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Abstract: How to effectively extract spectral and spatial information and apply it to hyperspectral
image classification (HSIC) has been a hot research topic. In recent years, the transformer-based HSIC
models have attracted much interest due to their advantages in long-distance modeling of spatial and
spectral features in hyperspectral images (HSIs). However, the transformer-based method suffers
from high computational complexity, especially in HSIC tasks that require processing large amounts
of data. In addition, the spatial variability inherent in HSIs limits the performance improvement
of HSIC. To handle these challenges, a novel Spectral–Spatial Unified Mamba (SSUM) model is
proposed, which introduces the State Space Model (SSM) into HSIC tasks to reduce computational
complexity and improve model performance. The SSUM model is composed of two branches, i.e.,
the Spectral Mamba branch and the Spatial Mamba branch, designed to extract the features of HSIs
from both spectral and spatial perspectives. Specifically, in the Spectral Mamba branch, a nearest-
neighbor spectrum fusion (NSF) strategy is proposed to alleviate the interference caused by the
spatial variability (i.e., same object having different spectra). In addition, a novel sub-spectrum
scanning (SS) mechanism is proposed, which scans along the sub-spectrum dimension to enhance the
model’s perception of subtle spectral details. In the Spatial Mamba branch, a Spatial Mamba (SM)
module is designed by combining a 2D Selective Scan Module (SS2D) and Spatial Attention (SA) into
a unified network to sufficiently extract the spatial features of HSIs. Finally, the classification results
are derived by uniting the output feature of the Spectral Mamba and Spatial Mamba branch, thus
improving the comprehensive performance of HSIC. The ablation studies verify the effectiveness
of the proposed NSF, SS, and SM. Comparison experiments on four public HSI datasets show the
superior of the proposed SSUM.

Keywords: hyperspectral image classification; space state model; nearest-neighbor spectrum fusion
strategy; sub-spectrum scanning mechanism; Spatial Mamba module

1. Introduction

A hyperspectral image (HSI) is a special type of remote sensing image that can capture
a very wide range of spectral bands [1–3], typically from the near-ultraviolet to the near-
infrared wavelengths [1,3]. The resulting three-dimensional (3D) HSI data cube contains
nearly continuous spectral profiles for each spatial resolution element [4], thereby allowing
for more accurate quantification, identification, and discrimination of the imaged content [5].
This unique characteristic of HSIs sets them apart from traditional remote sensing images
and makes them particularly valuable in various applications.

The hyperspectral imaging technology has found application in a variety of practical
scenarios [6], encompassing, but not limited to, atmospheric, environmental, urban, agri-
cultural, geological, and mineral exploration [7]. Among these applications, hyperspectral
image classification (HSIC) stands out as a pivotal one. HSIC has become a focal point
in the domain of remote sensing research, eliciting considerable academic and practical
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interest [8–10]. The ability to classify and understand the data captured by HSIs is crucial
for extracting meaningful information and supporting decision-making processes.

In the early phases of HSIC exploration, there was a notable trend towards utilizing
statistical methods. These encompassed methods such as Principal Component Analysis
(PCA) [11], Independent Component Analysis (ICA) [12], K-Nearest Neighbors (KNN) [13],
and Random Forests [14,15], which were instrumental in the proficient processing and anal-
ysis of HSI data. Among these, KNN, a straightforward and intuitive supervised learning
algorithm, does not necessitate feature extraction [13]. Amini introduced the application
of the Random Forest [14] algorithm in HSIC, which is an ensemble learning algorithm
known for its efficiency, stability, robustness, and interpretability, enhancing classification
accuracy and stability through the construction of multiple decision trees [14]. Additionally,
Fang et al. utilized local covariance matrices to encapsulate the inter-connections amongst
various spectral intervals [16], employing these matrices for HSI training and classification
using Support Vector Machines (SVMs) [17]. Furthermore, traditional deep learning mod-
els encompass stacked autoencoders (SAEs) [18], deep belief networks (DBNs) [19], and
others. Moreover, feature extraction techniques such as Extended Morphological Profile
(EMP) [20], Extended Multi-Attribute Profile (EMAP) [21], Gabor filtering [22], and sparse
representation [23] have also been integrated with various classifiers, forming a diverse
array of methods. However, these traditional methods, which solely rely on spectral fea-
tures without considering spatial information [24], are vulnerable to the effects of spectral
variability, thereby restricting classification performance.

The advancement in deep learning (DL) has notably propelled the evolution of hyper-
spectral image classification (HSIC) tasks. This progress is largely due to the introduction
of Convolutional Neural Networks (CNNs), which have been pivotal in this evolution,
effectively capturing both spatial and spectral aspects of HSI data [1,25]. These networks
are proficient in generating hierarchical representations from HSI data [26], enabling the
detection of complex patterns which traditional methods often ignore [27]. Initially, the
1D-CNN [18] architecture was introduced for HSIC, treating the spectrum as the classifi-
cation subject and employing convolution along the spectral direction to extract features.
Roy et al. introduced HybridSN [28], an integrated strategy that merges 2D-CNN and
3D-CNN and is adopted to harness the advantages of each, utilizing 2D-CNN for capturing
spatial features and 3D-CNN for extracting spectral features. In a novel approach, Zhong
et al. introduced the Spectral–Spatial Residual Network (SSRN) [29]. Within the SSRN
framework, residual blocks are designed with identity mappings to bridge all the 3D con-
volutional layers. Xu et al. introduced the SSUN network [30], integrating spectral, spatial
feature extraction, and classification into a unified framework, employing a self-developed
MSCNN for spatial feature extraction. Paoletti et al. have proposed the Deep Pyramidal
Residual Networks (DPRNs) [31] especially for the HSI data. Zhong et al. introduced
SSFCNS [32]; it incorporates reciprocal loops, transforming the CNN into a tightly inte-
grated network configuration, in contrast to the conventional CNN, which operates as a
straightforward open feed-forward architecture. Chang et al. introduced IRTS-CNN [33],
which significantly enhances HSIC performance, especially with limited training samples,
by integrating CNN with Iterative Training Sampling Spectral–Spatial Classification (IRTS-
SSC) and utilizing a feedback system. Hong et al. proposed FuNet [34], which extracts the
HSI features by locally preserving the graph structure in one batch. Li et al. introduced
a pixel-block pair (PBP)-based data augmentation technique [35] to generalize the deep
learning for HSI classification. A shared trait among these methods is their reliance on
convolution for feature extraction. However, constrained by the local receptive field, CNNs
are unable to comprehensively grasp continuous spectral attributes [36].

In recent years, sequence models exemplified by transformers [37] and Recurrent
Neural Networks (RNNs) have been increasingly utilized in HSIC tasks. Unlike Convo-
lutional Neural Network (CNN) models that primarily focus on local feature extraction,
sequence models excel at capturing long-range dependencies. This capability enables them
to assist classifiers in comprehensively learning the spatial and spectral relationships inher-
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ent within HSI [31]. For instance, Hang et al. introduced CasRNN [38], a technique that
employs a cascaded RNN equipped with Gated Recurrent Units to explore the redundant
and complementary information present in hyperspectral data. Zhang et al. developed
SSRNN [39], which utilizes the Local Spatial Sequence (LSS) approach to extract structural
details before feeding this information into an RNN for classification purposes. Hong
et al. presented SpectralFormer [36], a method adept at extracting spectral local sequence
knowledge from contiguous spectral bands within HSI, resulting in clustered spectral
vector representations. Jiang et al. proposed GraphGST [40], a method designed to capture
local-to-global correlations that enhance positional encoding for transformers. Sun et al.
introduced SSFTT [41], which synergizes the strengths of CNNs and transformers for
improved performance. He et al.’s HSI-BERT [42] treats each pixel within a specified HSI
cube as a token, allowing the transformer to encapsulate global context; this approach
is recognized as one of the first instances of employing a transformer-based model for
classification tasks, achieving accuracies comparable to leading methods. Lastly, Yang
et al. proposed the HSI transformer network (HiT) [43], integrating convolution operations
into a transformer architecture aimed at enhancing HSIC through effective capture of both
spectral and spatial details [44]. Zou et al. proposed a local-enhanced spectral–spatial
transformer [45], equipped with the HSI2Token module and local-enhanced transformer
encoder [46], that excels in HSI classification by effectively capturing both local features and
long-range dependencies, surpassing other state-of-the-art networks. Gai et al. proposed
a mask-guided spectral-wise transformer (MST) [47] for improved HSI reconstruction by
leveraging spectral-wise similarity and the guidance effect of coded apertures. Qi et al.
proposed a global–local 3D convolutional transformer network [48], which is proposed to
address the limitations of CNNs and vision transformers in HSI classification by embed-
ding 3D convolution within a dual-branch transformer to capture global–local spectral and
spatial associations. Roy et al. proposed morphFormer [49], a novel transformer model
that enhances HSI classification by integrating learnable spectral and spatial morphological
convolutions with attention mechanisms, outperforming traditional CNNs and existing
transformers. Ibañez et al. proposed MAEST [50], a ViT-based encoder–decoder model that
uses a masking auto-encoding strategy to dynamically uncover the most robust features and
employs transformer decoders to reconstruct these features. Sequence models have demon-
strated superior proficiency in capturing the nonlinear dynamics of data within complex
remote sensing scenarios compared to Convolutional Neural Networks (CNNs). However,
Recurrent Neural Networks (RNNs) face considerable computational challenges during
both the training and inference phases [51,52], limiting their efficacy in handling lengthy
sequences and large datasets. By employing the self-attention mechanism, transformers are
skilled at effectively modeling the complex interactions across various spectral bands and
spatial domains, leading to more accurate and robust classification results [53,54]. Yet, the
self-attention mechanism inherent to transformers necessitates a large number of pairwise
multiplication operations during inference, which imposes a significant computational
burden. This excessive computational load leads to performance issues that can critically
affect HSIC tasks.

Recently, Mamba, based on the State Space Model (SSM) [55], has been proposed
and has swiftly garnered widespread attention from the academic community. Mamba
exhibits outstanding computational efficiency and robust feature extraction skills, notably
in its proficiency to identify long-range dependencies akin to transformers, while also
boasting superior computational performance. Gu et al. introduced the HIPPO [56] matrix
to solve the problem of long-distance modeling within the limited storage space of the
SSM, and the individual parameters of the SSM are associated with the neural network to
make it learnable [57]. Liu et al. introduced VMamba [58], a method that incorporates an
SSM-based sequential scanning mechanism: SS2D, which helps to bridge the gap between
the orderly nature of one-dimensional selective scanning and the non-sequential structure
of two-dimensional visual data. Chen et al. proposed RSMamba [59], a technique that
employs a dynamic multipath activation strategy to improve Mamba’s representation of
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non-causal data and also pioneers the application of the SSM within the realm of remote
sensing. Ge et al. proposed MambaTSR [60], which combines the SSM mechanism with the
TSR model for traffic sign recognition. However, these models have primarily been applied
to natural image processing [61–64], and the question of how to employ the SSM for HSI
processing remains an area worthy of exploration.

Recently, several methods for using SSM models for HSIC tasks have also been pro-
posed. Huang et al. proposed SS-Mamba [65], an efficient deep learning architecture that
integrates spectral and spatial features to enhance HSIC performance. Yang et al. proposed
GraphMamba [66], an efficient HSIC framework that deeply mines spatial–spectral infor-
mation and achieves optimal performance through graph structure learning and adaptive
spatial context awareness. Li et al. proposed MambaHSI [67], which is a novel model that
leverages the long-range interaction capabilities and linear computational complexity of
the Mamba architecture to achieve outstanding performance through adaptive fusion of
spatial and spectral features.

To diminish the computational intricacy of the model and mitigate the impact of spatial
heterogeneity, a Spectral–Spatial Unified Mamba (SSUM) model is proposed to reduce
computational complexity and improve model performance. The SSUM model is composed
of a Spectral Mamba branch and a Spatial Mamba branch, which comprehensively leverage
the features of both spectral and spatial domains to enhance the model performance, as
shown in Figure 1. Specifically, in the Spectral Mamba branch, a nearest-neighbor spectrum
fusion (NSF) strategy is proposed to mitigate the interference arising from the spatial
variability. Furthermore, a novel sub-spectrum scanning (SS) mechanism is developed,
which scans across the sub-spectrum dimension to better learn the details of spectral
features. Within the Spatial Mamba branch, a Spatial Mamba (SM) module is developed by
integrating a 2D Selective Scan Module (SS2D) with Spatial Attention (SA) into a unified
network to effectively capture the spatial features of HSI. At the same time, the SM part
obtains spatial information from a larger scale, which reduces the influence of spatial
variability of classification edge position. Finally, the features obtained from the Spectral
Mamba and Spatial Mamba branches are fused at the decision level to achieve the final
classification of HSI. In addition, the computational complexity of the SSM is low, which
improves the detection speed of SSUM.

The main contributions of this paper are as follows:

1. A novel backbone network based on the State Space Model, named Spectral–Spatial
Unified Mamba (SSUM), is proposed for HSIC. This framework integrates the Spectral
Mamba, Spatial Mamba, and classifier into a unified neural network. This is the first
time that the SSM has been used in conjunction with the conventional spatial–spectral
combining algorithm for HSIC.

2. In the Spectral Mamba branch, a novel NSF strategy is proposed to mitigate the
interference arising from the spatial variability (i.e., same object having different
spectra). In addition, a novel SS mechanism is developed, which scans across each
sub-spectrum dimension to better learn the details of spectral features.

3. In the Spatial Mamba branch, an SM module is developed by integrating an SS2D
with SA into a unified network, which can effectively capture the spatial features of
HSI and alleviate the effect of spatial variability.

The remaining of this paper is organized as follows: Section 2 introduces the State
Space Model and the methodological analysis of our SSUM. Section 3 details the exper-
iments, including dataset selection, detection speed, comparison results and analysis,
ablation study, and parameter analysis. Section 4 discusses the efficiency and classification
details of the methodology. Finally, Section 5 concludes this work and points out reasonable
future directions.
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Figure 1. (a) The overall architecture of the proposed SSUM, including (b) Spatial Mamba;
(c) nearest-neighbor spectrum fusion (NSF) strategy; (d) sub-spectrum scanning (SS) mechanism;
and (e) 2D Selective Scan Module (SS2D). Specifically, (a) denotes the overall architecture of the
SSUM; (b) denotes the Spatial Mamba, which corresponds to the Spatial Mamba in (a); (c) denotes the
nearest-neighbor spectrum fusion (NSF) strategy, which corresponds to the NSF in (a); (d) denotes
the sub-spectrum scanning (SS) mechanism, which corresponds to the SS in (a); (e) denotes the 2D
selective scan module (SS2D), which corresponds to the SS2D in (b).

2. Methods
2.1. Overview

The overall architecture of the proposed SSUM model is demonstrated as shown in
Figure 1, which integrates the Spectral Mamba branch and the Spatial Mamba branch
into a unified network for classification in HSIs. Figure 1a is the framework of the entire
algorithm, and Figure 1b–d are details of the algorithm in Figure 1a. Figure 1e is the
implementation detail of the SS2D. Both the two branches and the classifier are trained to
share a unified objective function and can simultaneously optimize all parameters within
the network. Specifically, the Spectral Mamba branch receives a small-scale HSI patch
with the full spectrum and employs a dual-branch structure. This structure includes an
NSF strategy and an SS mechanism for extracting comprehensive spectral features. The
Spatial Mamba branch consists of an SS2D model, an SA module, and several residual
connections and receives an HSI patch processed by PCA. Similar to the Spectral Mamba
branch, the spatial features extracted by the Spatial Mamba branch are finally passed
through a fully connected layer to generate a classification result. The two classification
results are fused at the decision level, generating the final classification result within the
Multi-Layer Perceptron (MLP) classifier.

2.2. Selective Scan Space State Sequential Model (S6)

The structured State Space Model has recently emerged [57], attracting considerable
attention in the field of sequential data modeling. This class of models commonly originates
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from continuous-time systems, where the system translates input functions or sequences
x(t) ∈ RL into output response signals y(t) ∈ RL via an implicit latent state h(t) ∈ RN ,
where N and L denote the dimensions of the latent space and the sequence, respectively [58].
The procedural mathematics can be expressed using the following differential equations of
standard form:

h′(t) = Ah(t) + Bx(t) (1)

y(t) = Ch(t) + Dx(t) (2)

where h′(t) = dh(t)
dt refers to the time derivative of h(t); A ∈ RN×N , B ∈ RN×L, and

C ∈ RL×N represent the system parameters; and D is often omitted in practical applications.
S4 is the discrete variant of the SSM system, which enables the integration of SSM into

deep learning algorithms by sampling input signals at fixed time intervals to obtain their
discrete-time counterparts. It is commonly expressed as follows:

h(k) = Ah(k − 1) + Bx(k) (3)

y(k) = Ch(k) (4)

The computation of matrices A and B is carried out as follows:

A = exp(∆A) (5)

B = (∆A)−1(exp(∆A)− I)⊙ ∆B (6)

where the time scaling parameter ∆ ∈ RL is employed to transform the continuous parame-
ters A and B into their discrete counterparts A ∈ RN×N and B ∈ RN×L.

Traditional SSMs are characterized by their linear time-invariance, implying that the
projection matrices remain constant irrespective of the input signal, which results in an
undiscriminating focus across all sequence components. The selective scan mechanism,
however, correlates parameters with the inputs, thereby augmenting the proficiency in
handling intricate sequences and converting the SSM into a linear time-variant architecture.
The linear time-varying structure that is linked to the input is termed S6.

2.3. 2D Selective Scan Module (SS2D)

To address the issue of substantial computational overhead in transformer-based
models for visual tasks, Yue Liu introduced a novel State Space Model-based architecture
termed VMamba [37]. The core of VMamba consists of a stack of SS2D (Structured State
Space for 2D) modules with 2D selective scanning. The sequential processing inherent in the
scanning operations within the S6 framework is advantageous for NLP tasks that deal with
temporal sequences. However, this approach encounters considerable difficulties when
extended to visual data, which are fundamentally non-sequential and incorporate spatial
characteristics. As depicted in Figure 1e, the data flow in the SS2D model encompasses a
tripartite process: initial cross-scanning, subsequent selective scanning of S6 blocks, and
final cross-merging.

By traversing along four scanning paths, SS2D aids in bridging the gap between the
ordered nature of 1D selective scanning and the non-sequential structure of 2D visual
data, which enables the gathering of contextual data from diverse origins and viewpoints.
Specifically, the characteristics of two-dimensional imagery are converted into a linear array
and then traversed across four unique orientations: commencing at the uppermost left
and concluding at the lowermost right, reversing this path from the lowermost right to the
uppermost left, beginning at the lowermost left and terminating at the uppermost right, and
finally from the uppermost right to the lowermost left. Then, the aforementioned S6 is used
to capture the long-term dependencies of each sequence. Finally, all sequences are combined
using a summation operation and reshaped back into a 2D structure. In the concluding
stage, the sequences are aggregated through summation operations and transformed
into a two-dimensional format. The SS2D model, by employing mutually replenishing
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one-dimensional traversal paths, facilitates the effective integration of information from
every pixel across the image with pixels in various orientations. This approach aids
in the construction of a comprehensive acceptance domain within the two-dimensional
spatial context.

2.4. Spectral Mamba Branch

Considering that the SSM has the advantage of processing long sequence information,
we designed the Spectral Mamba to process full band information in a small range. As
shown in Figure 1a, the Spectral Mamba branch takes a small-scale full-spectrum patch
Xpatch ∈ RP×P×B as input and employs a dual-branch structure, where P represents the
width and height of the taken patch and b represents the band of the HSI. We propose two
strategies for processing Xpatch.

2.4.1. Nearest-Neighbor Spectrum Fusion (NSF) Strategy

HSIs exhibit the characteristic of spatial variability. To mitigate the phenomenon of
spectrally similar objects appearing different due to spatial variability, it is necessary to
incorporate the neighbor spectrum information for classification. As shown in Figure 1c,
firstly, for the input patch Xpatch ∈ RP×P×B, where the central pixel xcenter is the pixel to be
classified, the average features of Xpatch need to be considered.

Xpatch = [x0, x1, x2 . . . . . . xn] (7)

xavg =

Np

∑
i=0

xi

Np
(8)

where Np = P × P and xavg denotes the average value of all pixels within Xpatch.
Then, a fused spectral vector x f us ∈ R1×1×B is calculated by leveraging the central

pixel xcenter ∈ R1×1×B of Xpatch and the average vector xavg ∈ R1×1×B, employing the
Einstein summation convention.

x f us = einsum(xcenter, xavg) (9)

Finally, the x f us is fed into the S6 model for feature extraction, and following a connec-
tion through a residual layer, the resulting feature is denoted as Fns f .

Fns f = S6(x f us) + x f us (10)

2.4.2. Sub-Spectrum Scanning (SS) Mechanism

HSIs possess the characteristic of data redundancy. Since the size of the hidden state in
State Space Models is determined by the input size, State Space Modeling can focus on the
features of specific wavelengths through a parameterization method that depends on the
input. At the same time, the decomposition of hundreds of spectral bands into segments
makes the framework more computationally friendly. To minimize the data redundancy
in HSI and to facilitate the State Space Model’s attention to fine distinctions within the
spectral domain, we propose a novel SS mechanism along with the sub-spectrum scanning
to fully utilize the reflectance characteristics of different types of ground objects.

For the input xcenter ∈ R1×1×B, we split it into a few sub-spectrums of length B′, then
reassemble them into a new 2D tensor x′center ∈ Rm×B′

, where m is the number of splits.

x′center = reshape(xcenter) (11)

Then, the x′center is fed into the S6 model for extracting the spatial feature:

Fss = reshape[S6(x′center)] (12)
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Finally, the features Fss are concatenated with Fns f from Equation (1) and passed
through a linear layer to obtain the final Spectral Mamba feature Ff .

2.5. Spatial Mamba Branch

In order to improve the processing efficiency and reduce the computational burden,
many papers show that Mamba has good image processing ability [58–60]. The Spatial
Mamba module is designed by combining an SS2D and SA into a unified network to
sufficiently extract the spatial features of HISs to improve the processing efficiency and
reduce the computational burden. Specifically, in the input section of the Spatial Mamba,
we first apply Principal Component Analysis (PCA) to the complete HSI, reducing its
dimensionality to n dimensions. This is performed because the Spatial Mamba does not
focus on spectral information, and the purpose is to decrease the computational load of
the model. Following this, we extract the pixel of interest for classification, along with its
neighboring pixels, with the size defined as N. In our method, N is significantly greater than
n. The extracted pixel block, which is broad but thin, is represented as Xpatch ∈ RN×N×n.

XPCA = PCA(XHSI) (13)

where XPCA ∈ RW×L×n and XHSI ∈ RW×L×B. W and L represent the width and length of
the original HSI, B denotes the number of bands (dimensions) of the original HSI, and n
signifies the dimensionality of the HSI after the dimensionality reduction process.

As shown in the Figure 1b, the Spatial Mamba model is primarily composed of the
SS2D layer, a Spatial Attention mechanism, and several residual blocks. By employing
complementary 1D traversal paths, SS2D enables each pixel in the image to effectively
integrate information from all other pixels in various orientations, thereby facilitating
the establishment of a global receptive field in 2D space. However, the four-directional
scanning approach of SS2D has certain limitations. In particular, some contiguous pixels
within the two-dimensional feature map are notably disjoint in the one-dimensional token
sequence. For instance, during left and right scanning, pixels that are close vertically
are far apart in the 1D token sequence. Such long distances can lead to the neglect of
local pixel relationships. Therefore, it is necessary to introduce SA mechanisms to restore
the neighborhood similarity. Specifically, we use the pooling operation to compress the
feature map, capture the global context information of the spatial feature map mapped by
the SS2D module, and then use the convolutional layer to compensate the local features.
By emphasizing the regions related to image details in the feature map, SA can help the
network to better learn the spatial characteristics of the feature image, which is crucial
for recovering the spatial location information of the feature map. For our task, the SA
mechanism addresses the inherent shortcoming of SS2D models.

As shown in the Figure 2, we design an improved Spatial Attention mechanism to
assist the SS2D model in restoring neighborhood similarity. First, the results of max pooling
and average pooling are computed for the feature block, and after concatenating these
results, a convolution operation is performed to obtain the Spatial Attention features.
The convolution kernel size is set to 3, and the step size is set to 2. In this paper, the
obtained Spatial Attention features are multiplied by the input to ensure an output Fmamba
with the same dimensions as the input. Subsequent to this, the following computations
were conducted.

FPCA = SiLU[Linear(Xpatch)] (14)

Fmamba = SA[SS2D(Xpatch)] (15)

Fln = LayerNorm[SS2D(Xpatch)] (16)
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As indicated by the formula, the output of the SS2D is subjected to layer normalization
to obtain the feature Fln. This action is performed to preserve the characteristics of SS2D
while bolstering the model’s generalization abilities. The original image is passed through
a fully connected layer followed by the activation function SiLU to obtain Fori, which aids
subsequent linear layers in better learning the features. Finally, the three features are
summed together and passed through a simple linear layer to yield the final classification
results of the Spatial Mamba model.

2.6. Feature Fusion at the Decision Level

The Spectral Mamba and Spatial Mamba can perform pixel classification indepen-
dently. The Spectral Mamba uses a small range of full-band spectral information, and the
Spatial Mamba uses a large range of spatial information after dimensionality reduction.
This way of information utilization is more comprehensive. For the purpose of realizing
comprehensive spectral–spatial classification, we merge the final fully connected (FC) layer
from the Spectral Mamba with the corresponding layer from the Spatial Mamba, thereby
creating a novel FC layer. This concatenated layer is then fed into a simple MLP classifier
to realize the final classification. The cross-entropy loss is employed to train the SSUM
network, which is defined as follows:

Loss = − 1
K

K

∑
i=1

yi log zi (17)

where yi is the one-hot encoding of true labels, which is considered as a one-hot vector, zi
is the class prediction of SSUM, and K represents the number of training samples.

In summary, the NSF strategy is proposed to alleviate the interference caused by the
spatial variability (i.e., same object having different spectra). The SS mechanism is proposed,
which scans along the sub-spectrum dimension to enhance the model’s perception of subtle
spectral details. The Spatial Mamba module is designed by combining an SS2D and SA
into a unified network to sufficiently extract the spatial features of HSIs. Finally, the
classification results are derived by uniting the output feature of the Spectral Mamba and
Spatial Mamba branch, thus improving the comprehensive performance of HSIC.

3. Results
3.1. Experimental Setup

In the course of this study, all experimental protocols were conducted within the
PyTorch framework on a solitary NVIDIA GeForce RTX 2080 graphics processing unit
(GPU) that boasts 12 gigabytes of memory. The initialization of the proposed SSUM
model entailed populating its parameters with stochastic values sampled from a normal
distribution with a mean set at zero and a standard deviation of 0.01. For the optimization
of the SSUM, the Adam optimization algorithm was adopted in conjunction with an
exponential decay learning rate policy that initiated at 0.0001. The training phase of the
model spanned 200 epochs, with each training batch consisting of 64 samples. The input
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size of the Spectral Mamba is set to 3 × 3 × Nb, where Nb denotes the number of bands,
and the input size of the Spatial Mamba is set to 40 × 40 × 3.

To illustrate the efficacy of the introduced SSUM, we selected and assessed 11 promi-
nent hyperspectral imaging (HSI) classification techniques as benchmarks for comparison.
These eight approaches consist of KNN [13], RF [14], 1DCNN, 2DCNN [62], HybridSN [28],
IRTS-3DCNN [33], CasRNN [38], VIT [46], SpectralFormer [36], GraphGST [40], and SS-
Mamba [65]. These methods are all supervised. The array of comparative methods spans
a diverse range of techniques, including conventional algorithms and RNN-based, CNN-
based, and transformer-based methods, offering a thorough and comprehensive framework
for evaluation. The specific implementation details for these methods can be found in their
respective original publications. Each method was subjected to testing under the optimal
experimental conditions as documented in their papers, or they were replicated using the
authors’ official code repositories.

3.2. Datasets Description

We evaluated the SSUM on four openly accessible datasets: Indian Pines, Pavia
University, Salinas Valley, and WHU-Hi-LongKou. Randomly selected training sets are
consistently used across experiments to ensure fairness.

(1) Indian Pines: This dataset predominantly documents an agricultural region in the
northwestern part of Indiana, United States, and was acquired in June of 1992 through
the Airborne Visible Infrared Imaging Spectrometer (AVIRIS). Comprising an image of
145 by 145 pixels, each with a spatial resolution of 20 m, the dataset includes 220 spec-
tral bands that span a wavelength spectrum from 400 nanometers to 2500 nanometers.
For utility in real-world scenarios, 20 bands that exhibited a low signal-to-noise ratio
were excluded, leaving 200 bands for analysis. The dataset encompasses 16 distinct
types of land cover. A pseudo-color representation of the image and the ground truth
data are depicted in the accompanying figure, while the allocation of training and test
sets is detailed in Table 1. Due to the small amount of samples in the Indian Pines
dataset, we selected 5% of the samples in each category as the training set and the
remaining 95% as the test set. Its false-color map and ground truth map are shown
in Figure 3.

Table 1. The numbers of samples in the Indian Pines dataset (5% of the labeled samples in each
category are randomly selected for training).

No. Category Training Testing

1 Alfalfa 2 44
2 Cron Notill 71 1357
3 Cron Mintill 41 789
4 Cron 11 226
5 Grass—Pasture 24 459
6 Grass—Trees 36 694
7 Grass Pasture Mowed 1 27
8 Hay Windrowed 23 455
9 Oats 1 19
10 Soybean Notill 48 924
11 Soybean Mintill 122 2333
12 Soybean Clean 29 564
13 Wheat 10 195
14 Woods 63 1202
15 Buildings Grass Trees Drivers 19 367
16 Stone Steel Towers 4 89

Total 505 9744
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(2) Pavia University: This dataset collected via the Reflective Optics System Imaging
Spectrometer (RO-SIS) at the University of Pavia’s campus in Italy includes an image
measuring 610 by 340 pixels, where each pixel has a spatial resolution of 1.3 m. It
includes nine different land cover categories and encompasses 103 spectral bands.
A visual representation of the dataset in pseudo-color, along with the ground truth
information, is illustrated in the figure. Additionally, the distribution of training and
test sets for the dataset is outlined in Table 2. We select 1% of the samples for each
category as the training set and the remaining 99% as the test set. Its false-color map
and ground truth map are shown in Figure 4.

Table 2. The numbers of samples in the Pavia University dataset (1% of the labeled samples in each
category are randomly selected for training).

No. Category Training Testing

1 Asphalt 66 6565
2 Meadows 186 18,463
3 Gravel 20 2079
4 Trees 30 3034
5 Mental sheets 13 1332
6 Bare soil 50 4979
7 Bitumen 13 1317
8 Bricks 36 3646
9 Shadow 9 938

Total 423 42,353

(3) Salinas Valley: This dataset is collected by the 224-band AVIRIS sensor in the Salinas
Valley, California, and is characterized by its high spatial resolution (3.7 m pixels).
The image size is 512 by 217 pixels, containing 224 bands. The dataset has a size of
512 × 217, with 204 effective bands, and the spatial resolution of the image is 3.7 m.
The wavelength coverage spans from 400 to 2500 nanometers. The dataset includes
16 land cover classes. The pseudo-color image and ground truth of the dataset are
shown in the figure, and the training and test set divisions are presented in Table 3.
We select 1% of the samples for each class as the training set and the remaining 99%
as the test set. Its false-color map and ground truth map are shown in Figure 5.
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Figure 4. Pavia University dataset. (a) False-color map. (b) Ground truth.

Table 3. The numbers of samples in the Salinas Valley dataset (1% of the labeled samples in each
category are randomly selected for training).

No. Category Training Testing

1 Brocoli green weeds 1 20 1989
2 Cron Mintill 37 3689
3 Fallow 19 1957
4 Fallow rough plow 13 1381
5 Fallow smooth 26 2652
6 Stubble 39 3920
7 Celery 35 3544
8 Grapes untrained 112 11,159
9 Soil vinyard develop 62 6147
10 Corn senesced green weeds 32 3246
11 Lettuce romaine 4wk 10 1058
12 Lettuce romaine 5wk 19 1908
13 Lettuce romaine 6wk 9 907
14 Lettuce romaine 7wk 10 1060
15 Vinyard untrained 72 7196
16 Vinyard vertical trellis 18 1789

Total 533 53,596

(4) WHU-Hi-LongKou: This dataset is collected in LongKou Town, Hubei Province,
China, using the Headwall Nano-Hyperspectral imaging sensor with an 8 mm focal
length mounted on a DJI Matrice 600 Pro (DJI M600 Pro, DJI, Hong Kong, China)
unmanned aerial vehicle (UAV) platform [68]. The dataset comprises a size of 550
by 400 pixels, including 270 bands, with a wavelength range covering 400–1000 nm.
There are a total of nine land cover classes, comprising six crop types and three terrain
types. The pseudo-color image and ground truth of the dataset are shown in the
figure, and the training and test set divisions are presented in Table 4. We select 0.5%
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of the samples for each category as the training set and the remaining 99.5% as the
test set. Its false-color map and ground truth map are shown in Figure 6.
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Table 4. The numbers of samples in the WHU-Hi-Long Kou dataset (0.5% of the labeled samples in
each category are randomly selected for training).

No. Category Training Testing

1 Corn 172 34,339
2 Cotton 41 8333
3 Sesame 15 3016
4 Broad-leaf soybean 316 62,896
5 Narrow-leaf soybean 20 4131
6 Rice 59 11,795
7 Water 335 66,721
8 Roads and houses 35 7089
9 Mixed weed 26 5203

Total 1019 203,523
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3.3. Comparative Experimentation

It can be seen from Tables 5–8 that three standard evaluation metrics, including
overall accuracy (OA %), average accuracy (AA %), and kappa coefficient (κ) [27,69,70], are
reported in the last four lines. The first line lists our method and the comparison methods,
while the subsequent lines indicate the accuracy (%) for each category across the different
methods. It can be seen that hyperspectral classification methods based on deep learning
have higher accuracy than traditional methods on the whole. As can be seen from the
figure, the method of simply extracting spectral information for classification often cannot
overcome the influence of spatial variability, resulting in a large number of noise points
generated by misclassification. In contrast, the classification results of the fusion of spatial
and spectral information are smoother, which accords with the general expectation of HSIC.
Figures 7–10 show the classification results of various methods on the four datasets.

Table 5. Results of the comparison for the Indian Pines test set (5% of the labeled samples in each
category are randomly selected for training).

Category KNN RF 1D
CNN

2D
CNN

Hybrid
SN

IRST
3DCNN CasRNN ViT Spectral

Former GraphGST SS-
Mamba SSUM

1 0.00 2.27 13.64 18.18 36.36 50.00 36.36 2.27 20.45 97.72 95.34 93.18
2 43.99 50.26 59.17 68.83 83.20 81.35 42.00 51.14 76.41 92.40 85.39 91.89
3 37.26 45.63 43.35 58.56 95.06 90.49 42.21 30.92 68.06 89.98 87.43 96.07
4 2.21 21.68 33.63 38.50 67.70 69.02 17.26 28.76 42.92 75.66 75.11 91.15
5 43.79 78.21 80.17 59.48 83.22 93.02 63.40 66.44 73.42 92.15 86.68 94.99
6 97.55 97.69 86.02 88.18 98.85 99.71 69.31 89.48 95.96 99.85 100.00 94.09
7 0.00 0.00 25.93 11.11 48.15 85.18 14.81 29.62 25.92 100.00 88.46 40.74
8 99.56 95.82 96.26 94.07 100.00 100.00 91.65 93.84 99.34 100.00 100.00 99.78
9 0.00 0.00 21.05 73.68 15.79 26.31 10.53 10.52 5.26 100.00 0.00 76.47

10 43.72 52.38 69.70 56.39 94.81 90.90 47.51 52.27 79.43 94.58 66.73 95.89
11 74.15 80.88 70.21 82.73 84.26 89.66 64.47 62.40 80.19 90.87 94.08 98.59
12 20.04 37.59 54.61 54.96 79.43 74.64 23.94 28.54 66.84 82.80 97.86 96.45
13 85.13 96.41 87.69 90.77 96.41 100.00 83.23 85.12 96.92 100.00 98.96 95.90
14 95.01 89.60 90.35 91.10 98.75 99.08 86.61 72.04 93.59 96.25 98.58 99.33
15 4.90 21.53 39.78 82.02 99.46 80.65 30.52 28.61 57.76 97.00 99.18 98.64
16 50.56 59.55 76.40 84.27 88.76 88.76 53.93 65.16 52.80 91.01 98.86 95.51

OA (%) 59.99 67.17 68.78 74.20 91.64 89.40 57.52 58.11 79.00 92.83 90.56 96.25
AA (%) 43.62 51.84 59.25 65.80 80.01 82.42 48.90 49.83 64.71 93.77 85.79 91.17

k 0.5349 0.62 0.6433 0.7036 0.9045 0.8792 0.5159 0.5213 0.7611 0.9183 0.8924 0.9573

Table 6. Results of the comparison for the Pavia University test set (1% of the labeled samples in each
category are randomly selected for training).

Category KNN RF 1D
CNN

2D
CNN

Hybrid
SN

IRST
3DCNN CasRNN ViT Spectral

Former GraphGST SS-
Mamba SSUM

1 78.29 81.66 81.33 90.21 79.01 90.84 83.37 77.02 81.76 93.37 99.95 86.90
2 98.94 97.89 95.52 98.94 96.65 99.51 89.28 95.47 96.08 99.51 100.00 99.96
3 20.06 36.99 61.86 80.86 68.35 92.20 62.34 51.56 67.91 79.02 100.00 89.85
4 47.30 79.80 90.71 93.57 99.74 92.08 84.77 73.07 86.65 91.59 96.07 98.06
5 98.95 98.72 99.40 100.00 99.62 99.92 99.47 99.47 100.00 100.00 100.00 100.00
6 20.73 33.92 47.12 90.84 99.26 99.21 53.89 32.39 38.60 94.31 80.03 100.00
7 62.34 67.20 80.56 84.66 97.27 67.12 81.70 79.11 85.49 96.35 56.00 97.95
8 89.88 89.66 91.14 93.03 98.16 99.14 86.01 82.94 92.37 96.16 83.23 87.66
9 99.68 99.25 95.84 97.87 99.57 100.00 99.04 100.00 97.65 99.46 99.57 98.40

OA (%) 77.07 81.96 94.92 94.42 93.36 96.22 82.56 80.08 84.56 96.01 94.54 96.15
AA (%) 68.46 76.12 82.61 92.22 93.07 93.34 82.21 76.79 82.95 94.42 90.54 95.42

k 67.81 0.7523 0.7964 0.9261 0.9128 0.949 0.7691 0.7279 0.7902 0.947 0.9266 0.9491

Among these selected comparison methods, HybridSN and IRTS-3DCNN are 3DCNN-
based methods, while SpectralFormer and GraphGST are transformer-based DL methods.
It can be observed that these four SOTA methods achieve good results on all four datasets.
Compared to the SpectralFormer method based on ViT, GraphGST performs better, espe-
cially GraphGST. This is mainly because the method based on ViT uses patches as tokens
and adopts a patch-to-patch strategy to achieve training, preventing them from distin-
guishing heterogeneous pixels within the same patch. While the classic transformer lacks
the ability to capture local features, it can be integrated with a local feature extractor to
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obtain good classification results. HybridSN and IRTS-3DCNN achieve close classification
results, because they are both based on 3DCNN models, which extract spectral information
while maintaining local features in space. Different from the above four SOTA methods,
our proposed SSUM considers spatial information and spectral information separately
and uses multiple state space models with different sizes to extract features. Although
spatial information and spectral information are used, the five models use them in very
different ways. In addition, KNN, RF, 1DCNN, and other methods only analyze the
spectral characteristics of a single HSI pixel, which cannot reduce the influence of spa-
tial variability, resulting in considerable noise points in the obtained classification map.
The spatial–spectral integration method effectively solves most of the classification errors
caused by spatial heterogeneity. It is worth noting that the classification graphs generated
by the proposed SSUM method are in close agreement with those of the most advanced
(SOTA) algorithms GraphGST and IRTS-3DCNN, all of which show superior classification
performance. Using the same set of training samples, the SSUM model produced in this
study achieved the highest accuracy on all four datasets compared to the other models
in the attached table. For example, on the Pavia University dataset, the SSUM model is
12.87%, 12.92%, and 0.1746 higher in overall accuracy (OA), average accuracy (AA), and
Kappa (κ), respectively, than the SpectralFormer. It also outperformed the current SOTA
method GraphGST in OA (96.93% vs. 94.84%), AA (95.27% vs. 93.76%), and κ (0.9593 vs.
0.9318). The results show the effectiveness of the SSUM model proposed in this study.

Table 7. Results of the comparison for the Salinas Valley test set (1% of the labeled samples in each
category are randomly selected for training).

Category KNN RF 1D
CNN

2D
CNN

Hybrid
SN

IRST
3DCNN CasRNN ViT Spectral

Former GraphGST SS-
Mamba SSUM

1 45.85 98.89 98.89 82.91 100.00 87.93 97.44 99.79 96.53 99.89 98.89 89.84
2 88.26 99.81 85.69 98.45 100.00 97.56 82.52 57.57 99.10 93.95 100.00 81.84
3 57.08 94.69 77.41 86.71 99.85 95.19 85.64 69.85 77.36 94.17 99.59 98.93
4 96.23 98.48 99.78 97.97 99.28 99.34 91.75 97.75 97.24 98.76 99.63 98.7
5 94.76 95.48 82.24 96.53 98.00 97.88 97.47 96.19 92.57 97.92 99.43 98.27
6 97.91 98.11 99.11 98.72 99.21 98.85 99.06 99.41 99.56 99.79 100.00 99.74
7 82.48 98.90 99.35 99.21 98.39 99.60 98.98 96.72 87.69 94.69 100.00 99.18
8 80.67 84.59 85.03 79.20 93.84 88.85 74.45 74.92 81.29 85.58 99.74 88.88
9 97.93 95.88 97.41 99.54 100.00 99.02 96.12 95.81 97.45 99.31 100.00 100.00

10 55.05 86.66 67.87 85.86 96.00 96.11 75.97 60.32 77.32 96.85 93.12 99.69
11 58.98 87.33 76.37 86.67 96.03 95.46 81.76 83.83 86.86 90.54 91.86 99.81
12 72.12 99.37 99.27 96.86 100.00 100.00 99.42 66.19 82.38 98.63 97.85 93.61
13 79.38 97.91 98.57 100.00 85.45 96.69 91.62 94.48 98.89 94.7 100.00 93.50
14 35.47 90.66 83.58 99.53 100.00 97.73 89.25 90.37 93.01 96.50 92.91 98.96
15 31.31 43.77 44.05 66.44 63.02 90.75 42.52 38.47 55.71 76.26 57.51 94.39
16 1.57 94.63 87.37 83.57 100.00 97.65 87.37 68.69 83.51 97.78 99.72 98.04

OA (%) 71.03 86.57 83.02 87.73 92.90 94.8 82.17 76.25 84.60 91.94 93.34 95.31
AA (%) 67.19 91.57 86.37 91.14 95.57 96.16 81.61 80.65 87.91 94.71 95.64 96.46

κ 0.6723 0.85 0.8099 0.8633 0.9207 0.9421 0.7952 0.7348 0.8282 0.9103 0.9255 0.9479

Table 8. Results of the comparison for the WHU-Hi-LongKou test set (0.5% of the labeled samples in
each category are randomly selected for training).

Category KNN RF 1D
CNN

2D
CNN

Hybrid
SN

IRST
3DCNN CasRNN ViT Spectral

Former GraphGST SS-
Mamba SSUM

1 96.75 95.33 93.72 99.42 99.66 99.63 91.47 97.34 93.94 99.56 99.79 99.79
2 51.29 56.77 46.14 96.70 98.38 87.56 50.37 63.20 46.93 95.11 99.05 95.58
3 0.86 42.31 63.03 94.23 90.15 83.09 41.45 46.85 55.63 96.18 64.67 91.41
4 94.12 95.62 93.28 97.70 98.05 98.49 91.76 91.04 93.48 97.29 94.77 98.66
5 30.69 43.14 33.99 80.49 87.00 62.59 50.30 53.20 43.69 86.54 9.87 90.83
6 84.08 97.94 97.27 98.55 98.45 99.65 97.65 98.23 99.26 98.97 92.37 96.48
7 99.98 99.93 99.52 99.97 99.98 99.98 99.90 99.81 99.94 99.96 100.00 99.83
8 73.24 79.74 73.16 88.80 90.51 90.49 81.93 80.61 88.99 94.20 97.67 91.61
9 0.35 35.10 68.27 87.60 93.20 84.58 57.29 44.22 52.68 89.73 85.44 92.81

OA (%) 88.36 91.57 90.71 97.70 98.26 97.20 83.46 91.28 91.34 98.02 95.06 98.32
AA (%) 59.04 71.76 74.26 93.72 95.04 89.56 73.50 74.95 74.95 95.28 82.63 95.22

κ 0.8439 0.888 0.8777 0.9708 0.9772 0.9631 0.8714 0.8852 0.8858 0.9741 0.9352 0.9779
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Figure 7. Classification maps produced by various methods applied to the Indian Pines dataset:
(a) false-color map, (b) ground truth, (c) KNN, (d) RF, (e) 1DCNN, (f) 2DCNN, (g) HybridSN,
(h) IRTS-3DCNN, (i) CasRNN, (j) ViT, (k) SpectralFormer, (l) GraphGST, (m) SS-Mamba, and
(n) SSUM.
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Figure 8. Classification maps produced by various methods applied to the Pavia University dataset:
(a) false-color map, (b) ground truth, (c) KNN, (d) RF, (e) 1DCNN, (f) 2DCNN, (g) HybridSN,
(h) IRTS-3DCNN, (i) CasRNN, (j) ViT, (k) SpectralFormer, (l) GraphGST, (m) SS-Mamba, and
(n) SSUM.

For the Pavia University dataset, as delineated in Table 6, our approach yields the
superlative outcomes concerning AA and κ, and OA also maintained a high level. It
markedly surpasses competing methodologies in the discrimination of painted bare soil,
bitumen, and mental sheets. The Pavia University dataset encompasses more nuanced
textural data, and our proposed SM technique is adept at discerning a broader spectrum
of textural nuances, thereby markedly improving classification precision over alternative
methods. In the case of the Indian Pines dataset, as noted, our method also attains premier
results in OA and κ, with particular prowess in the differentiation of Hay Windrowed,
Soybean Notill, and Soybean Mintill. The Indian Pines dataset is characterized by a
greater number of spectral bands, and our method adeptly distinguishes the nuanced
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contrasts among akin categories like Soybean Notill and Soybean Mintill, resulting in
precise classification. For the Salinas Valley dataset, the outcomes presented in Table 7
reveal that the methodology introduced in this treatise achieves flawless identification for
nine categories and also excels in OA, AA, and κ. The data in Table 8 for the LongKou
dataset signify that our strategy markedly outstrips other image classification procedures
across seven categories, while also securing the highest rankings in OA and κ. The LongKou
dataset is notable for its extensive band count, and the results imply that our dual-branch
strategy for spectral information extraction holds a distinct advantage when applied to
datasets with an extended spectral range. As can be seen from Figures 7–10, on the whole,
HybridSN and IRTS-3DCNN have clearer texture details in the classification results of
the four datasets, which is because 3DCNN has a smaller receptive field compared with
our method and can learn the joint distribution of the empty spectrum in a smaller range.
However, this does not mean that its classification accuracy is higher, and because the
receptive field is too small, it may not be able to overcome the influence caused by the
space spectrum variability, which may cause its score to be inferior to the SSUM method
proposed by us.
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Figure 9. Classification maps produced by various methods applied to the Salinas Valley dataset:
(a) false-color map, (b) ground truth, (c) KNN, (d) RF, (e) 1DCNN, (f) 2DCNN, (g) HybridSN,
(h) IRTS-3DCNN, (i) CasRNN, (j) ViT, (k) SpectralFormer, (l) GraphGST, (m) SS-Mamba, and
(n) SSUM.
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Figure 10. Classification maps produced by various methods applied to the WHU-Hi-LongKou
dataset: (a) false-color map, (b) ground truth, (c) KNN, (d) RF, (e) 1DCNN, (f) 2DCNN, (g) Hy-
bridSN, (h) IRTS-3DCNN, (i) CasRNN, (j) ViT, (k) SpectralFormer, (l) GraphGST, (m) SS-Mamba, and
(n) SSUM.

3.4. Ablation Study

Table 9 shows the impact of each component in the SSUM. Ablation study is used to
verify the validity of NSF, SS, SM, and their combinations.

Table 9. Result of ablation study.

NSF SS SM
Indian Pines Pavia University Salinas Valley WHU-Hi-LongKou

OA AA κ OA AA κ OA AA κ OA AA κ

70.11 71.63 0.6801 86.66 85.84 0.8125 79.25 80.34 0.8044 89.33 84.47 0.8680√
71.25 79.22 0.7001 88.17 92.00 0.8515 83.55 85.01 0.8857 91.02 87.01 0.8791√ √
81.44 84.33 0.7654 89.00 90.15 0.8823 85.22 85.43 0.9013 93.77 88.88 0.9202√
91.44 89.17 0.9055 91.94 91.95 0.9029 86.09 92.82 0.8463 95.41 93.19 0.9532√ √
93.09 90.56 0.9211 94.21 93.84 0.9347 90.66 93.49 0.9017 97.13 94.09 0.9625√ √
91.80 90.05 0.9062 93.44 92.70 0.9331 87.73 95.35 0.8637 97.27 94.44 0.9599√ √ √
96.25 91.17 0.9573 96.15 95.42 0.9491 95.31 96.46 0.9479 98.32 95.22 0.9779

The first row presents the classification results when only the central vector is fed
directly into the S6 model for classification. This serves as the baseline for analyzing the
role of each module.

The second row shows the classification results after the addition of the NSF mecha-
nism, which mitigates the spatial variability of HSIs by calculating the average value of
the neighbor pixels. After the NSF mechanism, the S6 model can learn small-scale spatial
information of the spectral vectors. It can be observed that the evaluation metrics have
improved across all four datasets.

The third row displays the classification results after incorporating the SS mechanism.
The SS mechanism enables the S6 model to focus on subtle spectral differences, taking
full advantage of S6’s effective ability to model long sequences. After the combination of
the NSF and SS mechanisms, there are different degrees of improvement in four datasets,
which further verifies the effectiveness of the SS mechanism. The evaluation metrics show
improvement on all four datasets, indicating that SS can provide more discriminative detail
clues by segmenting continuous spectral bands.
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The fourth row presents the classification outcomes utilizing the SM mechanism
alone. It is observable that satisfactory classification results can also be attained by merely
extracting spatial information. In this case, the classification effect is proximate to that of
the spatial spectrum combination on datasets with vast space, such as WHU-Hi-LongKou.
This is attributed to the fact that the WHU-Hi-LongKou dataset has fewer classification
types within a larger spatial range, and its ultimate classification results are more reliant on
spatial information. On the contrary, in the datasets with a greater number of classification
types, such as Indian Pines and Salinas Valley, there exists a considerable disparity between
the classification results using only the SM module and the final eighth row. The fifth and
sixth rows, respectively, combine the SM mechanism with NSF and SS. It can be perceived
that after integrating spatial information with spectral information, the evaluation index is
enhanced on the four datasets. Among them, NSF+SM extracts the comprehensive spectral
information, which is superior to SS+SM. This is because the NSF mechanism suppresses
small-scale spatial variability, which cannot be overcome solely by the SS mechanism.

Finally, by fusing the three mechanisms, the classifier obtains the HSI features includ-
ing the complete spectrum, spectral details, and large-scale spatial information, which
helps us further improve the classification effect to the highest value on the four datasets.
This confirms the effectiveness of the large-scale spatial texture features extracted by the
SM module for classification, the effectiveness of the NSF for suppressing spatial variability,
and the effectiveness of the SS for sensing spectral details.

3.5. Parameters Analyzed

We conducted experiments to analyze the hyperparameters in the proposed SSUM.
Specifically, we analyzed the following:

(a) Impact of the neighborhood size. The neighborhood size is quantitatively analyzed
in Figure 11a. It can be seen that, as the neighborhood size increased, the AA values
did not produce a large change. Meanwhile, because the NSF method needs to use
all the bands in the neighborhood, too large neighborhood size will lead to too large
memory occupation in the training process. Therefore, the neighborhood size is set to
three in our experiments.

(b) Impact of the patch size. The patch size is quantitatively analyzed in Figure 11b. It
can be seen that, as the patch size increased, the AA values progressively enhance and
approach stabilization at a patch size of 40. Considering the memory consumption
and computational load, the patch size is set to 40 in our experiments.

(c) Impact of the sub-spectrum length. The length of the sub-spectrum is quantitatively
analyzed in Figure 11c. It can be seen that the highest classification accuracy is attained
when the sub-spectrum is set to 10.

(d) Impact of the number of bands after PCA. The number of bands after PCA is quantita-
tively analyzed in Figure 11d. It can be seen that, as the patch size increased, the AA
values are relatively stable, but with the increase in patch size, the model parameters
will significantly increase, resulting in additional computational burden. Therefore,
the number of bands after PCA is set to three in our experiments.
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Figure 11. Impacts of the different parameters for the proposed SSUM. (a) Impact of the neighborhood
size. (b) Impact of the patch size. (c) Impact of the sub-spectrum length. (d) Impact of the number of
bands after PCA.

3.6. Precision Rate Analysis

Considering that there are a lot of background (BKG) samples on HSIs, a new criterion,
called precision rate (PR) [33], was introduced to solve the BKG problem. Specifically, PR is
the method that can include all data samples for evaluation. For a certain category Cm, PR
is calculated as follows:

PPR(Cm) =
nmm

nm
(18)
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where nm = ∑M
j=1 nmj is the total number of samples that were classified as category Cm

and nmj is the total number of samples that should have been classified as category Cm but
were incorrectly classified as category Cj. To exploit the PR of each class for the overall
analysis, we use overall precision rate (OPR). It is defined as follows:

POPR =
M

∑
m=1

nm

N
PPR(Cm) (19)

where M is the total number of classes in the dataset and N = ∑M
m=1 nm is the total number

of samples that have been classified.
As shown in Table 10, it can be seen that SSUM obtains the highest OPR on the WHU-

Hi-LongKou dataset, followed by the Salinas Valley and Indian Pines datasets. In addition,
SSUM obtains a poor OPR on the Pavia University dataset, because the dataset has a large
number of background samples.

Table 10. PR analysis considering the BKG on four datasets.

Category Indian Pines Pavia University Salinas Valley WHU-Hi-LongKou

1 35.00 19.51 58.71 92.26
2 57.06 22.28 54.31 84.18
3 66.18 15.03 11.89 76.62
4 74.55 10.10 44.18 93.50
5 46.13 20.61 75.19 94.06
6 36.42 27.22 76.01 91.25
7 32.55 18.56 52.43 96.67
8 60.38 25.22 83.29 63.69
9 36.36 12.34 21.57 71.55
10 58.62 72.15
11 61.88 44.00
12 48.86 56.93
13 39.25 62.00
14 22.92 58.03
15 46.88 80.65
16 61.71 70.75

OPR (%) 46.66 19.92 47.44 91.36

4. Discussion
4.1. Discussion of the Run Time

For the purpose of evaluating the inference speed of various models, we chose test
subsets from four distinct datasets for category prediction. As depicted in Table 11, the
SSUM approach demonstrates a notable speed benefit over the other three transformer-
based techniques. This advantage stems from the SSM mechanism’s superior computational
efficiency in contrast to the self-attention mechanism. The SSM model, characterized by its
high computational capacity for long-sequence modeling, is particularly well suited for
handling the extensive HSI data encountered in HSIC tasks.

Table 11. Comparison of the run time of the transformer-based models and the SSUM.

Datasets ViT SpectralFormer GraphGST SSUM

Indian Pines 1.95 s 2.71 s 1.59 s 1.20 s
Pavia University 7.35 s 9.08 s 18.02 s 3.17 s

Salinas Valley 12.14 s 13.61 s 9.05 s 7.18 s
LongKou 30.89 s 32.17 s 35.24 s 26.61 s
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4.2. Discussion of the Classification Maps

Utilizing the developed spectral–spatial learning architecture in conjunction with
Mamba’s feature extraction proficiency, the spectral–spatial information can be fully utilized
to improve the performance of HSI classification. For example, in the Salinas Valley dataset,
the distinction between vineyard and grape fields is difficult, possibly because the close
reflectivity of the leaves. This takes into account subtle differences between the spectral.
As can be seen from Figure 12, compared with GraphGST, our SSUM performed better
in distinguishing fallow land and grape land, which means that the SS mechanism we
designed played a role. For instance, in the lower left corner of the LongKou dataset,
as it shows in Figure 12c,d, adjacent to the right edge of the cornfield, other methods
frequently misclassify the edge of the cornfield as a road. This error is evidently due to the
influence of spectral mixing phenomena in the area where the cornfield meets the road. As
illustrated in Figure 12, the NSF mechanism we designed effectively addresses this issue at
this location. Compared to other models, including GraphGST, our SSUM model prevents
this misclassification.
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4.3. Discussion of the Limitations

The SSUM model attained SOTA performance across four datasets; however, this
approach still presents certain limitations. For instance, in the decision layer, the method
employs an MLP to integrate the spectral features for attaining the ultimate classification
outcome, potentially resulting in the loss of some underlying information beneficial for
decision-making. The subsequent step is to deliberate on the feasibility of fusing spatial
and spectral features at the feature extraction level through the utilization of a Spatial
Mamba and a Spectral Mamba. Additionally, the application of PCA dimensionality
reduction suffers from the issue of being sensitive to noise, which is detrimental to the
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feature extraction of the Spatial Mamba. The next measure is to contemplate using band
selection techniques to select bands with complete spatial information instead of the PCA
dimensionality reduction method. In addition, we analyze the parameter quantity of the
models involved in the comparative experimentation using the Indian Pines dataset, as
presented in Table 12. It is evident that HybridSN possesses the highest parameter quantity,
a characteristic inherent to the nature of 3DCNN itself. Our proposed SSUM exhibits the
second highest parameter quantity, which is comparable to that of GraphGST. This can be
attributed to the necessity for parameters A, B, and C within the S6 model to be adjusted
by the fully connected (FC) layer, thereby increasing its parameter burden. Fortunately,
this increase does not impede the detection speed of the SSUM method due to SSM’s low
computational complexity. Future work may consider optimizing the S6 model through
techniques such as pruning to reduce its required parameter quantity.

Table 12. Comparison of the storage space.

Model. Hybird SN IRTS-3DCNN CasRNN ViT SS-Mamba Spectral
Former

Graph
GST SSUM

storage space 4.068 M 0.7130 M 0.3511 M 0.3462 M 0.4700 M 0.3463 M 3.5314 M 3.7340 M

4.4. Discussion of the Training Set Selection

At the same time, we conducted a comparison experiment with the same number of
training sets for each category. Tables 13–16 show the comparison of experimental results
under the two strategies of selecting training samples. The different training samples for
each category were selected referring to Tables 1–4. The same training samples for each
category were selected as follows: for the Indian Pines dataset, 50 samples from each
category were selected as training samples (15 samples with less than 50 samples were
selected as training sets in total). For the Pavia University dataset, 200 samples were drawn
from each category as training samples. For the Salinas Valley dataset, 100 samples from
each category were taken as training samples. For the LongKou dataset, 100 samples
of each type were taken as training samples. It can be seen that whether we choose the
same training samples or different training samples, our method can achieve a better
performance than other advanced methods.

Table 13. Performance comparisons between same training samples for each category (refer to the
second row) and different training samples for each category (refer to the third row) on the Indian
Pines dataset.

Methods KNN RF 1D
CNN

2D
CNN

Hybrid
SN

IRST
3DCNN CasRNN ViT Spectral

Former GraphGST SS-
Mamba SSUM

OA (%) 59.22 70.60 73.55 78.31 95.81 96.09 68.44 64.66 78.87 95.30 93.73 96.51
AA (%) 63.69 77.74 82.31 85.77 97.50 94.91 75.73 74.67 84.48 97.70 96.91 98.32

k 0.5402 0.6681 0.7029 0.7525 0.952 0.9553 0.6374 0.604 0.7605 0.9462 0.9285 0.9599

OA (%) 59.99 67.17 68.78 74.20 91.64 89.40 57.52 58.11 79.00 92.83 90.56 96.25
AA (%) 43.62 51.84 59.25 65.80 80.01 82.42 48.98 49.83 64.71 93.77 85.79 91.17

k 0.5349 0.62 0.6433 0.7036 0.9045 0.8792 0.5159 0.5213 0.7611 0.9183 0.8924 0.9573

Table 14. Performance comparisons between same training samples for each category (refer to the
second row) and different training samples for each category (refer to the third row) on the Pavia
University dataset.

Methods KNN RF 1D
CNN

2D
CNN

Hybrid
SN

IRST
3DCNN CasRNN ViT Spectral

Former GraphGST SS-
Mamba SSUM

OA (%) 78.54 81.66 88.11 95.66 97.95 96.42 83.89 83.60 93.20 98.39 96.28 98.60
AA (%) 84.10 86.97 88.78 95.76 98.31 96.35 87.86 87.35 93.84 98.20 98.54 99.12

k 0.7194 0.7618 0.8398 0.9415 0.9725 0.9522 0.7831 0.7848 0.9083 0.9784 0.9585 0.9812

OA (%) 77.07 81.96 94.92 94.42 93.36 96.22 82.56 80.08 84.56 96.01 94.54 96.15
AA (%) 68.46 76.12 82.61 92.22 93.07 93.34 82.21 76.79 82.95 94.42 90.54 95.42

k 67.81 0.7523 0.7964 0.9261 0.9128 0.949 0.7691 0.7279 0.7902 0.947 0.9266 0.9491
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Table 15. Performance comparisons between same training samples for each category (refer to the
second row) and different training samples for each category (refer to the third row) on the Salinas
Valley dataset.

Methods KNN RF 1D
CNN

2D
CNN

Hybrid
SN

IRST
3DCNN CasRNN ViT Spectral

Former GraphGST SS-
Mamba SSUM

OA (%) 75.19 87.35 86.18 89.71 95.78 95.53 84.37 85.71 91.98 93.42 95.07 96.51
AA (%) 80.74 93.72 90.81 95.40 98.29 97.32 91.61 91.80 95.43 96.97 97.76 98.32

κ 0.7239 0.8593 0.8454 0.8855 0.9529 0.9502 0.8255 0.8407 0.9109 0.9265 0.9449 0.9599

OA (%) 71.03 86.57 83.02 87.73 92.90 94.80 82.17 76.25 84.60 91.94 93.34 95.31
AA (%) 67.19 91.57 86.37 91.14 95.57 96.16 81.61 80.65 87.91 94.71 95.64 96.46

κ 0.6723 0.85 0.8099 0.8633 0.9207 0.9421 0.7952 0.7348 0.8282 0.9103 0.9255 0.9479

Table 16. Performance comparisons between same training samples for each category (refer to
the second row) and different training samples for each category (refer to the third row) on the
WHU-Hi-Long Kou dataset.

Methods KNN RF 1D
CNN

2D
CNN

Hybrid
SN

IRST
3DCNN CasRNN ViT Spectral

Former GraphGST SS-
Mamba SSUM

OA (%) 80.57 87.56 91.35 96.90 97.13 97.82 86.75 89.40 91.34 97.74 97.73 98.00
AA (%) 76.13 83.11 85.40 96.21 97.84 95.00 82.13 82.19 89.75 97.59 97.34 98.48

κ 0.7558 0.8405 0.8879 0.9594 0.9626 0.9646 0.8257 0.7254 0.8885 0.9704 0.9702 0.9738

OA (%) 88.36 91.57 90.71 97.70 98.26 97.20 83.46 91.28 91.34 98.02 95.06 98.32
AA (%) 59.04 71.76 74.26 93.72 95.04 89.56 73.57 74.95 74.95 95.28 82.63 95.22

κ 0.8439 0.888 0.8777 0.9708 0.9772 0.9631 0.8714 0.8852 0.8858 0.9741 0.9352 0.9779

5. Conclusions

In this article, a Mamba-based SSUM model is proposed to extract spectral and spa-
tial features, which can reduce the computational complexity and improve the model’s
performance. Specifically, in the Spectral Mamba branch, an NSF strategy is proposed to
reduce the interference arising from the spatial variability. Additionally, an innovative SS
mechanism is introduced, which functions by scanning across the sub-spectrum dimension
to better learn the details of spectral features. In the Spatial Mamba branch, an SM module
is developed by integrating an SS2D with SA within a cohesive framework to effectively
extract the spatial features of HSIs. Finally, the output feature of the Spectral Mamba and
Spatial Mamba branch is united to comprehensively determine the category of the HSI. The
ablation study validated the effectiveness of the proposed NSF, SS, and SM. Abundant com-
parison experiments with other developed HSIC methods demonstrated the superiority of
the proposed SSUM on four HSI datasets. Specifically, our method achieved increases of
26.14%, 9.49%, 16.06%, and 8.99% in terms of OA compared to the baseline method on the
Indian Pines, Pavia University, Salinas Valley, and WHU-Hi-LongKou datasets, respectively.
HSIC has a multitude of potential applications across various fields, such as agriculture,
environmental monitoring, mineral exploration, etc.
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