

posed of Inception modules, with the numbers 3, 4, and 5 corresponding to them. Each 

Inception module is succeeded by a CBAM and a max-pooling layer. As the output layer, 

the sixth part consists of an average-pooling layer (Avg Pool in Figure 2) and a fully con-

nected layer (FC in Figure 2). 

  

Figure 5. Schematic diagram of the CAM module [35].

Remote Sens. 2023, 15, x FOR PEER REVIEW 8 of 32 
 

 

 

Figure 4. Schematic diagram of the Inception module [39]. 

To enhance the ability of GoogLeNet to learn more effective features from the train-

ing sample images, the CBAM is further introduced into the network backbone. The 

CBAM, consisting of the Channel Attention Module (CAM) and the Spatial Attention 

Module (SAM), focuses on “attention” to improve the performance of the network by al-

lowing the network to learn which information to emphasize or suppress, thereby facili-

tating effective information flow [35]. Figures 5 and 6 show the specific structures of CAM 

and SAM, respectively. Specifically, the CAM identifies meaningful channels in input fea-

tures, while SAM determines relevant features at spatial positions. The initial input fea-

tures are sequentially passed through the CAM and SAM modules, during which the out-

put features need to be multiplied pixel by pixel with the input features, resulting in the 

final CBAM-weighted features. 

 

Figure 5. Schematic diagram of the CAM module [35]. 

 

Figure 6. Schematic diagram of the SAM module [35]. 

In this study, as shown in the third part of Figure 2, the primary network structure 

of GoogLeNet is applied to construct the network, with the incorporation of the CBAM 

module. The first and second parts of the network consist of both convolutional (Conv1 

and Conv2 in Figure 2) and max-pooling layers (Max pool in Figure 2), with one and two 

convolutional layers, respectively. The CBAM modules are introduced after these convo-

lutional layers. The third, fourth, and fifth parts of the network are predominantly com-

posed of Inception modules, with the numbers 3, 4, and 5 corresponding to them. Each 

Inception module is succeeded by a CBAM and a max-pooling layer. As the output layer, 

the sixth part consists of an average-pooling layer (Avg Pool in Figure 2) and a fully con-

nected layer (FC in Figure 2). 

  

Figure 6. Schematic diagram of the SAM module [35].

In this study, as shown in the third part of Figure 2, the primary network structure
of GoogLeNet is applied to construct the network, with the incorporation of the CBAM
module. The first and second parts of the network consist of both convolutional (Conv1
and Conv2 in Figure 2) and max-pooling layers (Max pool in Figure 2), with one and
two convolutional layers, respectively. The CBAM modules are introduced after these
convolutional layers. The third, fourth, and fifth parts of the network are predominantly
composed of Inception modules, with the numbers 3, 4, and 5 corresponding to them.
Each Inception module is succeeded by a CBAM and a max-pooling layer. As the output
layer, the sixth part consists of an average-pooling layer (Avg Pool in Figure 2) and a fully
connected layer (FC in Figure 2).

3.3. Validation and Evaluation

The validation process in this paper is divided into two main parts: simulation experi-
ment validation and real reference validation. For the simulation experiment validation,
the denoised results of the simulation data are evaluated by four metrics: Precision, Recall,
Overall Precision (OA), and Kappa coefficient. For the real reference validation, four sets of
ICESat-2 photon data are collected for real validation. The denoised results are compared
with real measurements to validate the effectiveness of the proposed method. For the real
data validation, RMSE and R2 are utilized and the mean absolute error (MAE) and mean
relative error (MRE) are also calculated.

4. Experimental Process and Results
4.1. Experimental Process

The whole experimental process is mainly divided into two parts. The first part is
the simulated data construction and photon data transformation. The simulated data of
these four experimental areas are constructed using the method in Section 3.3. Twelve
tracks of data from the four experimental areas incorporate noise of four different SNR
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levels, and forty-eight pieces of simulated data are finally obtained. Then, all the photons in
these simulated data are converted to photon images using the photon data transformation
method in Section 3.1. The second part is the training and prediction of the network model.
Since the four experimental areas in this paper are categorized into three main feature
types, forest (A and B), shallow sea (C), and bare soil (D), the three network models will
be trained separately according to the feature types in the actual experimental process.
Then, thirty-two of the forty-eight simulated data obtained above are used as training
and validation samples for training the network model in Section 3.2. In total, there are
182,176 sample images in experimental area A and experimental area B, 278,373 photon
images in experimental area C, and 40,512 photon images in experimental area D. The ratio
of the training set to the validation set is 8:2. The number of positive samples and negative
samples is the same. Table 2 demonstrates the hyperparameter settings in network training.
Network models are trained with the Adam optimizer using the CrossEntropyLoss loss
function. Figures 7 and 8 show the change curves of the accuracy value and the loss
value of the first two network models, respectively. Finally, the three trained models are
used for denoising the remaining sixteen simulated data to get the results, which will
be compared with the results of other denoising methods. There are three conventional
methods that will be used to compare with the proposed method in the simulation and real
validation experiments: the DBSCAN [20], OPTICS [26], and BED [24]. The first two trained
network models are also used to denoise the raw data of three experimental areas. After
obtaining the signal photons, the elevation information of the signal photons is calculated
and compared with the real validation data.

Table 2. Information about the training hyperparameters.

Training Hyperparameter Setting

Initial learning rate 0.001
Learning rate change modality ExponentialLR

Learning rate change rate 0.98
Batch size 2
Optimizer adam

Training epoch 20
Training to validation 8:2
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4.2. Typical Photon Classification Results

Figure 9 presents the signal photon extraction results of the conventional method
and proposed method. For conventional methods, there are two types of photons that
cannot be classified well. The first type pertains to the omission of signal photons with
low local density. In Figure 9, the center photon in window A and window B are both
signal photons, and the center photon in window D is a common noise photon. Notably,
the quantity of photons within window A significantly exceeds that in windows B. So,
the threshold is typically biased for the conventional algorithm, which makes it easy to
misclassify the signal center photon in window B as noise photon when using conventional
methods. However, the distribution characteristics of neighboring photons differ between
the center signal photons in window A and window B and the noise photon in window
D. The noise photons in window D are randomly distributed, while the signal photons
in windows A and B are distributed along the water surface or underwater terrain. They
are significantly different. Additionally, as presented in Figure 10, the images transformed
using the proposed method also highlight these differences. Therefore, the signal photon in
window B with a lower local density can be readily discriminated from the noise photon in
window D. The proposed method can get better results in this situation.

Meanwhile, the second type is about the noise photons close to the signal photons
that are misclassified. In Figure 9, the noise photon in window C is in close proximity
to the signal photons. For such a noise photon, there are lots of signal photons in its
neighborhood. The difference between the number of photons surrounding the noise
photon in window C and that surrounding the signal photon in window A is insignificant,
making it difficult to distinguish between them using conventional methods. But, the
transformed photon image contains nearby signal photons along with the noise photon. As
presented in Figure 10, there is a significant difference in the position of their corresponding
signal photons between the noise photon in window C and signal photon in window A.
Taking advantage of this, the noise photon in window C would not be misclassified in the
proposed method.

4.3. Simulation Experimental Results

Experimental area A is covered by forests. Since the ATLAS system digitally records
all the laser echo signals from the canopy to the ground, the shape of the photon data
distribution in the forested area is largely determined by the vertical structure of the tree
canopy [40]. A coniferous forest with low density dominates this area, and Figure 11
illustrates the overall distribution of photon data in this area. Different photon densities
make it challenging to differentiate between ground signal photons and canopy signal
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photons. As depicted in Figure 12, while all three conventional methods are capable of
extracting ground signal photons with higher local density (in the blue box), they tend
to miss some canopy signal photons (in the green box), resulting in fair accuracy but
low recall. The proposed method takes into account the shape and position properties of
signal photons in the neighborhood of different local densities, resulting in more accurate
extraction results for both ground and canopy signal photons. Meanwhile, Table 3 illustrates
the denoising results of different denoising methods for photon data in different SNR levels.
The conventional methods can achieve high overall accuracy only under photon data in
low SNR levels. Under the photon data in higher SNR levels, the local density difference
between the signal photons and the noise photons becomes smaller, and thus the denoising
effect of the traditional methods becomes worse. In contrast, the proposed method obtains
high denoising results under photon data on all SNR levels, which proves that the proposed
method is more adaptable. Figure 13 demonstrates the curves of the results of the four
methods for the four validation metrics under different SNRs in experimental area A.
Compared to the conventional methods, the denoising results obtained by the proposed
method (red line) are not affected by the different noise level, and the accuracy of the results
are all better.
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(a) The denoised result of the proposed method (SNR = 80 dB); (b) the denoised result of DBSCAN
(SNR = 80 dB); (c) validation.
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Table 3. Results of the gt2L track in experimental area A.

SNR (dB) Precision Recall OA Kappa

The proposed method

60 99.97% 98.96% 99.47% 98.93%
70 99.94% 98.94% 99.44% 98.88%
80 99.82% 98.89% 99.35% 98.71%
90 99.50% 98.72% 99.11% 98.22%

DBSCAN

60 99.69% 91.59% 95.65% 91.30%
70 98.95% 93.14% 96.08% 92.15%
80 95.72% 94.15% 94.97% 89.94%
90 82.82% 97.62% 88.68% 77.37%

OPTICS

60 99.84% 50.54% 75.23% 50.46%
70 98.95% 72.13% 85.68% 71.36%
80 98.47% 72.81% 85.84% 71.68%
90 93.44% 75.33% 85.02% 70.04%

BED

60 99.63% 82.85% 91.27% 82.54%
70 98.62% 83.35% 91.09% 82.19%
80 95.02% 84.58% 90.07% 80.14%
90 80.85% 88.14% 83.63% 67.27%
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(a) validation; (b) optical remote sensing image; (c) the proposed method; (d) DBSCAN; (e) OPTICS;
(f) BED.

In experimental area B, there is a higher density in the forest area compared with
experimental area A. The overall distribution of the photon data in this area is shown in
Figure 14 and the noise density is not very high. But, the signal photon density is not the
same at different locations (steep slopes compared with gentle areas). It is challenging to
extract both ground signal photons and canopy signal photons well. As represented in
Figure 15, the DBSCAN algorithm performs best in extracting most of the signal photons
among the conventional methods. However, there are still some omissions existing in
the canopy area (in the green box) and on the ground (in the blue box). As for the other
conventional methods, the omissions become greater. The forested terrain and canopy
cannot be well extracted simultaneously. Meanwhile, the proposed method outperforms
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others. Both ground and canopy signal photons are extracted completely, leading to the
highest denoising accuracy. And in Table 4, it can be clearly observed that the denoising
accuracy of traditional methods decreases significantly with increasing SNR levels, which
does not occur with the proposed method in this paper. Figure 16 demonstrates the
curves of the results of the four methods for all validation metrics under different SNRs
in experimental area B. Compared to the conventional methods, the denoising results
obtained by the proposed method (red line) are not affected by the different noise level,
and the accuracy of the results are all better.
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Figure 15. Comparison of the details of the results of the gt2R track in experimental area B
(SNR = 70 dB). (a) Validation; (b) optical remote sensing image; (c) the proposed method; (d) DB-
SCAN; (e) OPTICS; (f) BED.

Experimental area C is situated in a shallow marine region where ICESat-2 photon
data exhibit two types of signal photons, namely water surface photons and water bot-
tom photons. Due to the gradual propagation of the laser energy through the water, the
signal photon density at the water surface is significantly higher than that at the water
bottom (shown in Figure 17). As represented in Figure 18, both the DBSCAN and OPTICS
algorithms solely identify water surface photons with high signal photon density (in the
blue box), while disregarding water bottom signal photons with low photon density (in
the green box). Moreover, some noise photons near the water surface are misclassified
as signal photons (in the purple box), leading to a low recall result. Regarding the BED
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algorithm, while it can extract most of the signal photons, it also misclassifies large number
of noise photons as signal photons (in the purple box), leading to a low precision result. The
proposed method effectively addresses these issues, resulting in a significant improvement
in extraction performance and achieving the highest in all validation metrics. Similarly,
Table 5 demonstrates the denoising performance of different denoising methods for differ-
ent SNR levels in the area. As the SNR level increases, conventional methods omit more
signal photons of the underwater photons, leading to progressively lower Recalls. But,
the proposed method is a good solution to such a problem. As shown in the validation
metrics, the proposed method achieves the highest overall accuracy of denoising results
compared to other conventional methods. Figure 19 demonstrates the curves of the results
of the four methods for all validation metrics under different SNRs in experimental area C.
Compared to the conventional methods, the denoising results obtained by the proposed
method (red line) are not affected by the different noise level, and the accuracy of the results
are all better.

Table 4. Results of the gt2R track in experimental area B.

SNR (dB) Precision Recall OA Kappa

The proposed method

60 99.98% 97.63% 98.81% 97.62%
70 99.90% 97.56% 98.74% 97.48%
80 99.70% 97.48% 98.60% 97.20%
90 99.33% 97.26% 98.31% 96.63%

DBSCAN

60 98.51% 92.95% 95.82% 91.64%
70 98.63% 93.12% 95.96% 91.92%
80 94.61% 96.25% 95.44% 90.87%
90 81.80% 97.99% 88.24% 76.47%

OPTICS

60 99.51% 37.82% 69.18% 38.36%
70 98.56% 57.42% 78.54% 57.08%
80 94.40% 72.14% 84.12% 68.23%
90 89.07% 78.56% 84.64% 69.28%

BED

60 99.31% 74.88% 87.33% 74.65%
70 97.72% 75.55% 87.05% 74.09%
80 91.60% 77.70% 85.46% 70.92%
90 74.16% 83.17% 77.37% 54.73%

Table 5. Results of the gt3L track in experimental area C.

SNR (dB) Precision Recall OA Kappa

The proposed method

60 99.99% 99.98% 99.99% 99.98%
70 99.99% 99.98% 99.99% 99.97%
80 99.97% 99.98% 99.97% 99.95%
90 99.96% 99.89% 99.93% 99.85%

DBSCAN

60 99.93% 91.99% 95.96% 91.93%
70 99.93% 91.99% 95.96% 91.93%
80 99.71% 91.81% 95.77% 91.54%
90 99.71% 91.81% 95.77% 91.54%

OPTICS

60 99.95% 87.12% 93.53% 87.07%
70 99.76% 87.97% 93.88% 87.76%
80 99.20% 88.64% 93.96% 87.93%
90 97.15% 88.69% 93.04% 86.08%

BED

60 99.72% 99.78% 99.75% 99.50%
70 95.81% 99.81% 97.72% 95.45%
80 79.49% 99.83% 87.03% 74.07%
90 61.67% 99.90% 68.90% 37.81%
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Figure 17. Overall distribution of photon data in experimental area C. (a) Original photon data;
(b) signal photon data.
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Figure 18. Comparison of the details of the gt3L track results in experimental area C (SNR = 80 dB).
(a) Validation; (b) optical remote sensing image; (c) the proposed method; (d) DBSCAN; (e) OPTICS;
(f) BED.

Experimental area D is located in a gently sloping mountainous area with a bare soil
surface type. Figure 20 illustrates the real distribution of photon data in this area. Only
one type of signal photon exists in the photon data of this area, which makes it an easy
area to denoise, and the local density difference between signal photons and noise photons
is significant. The main purpose of using these data is to compare the denoising level of
different denoising methods in an uncomplicated area like flat bare soil. Figure 21 shows
the details of the denoising results of different denoising methods. Table 6 demonstrates
the accuracy metrics of the different denoising methods. It can be seen clearly that all
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methods can achieve better denoising results in this area. Figure 22 demonstrates the
curves of the results of the four methods for all validation metrics under different SNRs in
experimental area D. Compared to the conventional methods, the proposed method is the
most stable one.
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Figure 20. Overall distribution of photon data in experimental area D. (a) Original photon data;
(b) signal photon data.
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Figure 21. Comparison of the details of the gt2R track results in experimental area D (SNR = 80 dB).
(a) Validation; (b) optical remote sensing image; (c) the proposed method; (d) DBSCAN; (e) OPTICS;
(f) BED.

In summary, the proposed method outperforms the conventional methods in all
simulation experiments, demonstrating the superiority of the proposed algorithm in terms
of both local detail preservation and validation metrics. Additionally, the proposed method
achieves high accuracy in three different types of areas and various SNR levels, highlighting
its superior adaptability.
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Table 6. Results of the gt2R track in the experimental area D.

SNR (dB) Precision Recall OA Kappa

The proposed method

60 99.89% 99.84% 99.87% 99.73%
70 99.97% 99.84% 99.91% 99.81%
80 99.67% 99.82% 99.75% 99.49%
90 99.68% 99.81% 99.75% 99.49%

DBSCAN

60 98.88% 99.98% 99.43% 98.85%
70 99.63% 99.88% 99.75% 99.50%
80 95.03% 99.99% 97.39% 94.77%
90 94.66% 99.99% 97.18% 94.36%

OPTICS

60 99.63% 96.34% 97.99% 95.97%
70 99.91% 93.91% 96.92% 93.83%
80 98.44% 96.77% 97.62% 95.24%
90 98.28% 97.08% 97.69% 95.38%

BED

60 96.53% 99.60% 98.01% 96.01%
70 99.54% 99.50% 99.52% 99.05%
80 97.22% 98.91% 98.04% 96.09%
90 97.07% 98.75% 97.88% 95.77%
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4.4. Real Reference Validation

To validate the accuracy of the signal photons extracted by proposed method, real
validation reference data are gathered. Firstly, the raw ICESat-2 photon data from these
four experimental areas are denoised using the proposed method, and then the signal
photon elevation is extracted. Subsequently, the real photon elevation obtained from the
topographic raster is compared with the signal photon elevation. In the third experimental
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area which is located in shallow sea, refraction correction and tidal correction are conducted
for the signal photons [41].

The results of the comparison in experimental area A are presented in Figure 23 and
Table 7. Experimental area A is a mountainous area with an elevation range of 340 m.
As depicted in Figure 23, most of the photon elevations accurately reflect the reference
elevation, while only a few individual photons exhibit significant deviations, resulting in
an RMSE of 3.40 m and an R2 of 0.99. Table 7 presents the precision results of different
denoising methods in each elevation interval. Lower MAE and MRE indicate that the
signal photon elevations fit the real terrain elevations better and a lower RMSE indicates
that the extracted signal photons contain fewer noise photons with large elevation errors.
The proposed method achieves the best results in all three metrics compared to other
conventional methods. These results also indicate that the signal photons extracted by the
proposed method are more reliable.
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Figure 23. Schematic of real reference verification in experimental area A. (a) Scatterplot of elevation
and actual elevation of gt2R track signal photons in experimental area A; (b) track distribution
diagram in experimental area A.

Table 7. Accuracy results within different elevation intervals of the gt2R track in experimental area A
(The best result for each evaluation interval is bolded).

RMSE MAE MRE Range

The proposed method

1.36 0.79 0.03% 2319.22–2404.32 m
4.34 1.09 0.04% 2404.32–2489.43 m
1.93 0.79 0.03% 2489.43–2574.54 m
4.12 0.64 0.02% 2574.54–2659.64 m
3.40 0.75 0.03% Overall

DBSCAN

3.64 1.10 0.05% 2319.22–2404.32 m
3.09 1.26 0.05% 2404.32–2489.43 m
4.25 1.09 0.04% 2489.43–2574.54 m
3.34 0.89 0.03% 2574.54–2659.64 m
3.58 1.09 0.04% Overall
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Table 7. Cont.

RMSE MAE MRE Range

OPTICS

3.93 0.75 0.03% 2319.22–2404.32 m
6.63 1.17 0.05% 2404.32–2489.43 m
4.18 0.88 0.03% 2489.43–2574.54 m
4.66 0.68 0.03% 2574.54–2659.64 m
4.85 0.87 0.03% Overall

BED

15.99 7.81 0.33% 2319.22–2404.32 m
22.85 11.36 0.46% 2404.32–2489.43 m
19.07 8.66 0.34% 2489.43–2574.54 m
20.38 12.34 0.47% 2574.54–2659.64 m
19.57 10.04 0.40% Overall

The comparison results between the denoised signal photon data and the real valida-
tion elevation in experimental area B are presented in Figure 24 and Table 8, respectively.
Experimental area B is also mountainous terrain. As depicted in Figure 24, almost all of the
photon elevations correspond well with the reference elevation, with only a few photons
exhibiting significant differences.
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Figure 24. Schematic of real reference verification in experimental area B. (a) Scatterplot of elevation
and actual elevation of gt1R track signal photons in the experimental area B; (b) track distribution
diagram in the experimental area B.

The overall RMSE of experimental area B is 3.86 m, with an R2 of 0.99, indicating
the signal photon elevation is accurate with the reference elevation. Table 8 presents the
precision results of different denoising methods in each elevation interval. Similar to
experimental area A, the proposed method also achieves the best results in all three metrics
compared to other conventional methods.

The comparison of the denoised signal photon data to the real validation elevation
in experimental area C is listed in Figure 25 and Table 9. Experimental area C is located
in a shallow sea area. Due to the complexity of this environment, including water quality
conditions and turbidity affecting light propagation, the deepest water depth of 18 m
resulted in an RMSE value of 0.81 m and an R2 of 0.92. Table 8 presents the precision results
of different denoising methods in each elevation interval. Both the DBSCAN method and
the OPTICS method omit signal photons at water depths of 5–10 m. Similar to experimental
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areas A and B, the proposed method also achieves the best results in all three metrics
compared to other conventional methods.

Table 8. Accuracy results within different elevation intervals of the gt1R track in the experimental
area B (The best result for each evaluation interval is bolded).

RMSE MAE MRE Range

The proposed method

4.14 1.39 0.06% 2361.07–2492.91 m
2.31 1.67 0.07% 2492.91–2624.75 m
3.96 2.69 0.10% 2624.75–2756.58 m
4.40 3.09 0.11% 2756.58–2888.42 m
3.86 2.28 0.08% Overall

DBSCAN

3.03 1.78 0.07% 2361.07–2492.91 m
4.22 2.59 0.10% 2492.91–2624.75 m
6.28 4.28 0.16% 2624.75–2756.58 m
6.38 4.75 0.17% 2756.58–2888.42 m
4.98 3.35 0.13% Overall

OPTICS

10.38 2.27 0.09% 2361.07–2492.91 m
12.07 3.07 0.12% 2492.91–2624.75 m
10.46 3.76 0.14% 2624.75–2756.58 m
9.18 4.19 0.15% 2756.58–2888.42 m
10.52 3.32 0.13% Overall

BED

15.63 3.76 0.16% 2361.07–2492.91 m
16.69 4.82 0.19% 2492.91–2624.75 m
14.15 5.48 0.20% 2624.75–2756.58 m
14.32 6.04 0.21% 2756.58–2888.42 m
15.20 5.02 0.19% Overall
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Table 9. Accuracy results within different elevation intervals of the gt3L track in experimental area C
(The best result for each evaluation interval is bolded).

RMSE MAE MRE Range

The proposed method

1.11 0.44 13.25% 2–5 m
0.55 0.71 10.37% 5–10 m
0.90 0.94 8.51% 10–15 m
1.46 1.74 11.84% 15–20 m
0.81 0.69 10.74% Overall

DBSCAN

0.64 0.77 26.69% 2–5 m
0.71 0.76 10.77% 5–10 m
0.61 1.43 16.70% 10–15 m

- - - 15–20 m
0.65 0.99 18.05% Overall

OPTICS

0.44 0.77 29.73% 2–5 m
0.50 0.73 10.67% 5–10 m
0.29 1.06 12.81% 10–15 m

- - - 15–20 m
0.41 0.85 17.74% Overall

BED

2.44 1.42 29.32% 2–5 m
0.72 0.75 10.97% 5–10 m
1.08 1.11 10.69% 10–15 m
0.52 2.11 15.28% 15–20 m
1.19 1.35 16.57% Overall

The results of the comparison in experimental area D are presented in Figure 26 and
Table 10. Since the resolution of the validated DEM in experimental area D is 30 m, which
is much lower compared to other experimental areas, the description of the terrain is much
coarser. In contrast, the elevations obtained by the signal photons are much finer. The
difference between them results in a poorer fit between the signal photon elevation and the
actual terrain elevation than that in the previous three experimental areas, resulting in an
RMSE of 4.53 m and an R2 of 0.87. However, there were still many signal photons that fit
the terrain. Table 10 presents the precision results of different denoising methods in each
elevation interval. Since the denoising effect of the four compared methods is about the
same in this area, there is no distinction between the four in the accuracy results.

Table 10. Accuracy results within different elevation intervals of the gt2R track in experimental area
D (The best result for each evaluation interval is bolded).

RMSE/m MAE/m MRE Range

The proposed method

3.00 2.71 0.16% 1659–1672 m
2.96 3.40 0.20% 1672–1685 m
2.95 2.80 0.17% 1685–1698 m
3.17 9.94 0.58% 1698–1711 m
3.02 4.71 0.28% Overall

DBSCAN

2.95 2.71 0.16% 1659–1672 m
2.98 3.45 0.21% 1672–1685 m
2.96 2.81 0.17% 1685–1698 m
3.16 9.92 0.58% 1698–1711 m
3.01 4.72 0.28% Overall

OPTICS

2.79 2.61 0.16% 1659–1672 m
2.99 3.30 0.20% 1672–1685 m
2.93 2.79 0.17% 1685–1698 m
3.21 10.27 0.60% 1698–1711 m
2.98 4.75 0.28% Overall
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Table 10. Cont.

RMSE/m MAE/m MRE Range

BED

3.09 2.75 0.17% 1659–1672 m
2.97 3.42 0.20% 1672–1685 m
2.95 2.80 0.17% 1685–1698 m
3.16 9.93 0.58% 1698–1711 m
3.04 4.73 0.28% Overall
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and actual elevation of gt2R track signal photons in experimental area D; (b) track distribution
diagram in experimental area D.

In summary, the signal photon elevation extracted by the proposed method is consis-
tent with the real validation elevation, indicating the correctness of the proposed method.

5. Discussion
5.1. Inter-CNN Model Comparison

In this section, VGG16, ResNet18, ResNet50, GoogLeNet, and DenseNet201 are se-
lected for comparison, and the performance of the five network models is demonstrated
using the datasets from experimental areas A and B, respectively. Finally, all the data results
from the two experimental areas are averaged by the SNR presented in Table 11.

Table 11. Comparison of results between different CNN models (The best result for each evaluation
interval is bolded).

Name SNR (dB) Precision Recall OA Kappa

DenseNet201

60 99.66% 97.67% 98.67% 97.35%

70 99.15% 97.00% 98.09% 96.18%

80 98.99% 96.66% 97.84% 95.67%

90 98.33% 92.62% 95.54% 91.09%

Average 99.03% 95.99% 97.54% 95.07%
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Table 11. Cont.

Name SNR (dB) Precision Recall OA Kappa

GoogLeNet

60 99.72% 98.45% 99.09% 98.18%

70 99.27% 98.37% 98.83% 97.66%

80 98.87% 98.48% 98.68% 97.36%

90 97.90% 97.96% 97.93% 95.87%

Average 98.94% 98.32% 98.63% 97.27%

ResNet18

60 99.50% 97.56% 98.54% 97.07%

70 98.72% 97.03% 97.89% 95.78%

80 98.24% 96.93% 97.60% 95.20%

90 97.35% 94.57% 96.00% 92.01%

Average 98.45% 96.52% 97.51% 95.02%

ResNet50

60 99.94% 94.87% 97.41% 94.82%

70 99.86% 93.57% 96.72% 93.45%

80 99.77% 93.86% 96.83% 93.67%

90 99.65% 87.21% 93.47% 86.95%

Average 99.80% 92.38% 96.11% 92.22%

VGG16

60 99.69% 98.43% 99.06% 98.13%

70 99.23% 98.05% 98.65% 97.30%

80 98.72% 98.12% 98.43% 96.85%

90 97.98% 95.52% 96.79% 93.57%

Average 98.90% 97.53% 98.23% 96.46%

From Table 11, it can be observed that GoogleNet is able to extract signal photons most
accurately in terms of the overall average Recall, Overall Accuracy, and Kappa coefficient.
Only ResNet50 has the highest accuracy metric, but the difference between GoogLeNet
and ResNet50 is negligible. Therefore, it is reasonable to utilize the GoogLeNet as the
backbone model.

5.2. Attentional Mechanisms

In the proposed method, the attention mechanism module of CBAM is incorporated
into the GoogLeNet model. Since the portion with data in the photon images is not very
large, most of the spaces are blank areas without data. With the attention mechanism,
the proposed method can focus on learning the crucial features more and improve the
discrimination between signal and noise. The network classification results before and after
using CBAM are compared in this article. The datasets of experimental areas A and B are
used to train and test these two network models separately, and the results are presented in
Table 12. In terms of the accuracy of the results, after using the attention mechanism, the
accuracy of the results has been improved to some extent at each noise level. The higher the
noise level, the greater the improvement. In terms of the average results, the accuracy of
each validation metric is improved after adding the attention mechanism, which indicates
that the attention mechanism has positive significance for the denoising of photon images
in this article.
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Table 12. Comparison of the accuracy of results before and after using CBAM (The best result for
each evaluation interval is bolded).

Name SNR (dB) Precision Recall OA Kappa

GoogLeNet

60 99.72% 98.45% 99.09% 98.18%

70 99.27% 98.37% 98.83% 97.66%

80 98.87% 98.48% 98.68% 97.36%

90 97.90% 97.96% 97.93% 95.87%

Average 98.94% 98.32% 98.63% 97.27%

GoogLeNet +
CBAM

60 99.94% 98.75% 99.34% 98.69%

70 99.86% 98.69% 99.28% 98.56%

80 99.67% 98.58% 99.13% 98.26%

90 99.43% 98.40% 98.92% 97.84%

Average 99.72% 98.60% 99.17% 98.33%

6. Conclusions

In this article, to address the problems of conventional denoising algorithms, a novel
CNN-based ICESat-2 signal photon extraction method is proposed. This method trans-
forms the photon and its neighborhood into a 2D image to preserve the position and
shape features. Then, GoogLeNet fused with CBAM is utilized to learn photon semantic
features, which can simultaneously extract signal photons with different photon densities
to avoid misclassification of noise photons and the CBAM enhances the ability of network
to focus more on learning the crucial features and improves its discriminative ability. In the
experiments, the simulation data with different SNR and real validation data are presented
to validate the proposed method. From the results, the denoising results obtained by
the proposed method in all four simulation experiments are much more accurate than
the conventional methods in all the validation metrics and the OA is above 98%, which
demonstrates the superiority of the proposed method. In the real validation experiments,
the RMSE values are 3.40 m and 3.86 m in the mountainous area with altitude spans of
340 m and 527 m, respectively, and the RMSE value is 0.81 m in the shallow sea area with
a maximum water depth of 18 m. In the mountainous area, the RMSE value is 4.53 m
and the R2 values are above 0.87 in all experimental areas, indicating that the elevation
obtained from the signal photons closely approximates the reference validation data, which
can prove the correctness of the signal photons obtained by the proposed method. In the
Section 5, this article compares the accuracy of the results between different CNN models
and evaluates the impact of CBAM on model performance. The results of the proposed
method are the most accurate.

Author Contributions: Conceptualization, W.Q. and Y.S.; methodology, W.Q. and Y.S.; software,
W.Q.; validation, W.Q. and Y.S.; formal analysis, Y.S. and H.G.; investigation, H.G.; resources, Y.Z. and
H.Z.; data curation, W.Q.; writing—original draft preparation, W.Q.; writing—review and editing,
Y.S. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Mangrove monitoring and change factor analysis based
on multi-source satellite remote sensing data (grant no. 202301001), and by the Integration and
Application Demonstration in the Marine Field (grant no. 2020010004); and by the Automated
Identifying of Environment Changes Using Satellite Time-Series, Dragon 5 Cooperation 2020–2024
(grant no. 57971).

Data Availability Statement: Not applicable.

Acknowledgments: We would like to express appreciation to the National Aeronautics and Space
Administration (NASA) for providing the ICESat-2 data used in the article. We also appreciate the
National Oceanic and Atmospheric Administration (NOAA) and G-LiHT science team for providing



Remote Sens. 2024, 16, 203 29 of 30

the Real Validation Data used in this article. Moreover, we thank the anonymous reviewers and
members of the editorial team for their constructive comments.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Neumann, T.A.; Martino, A.J.; Markus, T.; Bae, S.; Bock, M.R.; Brenner, A.C.; Brunt, K.M.; Cavanaugh, J.; Fernandes, S.T.; Hancock,

D.W.; et al. The Ice, Cloud, and Land Elevation Satellite-2 mission: A global geolocated photon product derived from the
Advanced Topographic Laser Altimeter System. Remote Sens. Environ. 2019, 233, 16. [CrossRef] [PubMed]

2. Hsu, H.J.; Huang, C.Y.; Jasinski, M.; Li, Y.; Gao, H.L.; Yamanokuchi, T.; Wang, C.G.; Chang, T.M.; Ren, H.; Kuo, C.Y.; et al. A
semi-empirical scheme for bathymetric mappinsg in shallow water by ICESat-2 and Sentinel-2: A case study in the South China
Sea. ISPRS-J. Photogramm. Remote Sens. 2021, 178, 1–19. [CrossRef]

3. Lao, J.Y.; Wang, C.; Nie, S.; Xi, X.H.; Wang, J.L. Monitoring and Analysis of Water Level Changes in Mekong River from ICESat-2
Spaceborne Laser Altimetry. Water 2022, 14, 1613. [CrossRef]

4. Le Quilleuc, A.; Collin, A.; Jasinski, M.F.; Devillers, R. Very High-Resolution Satellite-Derived Bathymetry and Habitat Mapping
Using Pleiades-1 and ICESat-2. Remote Sens. 2022, 14, 133. [CrossRef]

5. Leng, Z.H.; Zhang, J.; Ma, Y.; Zhang, J.Y. ICESat-2 Bathymetric Signal Reconstruction Method Based on a Deep Learning Model
with Active-Passive Data Fusion. Remote Sens. 2023, 15, 460. [CrossRef]

6. Mudiyanselage, S.; Abd-Elrahman, A.; Wilkinson, B.; Lecours, V. Satellite-derived bathymetry using machine learning and
optimal Sentinel-2 imagery in South-West Florida coastal waters. GISci. Remote Sens. 2022, 59, 1143–1158. [CrossRef]

7. Zhang, X.C.; Ma, Y.; Li, Z.W.; Zhang, J.Y. Satellite derived bathymetry based on ICESat-2 diffuse attenuation signal without prior
information. Int. J. Appl. Earth Obs. Geoinf. 2022, 113, 15. [CrossRef]

8. Enderlin, E.M.; Elkin, C.M.; Gendreau, M.; Marshall, H.P.; O’Neel, S.; McNeil, C.; Florentine, C.; Sass, L. Uncertainty of ICESat-2
ATL06-and ATL08-derived snow depths for glacierized and vegetated mountain regions. Remote Sens. Environ. 2022, 283, 17.
[CrossRef]

9. Ghosh, S.M.; Behera, M.D.; Kumar, S.; Das, P.; Prakash, A.J.; Bhaskaran, P.K.; Roy, P.S.; Barik, S.K.; Jeganathan, C.; Srivastava, P.K.;
et al. Predicting the Forest Canopy Height from LiDAR and Multi-Sensor Data Using Machine Learning over India. Remote Sens.
2022, 14, 5968. [CrossRef]

10. Guerra-Hernandez, J.; Narine, L.L.; Pascual, A.; Gonzalez-Ferreiro, E.; Botequim, B.; Malambo, L.; Neuenschwander, A.; Popescu,
S.C.; Godinho, S. Aboveground biomass mapping by integrating ICESat-2, SENTINEL-1, SENTINEL-2, ALOS2/PALSAR2, and
topographic information in Mediterranean forests. GISci. Remote Sens. 2022, 59, 1509–1533. [CrossRef]

11. Narine, L.; Malambo, L.; Popescu, S. Characterizing canopy cover with ICESat-2: A case study of southern forests in Texas and
Alabama, USA. Remote Sens. Environ. 2022, 281, 14. [CrossRef]

12. Zhu, X.X.; Nie, S.; Wang, C.; Xi, X.H.; Lao, J.Y.; Li, D. Consistency analysis of forest height retrievals between GEDI and ICESat-2.
Remote Sens. Environ. 2022, 281, 14. [CrossRef]

13. Lao, J.Y.; Wang, C.; Zhu, X.X.; Xi, X.H.; Nie, S.; Wang, J.L.; Cheng, F.; Zhou, G.Q. Retrieving building height in urban areas using
ICESat-2 photon-counting LiDAR data. Int. J. Appl. Earth Obs. Geoinf. 2021, 104, 10. [CrossRef]

14. Lian, W.Q.; Zhang, G.; Cui, H.; Chen, Z.W.; Wei, S.D.; Zhu, C.Y.; Xie, Z.G. Extraction of high-accuracy control points using
ICESat-2 ATL03 in urban areas. Int. J. Appl. Earth Obs. Geoinf. 2022, 115, 13. [CrossRef]

15. Fan, Y.; Ke, C.-Q.; Zhou, X.; Shen, X.; Yu, X.; Lhakpa, D. Glacier mass-balance estimates over High Mountain Asia from 2000 to
2021 based on ICESat-2 and NASADEM. J. Glaciol. 2023, 69, 500–512. [CrossRef]

16. Lenzano, M.G.; Rivera, A.; Durand, M.; Vacaflor, P.; Carbonetti, M.; Lannutti, E.; Gende, M.; Lenzano, L. Detection of Crustal
Uplift Deformation in Response to Glacier Wastage in Southern Patagonia. Remote Sens. 2023, 15, 584. [CrossRef]

17. Lhakpa, D.; Fan, Y.; Cai, Y. Continuous Karakoram Glacier Anomaly and Its Response to Climate Change during 2000–2021.
Remote Sens. 2022, 14, 6281. [CrossRef]

18. Wang, Q.; Sun, W. Seasonal Cycles of High Mountain Asia Glacier Surface Elevation Detected by ICESat-2. J. Geophys. Res. Atmos.
2022, 127, e2022JD037501. [CrossRef]

19. Yang, B.; Liang, S.; Huang, H.; Li, X. An elevation change dataset in Greenland ice sheet from 2003 to 2020 using satellite altimetry
data. Big Earth Data 2022, 2022, 1–18. [CrossRef]

20. Ester, M.; Kriegel, H.-P.; Sander, J.; Xu, X. A density-based algorithm for discovering clusters in large spatial databases with noise.
In Proceedings of the Second International Conference on Knowledge Discovery and Data Mining (KDD-96), Portland, OR, USA,
2–4 August 1996; pp. 226–231.

21. Chen, Y.F.; Le, Y.; Zhang, D.F.; Wang, Y.; Qiu, Z.G.; Wang, L.Z. A photon-counting LiDAR bathymetric method based on adaptive
variable ellipse filtering. Remote Sens. Environ. 2021, 256, 18. [CrossRef]

22. Leng, Z.H.; Zhang, J.; Ma, Y.; Zhang, J.Y.; Zhu, H.T. A novel bathymetry signal photon extraction algorithm for photon-counting
LiDAR based on adaptive elliptical neighborhood. Int. J. Appl. Earth Obs. Geoinf. 2022, 115, 17. [CrossRef]

23. Nan, Y.M.; Feng, Z.H.; Li, B.C.; Liu, E.H. Multiscale Fusion Signal Extraction for Spaceborne Photon-Counting Laser Altimeter in
Complex and Low Signal-to-Noise Ratio Scenarios. IEEE Geosci. Remote Sens. Lett. 2022, 19, 5. [CrossRef]

https://doi.org/10.1016/j.rse.2019.111325
https://www.ncbi.nlm.nih.gov/pubmed/31708597
https://doi.org/10.1016/j.isprsjprs.2021.05.012
https://doi.org/10.3390/w14101613
https://doi.org/10.3390/rs14010133
https://doi.org/10.3390/rs15020460
https://doi.org/10.1080/15481603.2022.2100597
https://doi.org/10.1016/j.jag.2022.102993
https://doi.org/10.1016/j.rse.2022.113307
https://doi.org/10.3390/rs14235968
https://doi.org/10.1080/15481603.2022.2115599
https://doi.org/10.1016/j.rse.2022.113242
https://doi.org/10.1016/j.rse.2022.113244
https://doi.org/10.1016/j.jag.2021.102596
https://doi.org/10.1016/j.jag.2022.103116
https://doi.org/10.1017/jog.2022.78
https://doi.org/10.3390/rs15030584
https://doi.org/10.3390/rs14246281
https://doi.org/10.1029/2022JD037501
https://doi.org/10.1080/20964471.2022.2116796
https://doi.org/10.1016/j.rse.2021.112326
https://doi.org/10.1016/j.jag.2022.103080
https://doi.org/10.1109/LGRS.2020.3016995


Remote Sens. 2024, 16, 203 30 of 30

24. Yang, P.F.; Fu, H.Q.; Zhu, J.J.; Li, Y.; Wang, C.C. An Elliptical Distance Based Photon Point Cloud Filtering Method in Forest Area.
IEEE Geosci. Remote Sens. Lett. 2022, 19, 5. [CrossRef]

25. Zhang, G.; Lian, W.Q.; Li, S.N.; Cui, H.; Jing, M.Q.; Chen, Z.W. A Self-Adaptive Denoising Algorithm Based on Genetic Algorithm
for Photon-Counting Lidar Data. IEEE Geosci. Remote Sens. Lett. 2022, 19, 5. [CrossRef]

26. Zhu, X.X.; Nie, S.; Wang, C.; Xi, X.H.; Wang, J.S.; Li, D.; Zhou, H.Y. A Noise Removal Algorithm Based on OPTICS for
Photon-Counting LiDAR Data. IEEE Geosci. Remote Sens. Lett. 2021, 18, 1471–1475. [CrossRef]

27. Guerrero, P.; Kleiman, Y.; Ovsjanikov, M.; Mitra, N.J. PCPNET Learning Local Shape Properties from Raw Point Clouds. Comput.
Graph. Forum 2018, 37, 75–85. [CrossRef]

28. Qi, C.R.; Su, H.; Mo, K.C.; Guibas, L.J. PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation. In
Proceedings of the 30th IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26
July 2017; pp. 77–85.

29. Rakotosaona, M.J.; La Barbera, V.; Guerrero, P.; Mitra, N.J.; Ovsjanikov, M. POINTCLEANNET: Learning to Denoise and Remove
Outliers from Dense Point Clouds. Comput. Graph. Forum 2020, 39, 185–203. [CrossRef]

30. Roveri, R.; Oztireli, A.C.; Pandele, I.; Gross, M. PointProNets: Consolidation of Point Clouds with Convolutional Neural
Networks. Comput. Graph. Forum 2018, 37, 87–99. [CrossRef]

31. Chen, H.H.; Wei, Z.Y.; Li, X.Z.; Xu, Y.B.; Wei, M.Q.; Wang, J. RePCD-Net: Feature-Aware Recurrent Point Cloud Denoising
Network. Int. J. Comput. Vis. 2022, 130, 615–629. [CrossRef]

32. Lu, D.N.; Lu, X.Q.; Sun, Y.X.; Wang, J. Deep feature-preserving normal estimation for point cloud filtering. Comput.-Aided Des.
2020, 125, 12. [CrossRef]

33. Pistilli, F.; Fracastoro, G.; Valsesia, D.; Magli, E. Learning Robust Graph-Convolutional Representations for Point Cloud Denoising.
IEEE J. Sel. Top. Signal Process. 2021, 15, 402–414. [CrossRef]

34. Yu, L.Q.; Li, X.Z.; Fu, C.W.; Cohen-Or, D.; Heng, P.A. EC-Net: An Edge-Aware Point Set Consolidation Network. In Proceedings
of the 15th European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 398–414.

35. Woo, S.; Park, J.; Lee, J.-Y.; Kweon, I.S. Cbam: Convolutional block attention module. In Proceedings of the European Conference
on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 3–19.

36. Cook, B.D.; Corp, L.A.; Nelson, R.F.; Middleton, E.M.; Morton, D.C.; McCorkel, J.T.; Masek, J.G.; Ranson, K.J.; Ly, V.; Montesano,
P.M. NASA Goddard’s LiDAR, Hyperspectral and Thermal (G-LiHT) Airborne Imager. Remote Sens. 2013, 5, 4045–4066. [CrossRef]

37. National Geodetic Survey. 2018–2019 Noaa Ngs Topobathy Lidar Dem Hurricane Irma: Miami to Marquesas Keys, Fl. NOAA Na-
tional Centers for Environmental Information. Available online: https://www.fisheries.noaa.gov/inport/item/63018 (accessed
on 7 December 2023).

38. NASA/METI/AIST/Japan Spacesystems; U.S./Japan ASTER Science. ASTER Global Digital Elevation Model V003; NASA EOSDIS
Land Processes Distributed Active Archive Center: Sioux Falls, SD, USA, 2019. [CrossRef]

39. Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going deeper with
convolutions. In Proceedings of the IEEE Conference On Computer Vision and Pattern Recognition, Boston, MA, USA, 1–12 June
2015; pp. 1–9.

40. Ma, L.; Li, A. Review of Application of LiDAR to Estimation of Forest Vertical Structure Parameters. World For. Res. 2011,
24, 41–45. [CrossRef]

41. Parrish, C.E.; Magruder, L.A.; Neuenschwander, A.L.; Forfinski-Sarkozi, N.; Alonzo, M.; Jasinski, M. Validation of ICESat-2
ATLAS Bathymetry and Analysis of ATLAS’s Bathymetric Mapping Performance. Remote Sens. 2019, 11, 1634. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1109/LGRS.2021.3124612
https://doi.org/10.1109/LGRS.2021.3067609
https://doi.org/10.1109/LGRS.2020.3003191
https://doi.org/10.1111/cgf.13343
https://doi.org/10.1111/cgf.13753
https://doi.org/10.1111/cgf.13344
https://doi.org/10.1007/s11263-021-01564-7
https://doi.org/10.1016/j.cad.2020.102860
https://doi.org/10.1109/JSTSP.2020.3047471
https://doi.org/10.3390/rs5084045
https://www.fisheries.noaa.gov/inport/item/63018
https://doi.org/10.5067/ASTER/ASTGTM.003
https://doi.org/10.13348/j.cnki.sjlyyj.2011.01.006
https://doi.org/10.3390/rs11141634

	Introduction 
	Data 
	Experimental Area and Data 
	Real Validation Data 
	Trianing Dataset 

	Methods 
	Photon Data Transformation 
	CNN Model 
	Validation and Evaluation 

	Experimental Process and Results 
	Experimental Process 
	Typical Photon Classification Results 
	Simulation Experimental Results 
	Real Reference Validation 

	Discussion 
	Inter-CNN Model Comparison 
	Attentional Mechanisms 

	Conclusions 
	References

