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Abstract: Landslides are common natural disasters that cause serious damage to ecosystems and
human societies. To effectively prevent and mitigate these disasters, an accurate assessment of
landslide hazards is necessary. However, most traditional landslide hazard assessment methods
rely on static assessment factors while ignoring the dynamic changes in landslides, which may
lead to false-positive errors in the assessment results. This paper presents a novel landslide hazard
assessment method for the Zagunao River basin, China. In this study, an updated landslide inventory
was obtained for the Zagunao River basin using data from interferometric synthetic aperture radar
(InSAR) and optical images. Based on this inventory, a landslide susceptibility map was developed
using a random forest algorithm. Finally, an evaluation matrix was created by combining the results of
deformation rates from both ascending and descending data to establish a hazard level that considers
surface deformation. The method presented in this study can reflect recent landslide hazards in the
region and produce dynamic assessments of regional landslide hazards. It provides a basis for the
government to identify and manage high-risk areas.
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1. Introduction

Landslides is defined as the downward movement of soil or rock due to gravity and
natural factors like rainfall, earthquakes, and human activities such as excavation [1-3]. They
occur more frequently in urbanized slopes [4—6], earthquake-prone regions [7], and ar-
eas with heavy rainfall [8,9]. These geological hazards pose a significant threat, causing
substantial damage to both natural and human environments [10]. From 2000 to 2017, land-
slides led to an estimated economic loss of around USD 50 billion and over 32,000 fatalities
worldwide [11]. Therefore, conducting hazard assessments to identify at-risk areas and
implementing preventive measures are crucial for effective risk mitigation.

Landslide hazard assessment is the process of analyzing and evaluating the likelihood
of landslides and their possible consequences. It is an important component of landslide
investigations and landslide risk management [12,13]. The process typically includes three
main steps: (1) creating a landslide inventory, (2) creating a landslide susceptibility map,
and (3) performing a landslide hazard assessment [14,15]. The landslide inventory is
the basis for a landslide hazard assessment, and its accuracy and completeness directly
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affect the reliability of the assessment [16,17]. Various technologies and methods may be
used to create a landslide inventory, including drone photogrammetry, high-resolution
satellite optical imagery, laser scanning interpretation, and field surveys [18,19]. Landslide
susceptibility reflects the probability of a landslide occurring [5,20,21]. Landslide hazard
assessments, based on susceptibility results, consider triggering factors such as rainfall or
earthquakes [12].

Traditional regional hazard assessments can provide essential guidance for govern-
ment planning and land management but often focus on static disaster risk situations.
Previous studies on regional landslide disasters have often been based on landslide inven-
tories and statistical analyzes of the correlation between landslides and causal factors to
achieve regional disaster assessments and classifications [22-25]. Some researchers have
employed specialized software for safety factor analysis on typical slopes with stability
hazards to quantitatively assess landslide hazards. However, this method is limited to
specific areas and shallow-to-moderate-depth landslides, making it less widely applica-
ble [26]. Physics-based models have been developed to assess climate-induced landslides,
adaptable to various types, and suitable for medium- or larger-scale assessments. Yet, these
models lack long-term updates and cannot evaluate landslide disasters within specific
periods [27]. Geological-climatic models, using annual precipitation’s characteristic values
and terrain indices, estimate landslide occurrence frequencies, assessing landslide disaster
risks with significant uncertainties [28]. With the increase in economic development and
human activities, as well as the dilution of risk awareness and overreliance on different
protective measures [29-31], areas with a moderate to high landslide risk are widespread.
This leads to challenges for governments in effectively using and developing resources, as
well as in categorizing previously controlled high-risk areas as moderate to high risk in
landslide assessments. Therefore, traditional disaster assessment methods are inadequate
to meet the current global demands for landslide risk management and prevention.

Synthetic aperture radar (SAR) imaging is an active microwave remote sensing tech-
nology, which is widely used on several platforms [32]. The active imaging mode and
insensitivity to weather make it possible to obtain the ground surface SAR image periodi-
cally, thereby enabling it to detect the surface movement caused by the geological hazard
(e.g., landslides, surface subsidence, and earthquakes) with multiple SAR images [33]. The
time-series interferometric synthetic aperture radar (InNSAR) technology was developed
based on multiperiod SAR images to extract surface deformation with a millimeter-level
accuracy [34]. Therefore, incorporating the deformation data obtained through InSAR into
landslide hazard assessments addresses the current requirements for dynamic landslide
hazard management.

The advancement of INSAR technology has facilitated the evaluation of hazards asso-
ciated with recent landslides. Various INSAR methods have been extensively used in the
assessment of landslide hazards, including multitemporal INSAR (MT-InSAR) [35], persis-
tent scatterer INSAR (PSInSAR) [34,36], small baseline subset INSAR (SBAS-InSAR) [37-39],
and DInSAR [40]. However, the Zagunao River basin frequently experiences landslides,
and there is a lack of hazard level maps. Currently, the application of InNSAR in the Zagunao
River basin has primarily focused on identifying landslide locations and triggering factors.
To better assess the landslide hazards in the Zagunao River basin, this study proposes
a novel method for assessing landslide hazards by combining deformation results from
ascending and descending SAR data images. First, integrated remote sensing technologies
are adopted to generate the latest landslide inventory for the Zagunao River basin. Then,
susceptibility assessments are conducted using the random forest (RF) method. Finally,
the method categorizes and combines the INSAR deformation results obtained from dif-
ferent orbits of SAR images to propose a landslide hazard assessment matrix and create a
landslide hazard map for the study area.
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2. Study Area

The Zagunao River is an upper tributary of the Minjiang River, located in the central
part of Sichuan Province, China (Figure 1a). It was one of the areas that was severely
affected during the 2008 Wenchuan earthquake. The main branch of the Zagunao River is
approximately 168 km long, and it has major tributaries such as the Mengdong River and
Laisu River. The total drainage area of the basin is approximately 4629 km?, which spans
from 102°36'E to 103°38'E and from 31°11'N to 31°54'N (Figure 1b). The highest elevation
in the basin is 5860 m and the lowest elevation is 1330 m, with a relative altitude difference
of up to 4530 m, which is typical of an alpine and gorge region (Figure 1c). The region
has a subtropical monsoon climate, with annual rainfall ranging from 650 to 1000 mm,
with more than 70% concentrated in the summer, and average annual temperatures range
from 6.9 to 11 °C [41]. Figure 1d displays the geological overview and historical landslide
distribution in the Zagunao River basin, with the data provided by the Resource and
Environmental Science and Data Center (http:/ /www.resdc.cn (accessed on 17 February
2023)). Historically, due to the frequency of earthquakes in the region and increasing human
activities related to social and economic development, numerous ancient landslides have
occurred, resulting in catastrophic human and property loss. These conditions have also
contributed to the occurrence of new landslides in the area.
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Figure 1. Location and overview of the study area: (a) location of Sichuan Province; (b) coverage
area of Sentinel-1 satellite imagery in the study area and distribution of historical earthquakes;
(c) topography and geomorphology of the study area; (d) geological strata, faults, and distribution of
historical landslides in the study area.
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3. Data and Methodology

The technical workflow of this study includes three main steps (Figure 2). Firstly,
InSAR deformation information is used to identify the potential areas of landslides. Op-
tical imagery is also used to refine the boundaries of landslides, which results in spatial
distribution data for active landslides. Historical landslide databases and optical imagery
are employed to identify ancient landslide features within the study area. Field surveys
(including UAV and airborne LiDAR technology) are conducted to validate the landslide
inventory for the study area. Secondly, based on the landslide inventory map in Step 1,
landslide susceptibility is assessed using a random forest model and the natural breaks
method. Finally, InNSAR technology is employed to obtain surface deformation by combin-
ing ascending and descending orbit data. This deformation information is then integrated
with the landslide susceptibility map to generate landslide hazard levels that account for
the deformation factors within the study area.
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Figure 2. Technical workflow of the study.

3.1. Dataset

Creating a landslide inventory forms the foundation of landslide susceptibility assess-
ments [42]. Various methods and technologies can be employed to generate reliable and
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precise landslide inventories. For instance, integrated remote sensing techniques and new
data have been used in numerous studies, with their advantages and limits discussed [43].
Consequently, this study employed three methods to collect landslide data, including the
interpretation of optical imagery from Google Earth (70 landslides were identified), field
surveys combined with stacking-InSAR technology (49 landslides were identified), and
historical landslide records (9 landslides were identified). In the end, within the study area,
128 landslides were identified, with 70% (90 landslides) used for model construction and
the remaining 30% (38 landslides) used for model validation.

This study collected Sentinel-1A SAR image data of the Zagunao River basin pro-
vided by ESA. The data included ascending data from 11 January 2020 to 24 January 2022
(117 scenes), and descending data from 4 January 2019 to 2 December 2022 (114 scenes). The
coverage area and specific parameter information for these data are illustrated in Figure 1b
and Table 1.

Table 1. Basic parameters of Sentinel-1 radar satellite image used in the study.

Ascending/Descending
Band C
Radar wavelength (cm) 5.6
Spatial resolution (m) 5x12
Revisit period (d) 12
Polarization mode \A%
Angle of incidence (°) 39.6/41.7
. 11 January 2020, to 24 January 2022
Collection date 4 January 2019, to 2 December 2022
Scenes 114/117

Landslides result from the combined effects of influencing factors [44]. Selecting
appropriate influencing factors is crucial for building landslide assessment models, but
there is currently no standardized method [45]. In this study, the influencing factors for
landslides were determined based on the characteristics of the geological environment, a
previous literature analysis, and data availability [46]. We selected nine landslide condition
factors to predict the spatial susceptibility of landslides: slope, aspect, elevation, distance
to roads, distance to rivers, distance to faults, normalized difference vegetation index
(NDVI), engineering geological rock group, and land use. A digital elevation model (DEM)
with a 30 m resolution served as the basis for the thematic maps, and the terrain factors
were extracted from ASTER GDEM data. These datasets are available from the National
Aeronautics and Space Administration (NASA) website (https:/ /www.earthdata.nasa.gov/
(accessed on 25 February 2023)). Using ArcGIS software (version: 10.8), three terrain factor
maps were generated from the DEM data (Figure 3a—c). Buffer analysis maps for rivers,
roads, and fault lines were created in ArcGIS software (Figure 3f-h).

The slope and aspect factors are both derived from the DEM. The slope is a critical
factor in landslide occurrences. Within a certain threshold, steeper slopes are associated
with a higher likelihood of landslides. The aspect indicates the direction of the slope and
is typically categorized into nine classes, including flat, north, northeast, east, southeast,
south, southwest, west, and northwest.

Geological materials, including rocks and soils, form the material foundation for
landslide development [47]. They have a direct effect on the stability of slopes and the ease
of surface erosion [48]. Different geological materials possess varying levels of inherent
strength and resistance to weathering. In this study, the geological strata in the study area
were classified into three categories based on the type of geological material, physical-
mechanical properties, and structural characteristics:

Weak rocks: these rocks have a lower inherent strength and are less resistant to
weathering. Moderately hard rocks: these rocks exhibit an intermediate strength and
weathering resistance. Hard rocks: this category includes rocks with a high inherent
strength and strong resistance to weathering.
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Figure 3. Landslide influencing factors: (a) elevation; (b) slope; (c) aspect; (d) engineering geological
rock group; (e) NDVI; (f) distance to faults; (g) distance to rivers; (h) distance to roads; (i) land cover.

Vegetation coverage is a crucial factor influencing slope stability. Therefore, this
study used the NDVI as an indicator for the vegetation coverage analysis and mapping.
The NDVI reflects the growth status of vegetation and changes in soil structure [49]. In
this research, the NDVI was calculated using Sentinel-2A multispectral imagery, and the
calculation formula can be found in reference [50].

Road and river data were sourced from the 1:250,000 National Basic Geographic
Database (National Geographic Information Resource Catalogue Service System, https:
//www.webmap.cn/ (accessed on 9 December 2023)), while fault data were obtained from
the National 1:200,000 Digital Geological Map Spatial Database. A buffer analysis of these
datasets was conducted using ArcGIS 10.8 as part of this study.

Land use is an indirect factor that affects landslide occurrences primarily by alter-
ing certain factors such as soil erosion, rainfall infiltration, and surface structure, which
subsequently impact slope stability [51]. In this study, GlobeLand30: Global Geospatial
Information Public Product (http://www.globallandcover.com/ (accessed on 17 April
2023)) was used as the data source for land use. It was categorized into nine types, in-
cluding cropland, forestland, shrubland, grassland, bare land, water bodies, glaciers, and
artificial surfaces.
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3.2. Susceptibility Assessment
3.2.1. Frequency Ratio

The frequency ratio (FR) model is an effective geospatial tool for estimating the
likelihood of landslides occurring in a certain area within a specific period [52]. Based on
the assumptions of landslide susceptibility analyses, future landslides are expected to occur
under similar conditions to historical landslides [53]. The formula for calculating the FR is
as follows: N/N'
FR =

S/8!
where N represents the landslide area corresponding to each factor, N’ is the total area of

the landslides, S represents the area of each specific factor level, and S’ is the total area of
the study area.

(1)

3.2.2. Random Forest

The RF model is a machine learning method that uses multiple decision trees for
classification or regression and can provide approximate results that are similar to Bayesian
classifiers [54]. Unlike other models, the RF model can provide various measures of
variable importance, with the most reliable measure being the reduction in classification
accuracy when the values of variables in the trees are randomly permuted [55]. When
solving classification problems, random forest predictions are considered unweighted
majority class votes [56]. The bagging technique is used to select training datasets for
model calibration from random samples of variables. For each variable, this function
determines the model’s prediction error if the values of that variable are permuted in
out-of-bag observations [57,58].

In landslide susceptibility mapping, the random forest model leverages the diversity
among trees, allowing each tree to vote for categories, and the final category is determined
based on the majority vote [59]. This ensemble method demonstrates robust and accurate
performance on complex datasets, requires minimal parameter tuning, and exhibits a
tolerance to many noisy variables [60].

3.3. Landslide Hazard Assessment
3.3.1. The Division of Deformation Levels

Using SBAS-InSAR technology, surface deformation rates can be obtained and used
to analyze the historical deformation characteristics of landslides. Due to the varying
susceptibility of different satellite orbits to deformation in different directions, deformation
information from a single orbit can be incomplete, which leads to variations in the deforma-
tion results from different orbits. To address this situation, a matrix was constructed in this
study to merge the deformation rates obtained from the ascending and descending data
(Table 2). Zhou et al. (2022) [35] used intervals of 2 mm/month to classify deformation
rate maps into four levels. Considering the conditions of the study area, the natural breaks
method was used in this study to classify the deformation rates. For the ascending orbit
data, the classification was as follows: V1 (0-0.40 mm/month), V2 (0.40-0.94 mm/month),
V3 (0.94-1.70 mm/month), V4 (1.70-3.31 mm/month), and V5 (>3.31 mm/month). For
the descending orbit data, the classification was as follows: V1 (0-0.40 mm/month), V2
(0.40-0.91 mm/month), V3 (0.91-1.73 mm/month), V4 (1.73-3.50 mm/month), and V5
(>3.50 mm/month).

3.3.2. Landslide Hazard Zonation

Landslides are dynamic processes, and their hazard levels fluctuate over time. Time-
series INSAR technology allows for the monitoring of the slope deformations in the study
area over a temporal sequence. Incorporating InNSAR deformation rates as a time probability
factor into landslide hazard assessments effectively reduces the interference of temporal
changes on the assessment results. Currently, regional landslide hazard assessments
are primarily based on historically recorded landslide data, which neglect the dynamic
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changes in landslides. This approach can lead to outdated and inaccurate results in regional
landslide hazard assessments. Time-series INSAR technology can reveal the temporal
patterns of landslides. By combining the deformation information obtained through INSAR
technology with landslide susceptibility assessments, landslide hazards can be dynamically
evaluated. The matrix method, as referenced in Dai et al. (2022) [38], combines the
deformation rate levels (including ascending and descending orbit data) with landslide
susceptibility to provide a joint assessment. The evaluation matrix is shown in Table 3.

Table 2. Combination matrix of surface deformation rate levels for ascending and descending orbit data.

V5 V4 V3 V2 Vi
V5 5 5 5 5 5
V4 5 4 4 4 4
V3 5 4 3 3 3
V2 5 4 3 2 2
V1 5 4 3 2 1

Table 3. Combination of deformation rate levels and landslide susceptibility assessment levels.

V5 V4 V3 V2 Vi
S5 5 5 4 3 2
S4 5 4 4 3 1
S3 4 4 3 2 1
S2 3 3 2 1 1
S1 2 1 1 1 1
4. Results

4.1. Landslide Inventory Map

Based on the stacking-InSAR technique, using Sentinel-1A ascending and descending
orbit data from 2019 to 2022 and in conjunction with Google Earth imagery, the deformation
targets were extracted. Field investigations and drone photography were conducted for a
ground-truth validation of the visual interpretation results, and corrections were made to
the landslide boundaries. The obtained landslides are shown in Figures 4 and 5.

Figure 4 displays the landslide monitoring results obtained based on the ascending
orbit data. A total of 26 landslides were detected, which were located mainly on both
sides of the Zagunao River in the eastern part of the study area. The distribution map
of the landslides can be seen in Figure 4a,b. Figure 4c shows typical landslide optical
imagery, boundary extents, and InSAR results. We conducted a more detailed investigation
of the landslide group using airborne LiDAR data (Figure 4d) and drone optical imagery
(Figure 4e,f) and divided them into three landslides: H1, H2, and H3. The hillshade
generated from airborne LiDAR data and drone optical imagery revealed clear signs of
deformation and accumulation.

The results of the landslide detection based on the descending orbit data are shown
in Figure 5. A total of 31 landslides were detected, 8 of which were also detected in the
ascending orbit data. The distribution of these landslides is illustrated in Figure 5a,b, which
is similar to the landslide distribution detected in the ascending orbit data. Figure 5c
displays optical images of two typical landslides with very distinct deformation patterns,
showing their boundary extents and overlaid InSAR results. Field verification revealed
extensive residential areas in the frontal regions of these two landslides, with numerous
cracks appearing in roads and walls (Figure 5d). There were also clear signs of collapse
and deformation in the frontal areas of the landslides (Figure 5e).
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- Total boundafy

Figure 4. Landslide detection results of stacking-InNSAR based on ascending orbit data using:
(a) InSAR phase results in the landslide concentration area; (b) INSAR phase results in the study area;
(c) typical landslides; (d) hillshade generated from LiDAR point cloud data; (e) drone imagery of
Landslide H1; (f) drone imagery of Landslides H2 and H3.

Concerning the historical landslide database and using optical imagery, 79 additional
landslides were identified and added, which updated the landslide inventory in the Za-
gunao River basin. In total, there were 128 landslides in the study area, covering an
approximate area of 44 km?. Among these, 49 landslides were detected through InSAR
interpretation (26 from ascending orbit data, 31 from descending orbit data, and 8 detected
by both), while the remaining 79 landslides were identified through optical interpretation.
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Landslides detected by
descending Sentinel-1A
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| S S—
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Figure 5. Landslide detection results of stacking-InSAR based on descending orbit data: (a) In-
SAR phase results in the landslide concentration area; (b) INSAR phase results in the study area;
(c) optical images of typical landslides along with their boundary extents and overlaid InNSAR results;
(d) distribution of cracks in the middle of a landslide; (e) collapse at the frontal area of a landslide.

4.2. Landslide Susceptibility Map

In a landslide susceptibility assessment, the choice of evaluation factors is a crucial
step. More factors do not always result in better outcomes; instead, a balance between
quantity and quality is essential. The selected factors should not only reflect the impact
of the factors on landslides but also avoid strong correlations among them. In this study,
nine influencing factors, including elevation, slope, slope aspect, engineering geological
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lithology, NDVI, distance to rivers, distance to faults, distance to roads, and land cover,
were chosen as indicators for modelling the landslide susceptibility in the study area. A
Pearson correlation coefficient analysis was used to assess the correlations among these
evaluation factors. The Pearson correlation coefficient is a method for measuring the linear
relationship between multiple continuous variables, denoted by “r” with values ranging
from —1 to 1. The sign indicates the direction of the correlation, and the absolute value
represents the strength. Generally, |r| < 0.3 suggests no correlation, Ir| < 0.5 indicates
a weak correlation, and |r| > 0.8 indicates a strong correlation [61]. Figure 6 displays
the correlation coefficients among the factors. All the coefficients among the factors were
less than 0.8; and most of them were less than 0.5. This suggests that the ten selected
factors did not exhibit strong correlations with each other and were suitable for landslide
susceptibility modelling.
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Figure 6. Pearson’s correlations among landslide conditioning factors. (Roads_dist represents the
distance to roads; EGRG represents engineering geological lithology; Faults_dist represents the
distance to faults; Rivers_dist represents the distance to rivers; ** is a significance marker).

By calculating the FR values of various influencing factors, we can identify the spatial
relationships among landslide occurrences and regulating factors. The slope angle is
related to the variation in slope shear stress, and an increase in slope angle within a
certain range may lead to landslide occurrences [62]. The FR analysis indicated that the
highest probability of landslides fell within the 20-30° range, reaching 1.56, which was
consistent with the previous analysis. The FR values for the other categories decreased
in the following order: 30—40° (0.96), 10-20° (0.84), 40-50° (0.69), >50° (0.55), and <10°
(0.15) (Figure 7a). Regarding elevation, the analysis indicated that the highest number of
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landslide pixels detected, and the highest FR value (16.53) were found in the elevation
range of 1500-2000 m (Figure 7b). In terms of aspect, the highest FR value was found for
north-facing slopes (1.62). In the remaining eight directions, slopes facing south, southeast,
northeast, northwest, southwest, and east-northeast also had relatively high probabilities
of landslide occurrence (with FR values of 1.44, 1.24, 1.11, 1.02, and 0.76, respectively).
In contrast, slopes facing east or west and flat slopes had lower FR values, with values
of 0.4, 0.54, and 0, respectively (Figure 7c). Regarding the distance to roads, faults, and
rivers, higher landslide occurrence probabilities were associated with closer proximities.
Specifically, FR values were highest (5.56) within <200 m from the road (Figure 7d), highest
(4.08) within the area <1 km from the fault (Figure 7e), highest (5.56) within the area <200 m
from the river (Figure 7f) and decreased gradually with the increasing distance. Analyzing
the association between landslides and engineering geological lithology (EGRG) revealed
that landslides were most likely to occur in soft rock, followed by relatively hard rock and
hard rock lithology (Figure 7i). The FR analysis of the NDVI showed that lower NDVI
values indicated higher landslide susceptibility. The FR values for NDVI groups 0.2-0.4,
0-0.2,0.4-0.6, 0.6-0.8, and 0.8-1 were 2.84, 0.57, 0.52, 0.38, and 0.07, respectively (Figure 7h).
Additionally, the effects of eight land cover types on landslide occurrence were assessed.
The results showed that agricultural areas had the highest FR value, indicating the highest
probability of landslides in the area. Other landslides were mainly distributed in shrubland,
woodland, and grassland areas (Figure 7g).
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Figure 7. Relationship between landslides and the conditioning factors: (a) slope; (b) elevation;
(c) aspect; (d) distance to roads; (e) distance to faults; (f) distance to rivers; (g) land use; (h) NDVI;
(i) engineering geology rock group.

Following landslide factor correlation and FR analyses, the next step is to create a
landslide susceptibility map, which is an effective tool for predicting the occurrence of
landslides. In this study, a landslide susceptibility map was developed in four steps. The
first step involved using ArcGIS software to create a grid within the study area and extract
information on various landslide regulating factors. The second step involved establishing
a model using a training dataset and then calculating the landslide susceptibility index (LSI)
for each grid based on the trained trends. In the next step, all grid LSIs were transferred back
to ArcGIS, and the landslide susceptibility map was created by visualizing the LSIs. Finally,
the landslide susceptibility map was divided into five categories (Figure 8c) using the
natural break method in ArcGIS: very low, low, moderate, high, and very high (Figure 8a).
In this classification, high and very high susceptibility areas occupied 3.28% of the study
area, which were primarily concentrated along both sides of the main stream of the Zagunao
River. Moderate-susceptibility areas covered 3.71%, low-susceptibility areas covered 4.24%,
and very low susceptibility areas covered 88.23% (Figure 8b). The receiver operating
characteristic (ROC) curve (Figure 9) was used to assess the classification performance of
the model [63]. The area under the curve (AUC) was 0.89, which is significantly higher
than 0.5, indicating that the model had a high accuracy and discriminative power.

4.3. Landslide Hazard Map

Deformation rates were obtained using the SBAS-INSAR method and reflected the
deformation levels in the study area over the observation period. Blue points (negative
values) indicate targets moving away from the satellite’s line of sight (LOS), red points
(positive values) indicate targets moving closer to the satellite’s LOS, and green points rep-
resent relatively stable targets. The maximum annual deformation rates for the ascending
data were —137 mm/year and 121 mm/year (Figure 10a). For the descending data, the
maximum annual deformation rates were —155 mm/year and 72 mm/year, respectively
(Figure 10b). The deformation rates of the ascending and descending data were classified
into five classes according to the methodology described in Section 3.3.1 (Figure 10c,d). The
deformation rates of the ascending and descending orbit data were merged according to
the matrix in Table 2 and spatially interpolated using the ordinary kriging method to obtain
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the deformation rate map (Figure 11). The deformation rates were classified as very high
(level 5), high (level 4), medium (level 3), low (level 2), and very low (level 1), with very
high levels covering 0.48%, high levels covering 5.19%, medium levels covering 18.43%,
low levels covering 38.43%, and very low levels covering 37.47%.

Based on the matrix in Table 3, combined with the landslide susceptibility results and
surface deformation rates, the landslide hazard assessment level map for the Zagunao River
basin was obtained (Figure 12): extremely high risk areas accounted for 0.17%, high-risk
areas accounted for 0.87%, moderate-risk areas accounted for 2.41%, low-risk areas account
for 3.29%, and very low risk areas accounted for 93.26% (Figure 12). The extremely high
risk and high-risk areas were mainly distributed on both sides of the main Zagunao River.
By providing the latest assessment results to relevant authorities, appropriate mitigation
measures can be taken in high-risk areas, or the deformation rates of landslides can be
directly controlled to reduce their level of risk. This evaluation method is conducive to
saving resources, improving efficiency, and protecting human lives and property. Landslide
evolution is a dynamic process, and the risk of landslides varies by geography. Time-series
InSAR technology can efficiently monitor slope deformation rates, track slope deformation,
and provide crucial data and possibilities for a dynamic landslide hazard assessment.

Susceptibility assessments focus on the spatial probability of landslides occurrence.
However, when we incorporate time-series INSAR deformation data into a hazard assess-
ment, temporal variability is considered. This integration significantly reduces the chances
of false positives and false negatives in the assessment results and ultimately improves the
accuracy of the results. To demonstrate this, we present three landslide cases: landslide A,
landslide B, and landslide C (Figure 13a,e), all of which were located in the downstream
section of the Zagunao River in Wenchuan County.
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Figure 8. Landslide susceptibility map: (a) spatial distribution of landslide susceptibility; (b) statistics
of susceptibility areas in different categories; (c) classification using the natural breaks method.
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Figure 12. Landslide hazard assessment results.
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(b,f) deformation rates; (c,g) results of susceptibility assessment; (d,h) results of hazard assessment.

The deformation area of landslide A was concentrated at the leading edge of the
landslide (Figure 13b). In the susceptibility assessment, this region was classified as a
moderately susceptible zone (Figure 13c), leading to an underestimated hazard level and
resulting in false negatives. However, when we incorporated time-series deformation
rates into the hazard assessment, this same area was categorized as a high-hazard zone
(Figure 13d), providing a more realistic assessment.

In contrast, landslides B and C showed that deformation was concentrated towards
the rear (Figure 13f). In the susceptibility assessment, the entire landslide was labelled as a
highly susceptible area (Figure 13g), leading to a substantial overestimation of the hazard
level and resulting in false positives. However, in the hazard assessment, the remaining
areas were categorized as moderate-to-low-hazard zones (Figure 13h), improving the
overall assessment results.

The integration of a spatiotemporal probability into hazard assessments effectively
corrects the susceptibility results that rely on spatial probability. This integration offers
more refined and accurate results, thereby providing essential guidance for government
departments in their disaster prevention and mitigation efforts.

5. Discussion
5.1. SAR Geometry Effect

Changes in terrain affect the sequence of SAR signals reaching the imaging system,
leading to geometric abnormalities such as foreshortening, shadow, and layover in SAR
images. Therefore, a visibility analysis of SAR data is necessary, categorizing it into
visible, shadow, layover, and foreshortening. The results indicated that the visible area
for ascending data was 77.48% (Figure 14a), 83.9% for descending data (Figure 14b), and
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the combined visibility area for both ascending and descending data reached 92.46%
(Figure 14c). Invisible areas were primarily characterized by layover and shadow.
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Figure 14. Visibility evaluation maps: (a) results of the assessment of ascending data; (b) results of
the assessment of descending data; (c) combined results of ascending and descending data; the colors
of the pie charts a, b, ¢ correspond to the legends of the (a—c).

The SAR satellites flew in a northward or southward direction for side-looking obser-
vations. Despite the combined visibility area exceeding 90% after combining ascending
and descending data (Figure 14c), there was still some slope information in the east-west
direction that remained unobserved. This deficiency was evident in the lower correlation
between conditioning factors and landslides, particularly in the east and west directions
(Figure 7c). This may be due to the fact that some of the east-west landslides were not fully
detected. In addition, some details confirmed this shortcoming; for instance, the western
steep slope of landslide A was affected by layover, while the eastern one was influenced by
shadow (Figure 13b).
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5.2. Comparison with Previous Study

This study improved on ref. [38]. For the landslide susceptibility assessment, ref. [38]
used the neural network method, while we chose the random forest method. Both methods
are recognized landslide-susceptibility assessment methods, and each has advantages
and disadvantages. In terms of deformation rate classification, ref. [38] directly used 2
mm/month to classify the results without considering the study area, while we used the
natural breaks method, fully considering the condition of the data study area. Unlike
ref. [38], which considered rainfall data for the landslide hazard assessment, we did not.
We believe that surface deformation is the main factor leading to landslides, and the INSAR
technology can provide accurate and detailed information on surface deformation, so we
chose to rely on InSAR data for a more accurate hazard assessment. Since rainfall data may
be difficult to obtain or not accurate enough, and the deformation data provided by InNSAR
may be more reliable and comprehensive, we used surface deformation for the landslide
hazard analysis without considering rainfall data.

Overall, we simplified and improved the landslide hazard assessment methods of
ref. [38] with excellent results. This may provide a faster and simpler process for future
landslide hazard assessment.

5.3. Limits and Prospect

The current study has some limitations. This research relied on InNSAR technology,
UAVs, airborne LiDAR, field investigations, historical optical satellite imagery, and other
methods to detect landslides in the Zagunao River basin, aiming to identify every landslide
and compile a comprehensive landslide inventory. However, the landslide inventory we
compiled still has some shortcomings.

With the improvement in SAR image quality, the use of spaceborne InNSAR for time-
series observations of critical slopes or identifications of large-scale active landslides has
gradually become common [18]. This study incorporated deformation information ob-
tained from InSAR into landslide hazard assessments, aiming to ensure the completeness
of deformation data. However, these data are unavoidably influenced by complicated
atmospheric disturbances [64], vegetation [65], and terrain undulations [66], leading to
issues such as atmospheric delays, geometric distortions, and decorrelation in the obtained
results. This highlights the need to enhance the processing capabilities of INSAR technology
to reduce interference.

The method proposed in this research for assessing landslide hazards can also facilitate
the dynamic assessment of landslide hazards. Using InNSAR technology, deformation rates
of the Earth’s surface can be obtained for different periods, and when combined with
landslide susceptibility maps, they can yield assessments of landslide hazards for different
periods. Based on the dynamic assessment results, appropriate preventative and control
measures can be applied. However, due to variations in vegetation cover over different
periods, the quality of the deformation results may suffer from significant decorrelation.
Therefore, using multiple SAR satellite data may enhance the accuracy of the results.
Assessments of landslide hazards are the foundation for risk management, and reliable
assessment outcomes can provide more scientifically sound technical support to disaster
management authorities.

It is important to note that the method proposed in this paper does not consider the
vulnerability of people and buildings. Areas identified as high hazard may not necessarily
have any human habitation or infrastructure, which can diminish the practical impact of
the assessment results. Therefore, in future studies, it may be advantageous to evaluate the
vulnerability of human activities and infrastructure distribution within the study region to
better serve management authorities.

6. Conclusions

This study proposed a novel method for landslide hazard assessment that combined
surface deformation rates obtained from SAR data in different orbits with landslide suscep-
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tibility maps to obtain the distribution of landslide hazard levels within a specific period in
the study area. This method considered not only the stability of existing landslides but also
the potential reactivation and formation of new landslides, thereby improving the accuracy
and practicality of the landslide hazard assessment. Using the Zagunao River basin as an
example, the following main conclusions were drawn:

(1) An updated landslide inventory of the Zagunao River basin was mapped using
various techniques including stacking-InSAR, historical optical satellite imagery, and
field investigations. Through field investigations, 26 landslides were confirmed from
ascending orbit SAR data, 31 landslides from descending orbit SAR data, and 8
landslides were detected in both datasets. Additionally, by referencing a historical
landslide database, 79 landslides were successfully identified using historical optical
images. A landslide inventory map of 128 landslides was eventually developed.

(2) Based on the landslide inventory, nine evaluation factors were selected, and a fre-
quency ratio model was used to investigate the spatial relationships between land-
slides and these factors. A landslide susceptibility map for the Zagunao River basin
was generated using a random forest algorithm. The results indicated that the high-
and very high susceptibility zones covered 3.28% of the study area, primarily concen-
trated on both sides of the main stem of the Zagunao River.

(3) Based on the landslide susceptibility results, a landslide hazard map was developed
for the Zagunao River basin, taking into consideration the surface deformation infor-
mation. Compared with previous studies, the process of landslide hazard assessment
was simplified, and reliable results were obtained.

This landslide hazard assessment method uses InNSAR technology to monitor surface
deformation in landslide-prone areas in real time, which provides a scientific basis for
landslide prevention and control. However, when using SAR data to obtain surface defor-
mation information, the geometry effect of SAR needs to be considered, which may affect
the observation results. In future landslide hazard assessments, the surface deformation
rate in multiple periods can be considered to achieve a dynamic evolution process of
landslide hazard.
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