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Abstract: Accurate and timely monitoring of biochemical and biophysical traits associated with crop
growth is essential for indicating crop growth status and yield prediction for precise field management.
This study evaluated the application of three combinations of feature selection and machine learning
regression techniques based on unmanned aerial vehicle (UAV) multispectral images for estimating
the bio-parameters, including leaf area index (LAI), leaf chlorophyll content (LCC), and canopy
chlorophyll content (CCC), at key growth stages of winter wheat. The performance of Support Vector
Regression (SVR) in combination with Sequential Forward Selection (SFS) for the bio-parameters
estimation was compared with that of Least Absolute Shrinkage and Selection Operator (LASSO)
regression and Random Forest (RF) regression with internal feature selectors. A consumer-grade
multispectral UAV was used to conduct four flight campaigns over a split-plot experimental field with
various nitrogen fertilizer treatments during a growing season of winter wheat. Eighteen spectral
variables were used as the input candidates for analyses against the three bio-parameters at four
growth stages. Compared to LASSO and RF internal feature selectors, the SFS algorithm selects the
least input variables for each crop bio-parameter model, which can reduce data redundancy while
improving model efficiency. The results of the SFS-SVR method show better accuracy and robustness
in predicting winter wheat bio-parameter traits during the four growth stages. The regression model
developed based on SFS-SVR for LAI, LCC, and CCC, had the best predictive accuracy in terms of
coefficients of determination (R2), root mean square error (RMSE) and relative predictive deviation
(RPD) of 0.967, 0.225 and 4.905 at the early filling stage, 0.912, 2.711 µg/cm2 and 2.872 at the heading
stage, and 0.968, 0.147 g/m2 and 5.279 at the booting stage, respectively. Furthermore, the spatial
distributions in the retrieved winter wheat bio-parameter maps accurately depicted the application
of the fertilization treatments across the experimental field, and further statistical analysis revealed
the variations in the bio-parameters and yield under different nitrogen fertilization treatments. This
study provides a reference for monitoring and estimating winter wheat bio-parameters based on
UAV multispectral imagery during specific crop phenology periods.

Keywords: unmanned aerial vehicle (UAV); multispectral; leaf area index; canopy chlorophyll;
machine learning

1. Introduction

Winter wheat is a crucial grain crop that plays a pivotal role in global food security
and agricultural sustainability. In recent years, the significance of winter wheat research
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has been underscored by the growing challenges posed by climate change, population
growth, and the need for sustainable agricultural practices [1,2]. Crop biophysical and
biochemical parameters provide important information about various aspects of crop
conditions that have direct implications for productivity. Leaf area index (LAI) is a key
biophysical parameter for quantifying crop canopy structure and function. Previous studies
have highlighted the significance of LAI data in enhancing estimates of crop yield and
land–atmosphere carbon dioxide exchanges by updating state variables in process-based
agroecosystem models [3–5]. Canopy chlorophyll content (CCC) is defined as the total
chlorophyll content per unit ground area in a contiguous group of plants, serving as a
valuable metric for estimating canopy nitrogen content, vegetation physiological status and
gross primary production [6,7]. Different from other crop physiological and biochemical
traits, leaf chlorophyll content (LCC) directly reflects the nutrition status of individual crop
plants. LAI, LCC, and CCC serve as crucial phenotypic traits in corps, offering effective
insights into crop growth, plant health and yield prediction [8,9]. Timely monitoring
and accurate estimation of the bio-parameters are necessary for grasping wheat growth
dynamics and offer guidance for field management.

Remote sensing techniques have found widespread application in estimating growth
bio-parameters and grain yield across various experimental environments for precision
agriculture practices [10]. The collection of bio-parameter data at the ground level typically
involved labor-intensive and time-consuming manual processes conducted via pointwise
sampling. Moreover, ground-measured data were often limited to a few sampling points,
posing challenges in representing the traits of the entire crop field area, and thereby
restricting the scope of traditional ground bio-parameter data [11]. Large-scale and high
throughput data can be acquitted by the satellite-based remote sensing technology; however,
it is difficult to reveal detailed local features due to coarse spatial resolution. In this context,
unmanned aerial vehicle (UAV) remote sensing technologies have emerged as a capable
tool for mapping crop bio-parameters traits with fine spatial and temporal resolution.

Over the past few decades, various vegetation indices (VIs) have been proposed for
spectral remotely sensed bio-parameters estimation to simplify predictive modeling [12–14].
However, the optimal VI relevant to bio-parameters varies depending on the crop growth
stage, the range of variation in bio parameter or crop phenotype [15–20]. Consequently,
using a single VI to calibrate a general-purpose model for the entire growing season
may not accurately capture the variation in bio-parameters for crucial individual stages.
Many studies emerged using the combinations of spectral bands or spectral indices as
input variables, combined with multiple linear regression or machine learning (ML) for
predictive modeling [21–25]. However, it should be noted that the highly correlated VIs
will be generated in regression modeling due to the similarity of spectral index calculation
formulas and spectral information when using VIs calculated by several spectral bands,
especially for multispectral data with board-band [11]. The presence of data redundancy
and multicollinearity among spectral variables will significantly diminish the stability and
efficiency of model prediction.

Feature variable selection can adaptively select the optimal combination of variable
candidates to match the ML model, reduce data dimensionality, and improve modeling
accuracy and efficiency [26]. Therefore, many studies utilized feature selection to improve
predictive modeling performance, and they can be divided into three categories: filter,
wrapper, and embedded [27,28]. For embedding algorithms, variable selection is embedded
into the model training process, and is achieved by determining high-importance score
contributed to the model, such as LASSO [29], variable importance in projection based on
partial least squares (PLS-VIP) [30] and various regression trees [31,32]. The filter-based
algorithm, such as Pearson correlation coefficient thresholding, is most commonly used
due to its simplicity. The selected variables by the filter-based algorithm can be explained
easily for the dependent variable. The disadvantage is that it does not take into account
the characteristics of the ML model and is more suitable for simple empirical regression
algorithms. The wrapper algorithm treats the feature selection as a search problem and
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evaluates the merits of feature variables through the evaluation function of the induction
learner, which can select “tailor-made” variables for each model. The generation procedure
for finding the optimal variable combination based on the wrapper includes forward
or backward search, recursive feature selection (RFE), and bionic algorithms [33]. The
wrapper algorithms are computationally more expensive than the filtering algorithm, due
to repetitive training steps and cross-validation. However, the wrapper algorithms are
more accurate than filtering algorithms. Wang [34] and Wang [35] estimated the wheat
LCC using multiple ML models combined with the important ranking of the random forest
model. Zhu [15] and Yin [36] used multiple MLs combined with filter-based and RFE
feature selection to estimate wheat LCC at different growth stages, respectively. These
studies indicated that using the ML model alone cannot achieve optimal model accuracy,
and the combination of feature selection and ML model can more accurately estimate the
LCC of winter wheat. However, the results in the above studies indicated that the number
of feature variables selected by the RF or the RFE is still relatively large, which has not
effectively achieved the goal of data dimensionality reduction, and there is still a problem
of data redundancy for regression modeling.

Therefore, the primary objective of this study was to develop a machine learning
regression modeling combined with an adapted variable selection scheme for estimating
the bio-parameters of winter wheat at various growth stages. The specific objectives
were (i) to examine changes in crop bio-parameters during the growth stages and the
correlation with spectral variables; (ii) to compare and evaluate the combination of variable
selection and machine learning estimation performance in monitoring bio-parameters
traits during the growth stages; and (iii) to explore the variations in crop bio-parameters
and grain yield under multi-fertilization treatments, with an aim to provide a reference
and technical support for UAV remote sensing monitoring of crop bio-parameters with
fertilizer management, thus boosting the applications of UAV multispectral remote sensing
technologies in precision agriculture.

2. Materials and Methods
2.1. Study Site and Experimental Design

During the winter wheat growing season of 2022/2023 in Xuzhou, Jiangsu Province,
China, the experimental study was conducted at the Jiangsu Xuhuai Regional Institute
of Agricultural Science (33◦16′58′′N; 117◦17′23′′E, elevation 35 m a.s.l.). The experiment
involved two local wheat varieties (XM35 and XM28) and four nitrogen fertilizer rates (0,
180, 225, 270 kg N/ha). The field experiment used a split-plot design; a total of 82 plots with
7.5 × 1.5 m2 each (Figure 1). The treatment of nitrogen fertilizer in each plot was split into
base and topdressing fertilizer in a proportion of 1:1. Four treatments of nitrogen fertilizer
were applied before sowing and at the jointing stage. Irrigation applied natural rainfed field
conditions and weed control followed local field management practices. Winter wheat was
sown on 10 October 2022, and harvested on 11 June 2023, completing a 243-day life span.
Measurements were conducted at four growth stages of winter wheat: late jointing (DAS
172), booting (DAS 185), heading (DAS 198), and early filling stage (DAS 214) (Table 1).

Table 1. Measurement date and corresponding growth stage of winter wheat.

Ground and UAV
Measurement Data (2023) Growth Stage Description Abbreviation

31 March Late Jointing Stage (DAS 172) LJ
12 April Booting Stage (DAS 184) BS
26 April Heading Stage (DAS 198) HS
12 May Early Filling Stage (DAS 214) FS

Note: Days after sowing (DAS). Winter wheat was sown on 10 October 2022, and harvested on 11 June 2023,
completing a 243-day life span.
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Figure 1. Diagram of the winter wheat experimental site. (a) RGB image marked with multiple
nitrogen fertilizer levels application, and (b) experimental design with multiple fertilizer treatments.

2.2. Data Collection
2.2.1. In Situ Measurements and Laboratory Processes

Growth-related bio-parameters, including the LAI, LCC, and CCC, were collected
during the growing season (Table 1). Examples of ground photos reflecting crop growth
status are shown in Figure 2, the photos were taken at a height of approximately one meter
above the wheat canopy. The LAI and LCC measurements were conducted within a 1 m2

area in each field plot. Each ground sample area’s center position was recorded using a
standard portable navigational equipment combining the Network Real-Time Kinematic
technology (Network RTK). The LAI value was obtained using an LAI-2200C plant canopy
analyzer (Plant Canopy Analyzer, LI-COR, Lincoln, NE, USA). For each sampling area,
one sky value and five target values recorded by LAI-2200C were utilized in the LAI
calculation of crop canopy. The sky value served as the calibration reference, while the
average of the five target values was taken as the ground truth LAI for the corresponding
site. Measurements were executed between 16:00 and 18:00 local time, specifically avoiding
direct sunlight whenever possible.
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Figure 2. Examples of ground photos reflecting winter wheat growth status.

For the measurement of LCC, the “five-point sampling” method was applied to se-
lect five flag leaves from wheat plants within one-meter square in each sampling area.
Subsequently, these selected leaves were promptly placed in an insulated box with ice for
transportation to the laboratory. In total, 0.1 g fresh leaf disks were collected from wheat leaf
blades of each sampling area using a leaf puncher (diameter = 8 mm), and their pigments
were extracted using 10 mL 95% analytical reagent alcohol. Extract absorbance at 649 nm
and 665 nm was measured using an ultraviolet-visible spectrophotometer (MAPADA,
Shanghai, China) after 24 h of dark storage. The determination of total chlorophyll con-
centrations in mg/mL involved the utilization of extinction coefficients to the absorbance
values. These concentrations were subsequently converted to µg/cm2, taking into account
the specific area of the leaf disks and the solution volume, as detailed in the work [13].
The Canopy Chlorophyll Content (CCC), expressed per unit of leaf area, was determined
by multiplying the LAI and LCC [37]. A total of 194 valid measurements for each crop
bio-parameter were obtained from the four sampling campaigns during the growth season.

2.2.2. UAV Platform and Flight Configuration

Multispectral data were simultaneously acquired by a DJI Phantom 4 multispectral
UAV (Da-Jiang Innovations, Shenzhen, China). The equipment integrates five optical filter
sensors with different central wavelengths (blue: 450 ± 16 nm, green: 560 ± 16 nm, red:
650 ± 16 nm, red edge: 730 ± 16 nm, near infrared: 840 ± 26 nm). The UAV campaigns
were conducted between 10:00 and 14:00 local time, under clear sky and low wind speed
conditions. The 90% reflectance calibration board took a photo using the UAV camera before
takeoff and landing. The flight path was automatically generated by DJI GS Pro and the
flight parameter settings were kept consistent each time (Table 2). Network RTK technology
was utilized to enhance UAV positioning accuracy. Following image acquisition, band
registration and image stitching were performed using DJI Terra, followed by a radiometric
correction to obtain multispectral reflectivity orthophoto.

Table 2. Flight parameters of Unmanned aerial vehicle (UAV).

Parameters Parameter Value

Flight altitude 50 m
Flight Speed 3.8 m/s

Heading overlap ratio 75%
Collateral overlap ratio 80%

Ground Sampling Distance 3 cm

2.3. Image Pre-Processing and Data Extraction
2.3.1. Soil Background Removal

To reduce the influence of additional factors such as soil, we performed an image
segment using the Sequential Maximum Angle Convex Cone (SMACC) tool [38] within the
ENVI 5.3 software (Harris Geospatial Solutions Inc., Boulder, CO, USA). Linear spectral
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unmixing is a commonly used method in spectral image classification for mixed pixels. The
method consists of two steps: first, extracting the spectra of “pure” ground objects (end-
member extraction); and second, representing mixed pixels through linear combinations of
end elements (mixed pixel decomposition). The abundance image is the visualization result
of mixed pixel decomposition, revealing the relative contributions of each endmember
within each pixel. The SMACC tool integrates linear spectral unmixing to simplify the
endmember extraction process. It enables the rapid and automated extraction of endmem-
ber spectra and abundance images from raw spectral images with a streamlined process.
The experimental field predominantly contained wheat and soil. Thus, the number of
endmembers considered included wheat, bare soil, and shadow. According to the statistical
histogram watershed of wheat abundance image at each growth stage, a threshold was set
to remove the soil background. As shown in Figure 3, we could identify the endmembers
(wheat and soil) from the images with a spatial resolution of 3 cm.
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Figure 3. The results of wheat extraction based on the sequential maximum angle convex cone
(SMACC) method. (a) RGB Image, (b) wheat abundance, (c) soil abundance, (d) wheat image after
removing soil background.

2.3.2. Calculation of Vegetation Index

The reflectance values of five bands served as the basis for calculating the vegetation
indices, which are commonly utilized in the works to estimate growth bio-parameters and
monitor crop growth status. In this study, the initial variables set was established by the
combination of five spectral bands and the 13 vegetation indices, which are used to develop
a feature selection and machine learning-based model for estimating bio-parameters values
of winter wheat. The spectral variables formulas applied are presented in Table 3.

Table 3. Spectral variables used in this study.

Variable Abbreviation Formulation Reference

Blue band B —
Green band G —
Red band R —

Red edge band RE —
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Table 3. Cont.

Variable Abbreviation Formulation Reference

NIR band NIR —
Agriculture Chlorophyll Index ACI Green/NIR [39]

Canopy Chlorophyll Content Index CCCI NDRE/NDVI [40]
Chlorophyll Index using Red Edge Reflectance CIred-edge (NIR/Edge) − 1 [41]

Chlorophyll Vegetation Index CVI NIR × (Red/Blue2) [42]
Green Normalized Difference Vegetation Index GNDVI (NIR − Green)/(NIR + Green) [43]

Leaf Chlorophyll Index LCI (NIR − Edge)/(NIR + Red) [44]

Modified Soil Adjusted Vegetation Index MSAVI (2×NIR+1)−
√
(2×NIR+1)2−8×(NIR−Red)

2
[45]

MERIS Terrestrial Chlorophyll Index MTCI (NIR − Edge)/(Edge − Red) [46]

Modified Triangular Vegetation Index 2 MTVI2 1.5 ×
1.2×(NIR−Green)−2.5×(Red−Green)√
(2×NIR+1)2−(6×NIR−5×

√
Red)−0.5

[47]

Normalized Difference Red Edge Index NDRE (NIR − Edge)/(NIR + Edge) [40]
Normalized Difference Vegetation Index NDVI (NIR − Red)/(NIR + Red) [48]

Green NDVI NDVIg (Edge − Green)/(Edge + Green) [43]
Structure Insensitive Pigment Index SIPI (NIR − Blue)/(NIR − Red) [49]

Note: In the formulations, B, G, R, RE, and NIR represent the reflectance values corresponding to the blue (450 nm),
green (560 nm), red (650 nm), red edge (730 nm), and near-infrared (840 nm) bands, respectively. ‘—’ refers to the
reflectance value of the corresponding band.

2.4. Modeling Methods
2.4.1. Least Absolute Shrinkage and Selection Operator Regression (LASSO)

LASSO is a statistical method used for variable selection and regularization in lin-
ear regression models. In LASSO regression, a shrinkage (or regularization) process is
incorporated into the traditional linear regression model, which helps prevent overfitting
and select the most relevant predictor variables. It achieves this by introducing a penalty
term based on the absolute values of the regression coefficients. The key feature of LASSO
is its ability to shrink some coefficients to exactly zero, effectively performing automatic
variable selection. The final objective of the process is to minimize the prediction error.
The parameter for regularization amount control was tuned in this study through 5-fold
cross-validation. The range of the parameter was set between 0.01 and 100 values along the
regularization pass to identify the parameter value with the minimal mean squared error.
The regression modeling was performed with the R package ‘glmnet’.

2.4.2. Random Forest Regression (RFR)

RFR is an ensemble learning method in machine learning that leverages the power of
multiple decision trees using the “Bagging” idea [50]. RFR regression works by constructing
a multitude of decision trees during training and outputs the average prediction of the
individual trees for the regression task. RF also provides insights into feature importance,
aiding in variable selection and understanding the factors influencing the regression model.
In this study, three parameters were tuned with grid search, namely the number of rounds
ranged from 50 to 150 with step 20 and the max tree depth ranged from 3 to 20 with step
5, the mode of max branching features number was set ‘None’, ‘log2’ and ‘sqrt’. The
regression modeling was performed with Python’s ‘sklearn’ library.

2.4.3. Support Vector Machine Based Sequential Forward Selection Regression (SFS-SVR)

SFS-SVR is the combination of the sequential forward selection algorithm and support
vector machine. The variable selection is firstly performed by SFS by wrapper algorithm
idea, which extends the variables subset from an initial set of variables in each iteration
with the variable that increases the induction learner performance the most [28,51]. SFS
starts with an empty subset and iteratively adds a variable to the subset to select the input
variable combination that has the best merit value based on the evaluation function. In
this study, the support vector machine with radial basis kernel was utilized as induction
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learner, and its root mean square error was used as the criterion to be minimized, using
the resampling technique at each iteration to stabilize the feature rankings. The variables
selected by SFS are taken as input variables for the next step regression modeling. The SVR
with radial basis function kernel was utilized as regression model, and a grid search was
employed to optimize model parameters C and γ. To avoid overfitting, C was varied from
0.1 to 10 and combined with γ from 0.005 to 5 in the grid search. The variable selection and
regression modeling were performed with R package ‘mlr3’ and ‘caret’, respectively.

2.4.4. Accuracy Assessment

To test how accurately the models predict the value of bio-parameters values, including
LAI, LCC, and CCC, the coefficients of determination (R2), root mean square error (RMSE),
and relative predictive deviation (RPD) were selected to evaluate the accuracy of model
training and model validation. Hold-out validation was utilized to obtain the merits of this
study. With regard to dataset partitioning, 70% of the samples were used for training and
30% were for validation.

3. Results
3.1. Descriptive Statistics
3.1.1. Distribution of Biochemical Parameters in the Winter Wheat

Table 4 displays the variations in ground-measured LAI, LCC, and CCC values at four
growth stages of winter wheat. Across all stages, the LAI varies from 0.70 to 5.82, with the
standard deviation (SD) of 1.23, the LCC varies from 15.40 µg/cm2 to 70.08 µg/cm2 with
SD of 12.98, the CCC varies from 0.12 g/m2 to 3.25 g/m2 with SD of 0.82. The mean values
of three biochemical parameters showed a trend of increasing first and then decreasing.

Table 4. Descriptive statistics of the values of bio-parameters for different growth stages.

Growth Stage Parameter Samples Min Mean Max S·D

Jointing
LAI

40
0.70 1.88 3.37 0.81

LCC (µg/cm2) 15.40 35.83 51.68 11.42
CCC (g/m2) 0.12 0.70 1.42 0.44

Booting
LAI

46
1.47 3.55 5.30 1.24

LCC (µg/cm2) 24.47 51.70 66.65 11.48
CCC (g/m2) 0.36 1.84 3.05 0.84

Heading
LAI

52
1.57 3.46 5.65 1.04

LCC (µg/cm2) 28.20 52.45 66.72 10.01
CCC (g/m2) 0.42 1.74 3.25 0.70

Filling
LAI

56
1.45 3.57 5.82 1.11

LCC (µg/cm2) 20.44 50.41 70.08 13.32
CCC (g/m2) 0.30 1.75 2.91 0.76

All Stages
LAI

194
0.70 3.26 5.82 1.23

LCC (µg/cm2) 15.40 48.93 70.08 12.98
CCC (g/m2) 0.12 1.60 3.25 0.82

Figure 4 shows the LAI, LCC, and CCC values of winter wheat at four growth stages
under different nitrogen fertilizer levels. The results showed that LAI values presented a
consistent changing trend under different N fertilizer levels, and reached their maximum
at the booting stages. Similar to the changing trend of LAI, LCC, and CCC values of winter
wheat under N180, N225, and N270 treatments reached their maximum at the booting
stage, and started to decrease afterward. The results indicated that the bio-parameter
values of wheat are at their peak during the booting stage, and then begin to decrease. This
is because nutrients and water are primarily utilized for the growth of roots, stems, and
leaves of winter wheat before the jointing state, and then they are allocated to the growth
of wheat spikes. Besides, as the leaves in the lower layer within the canopy senesce, this
leads to changes in bio-parameters traits of the canopy. Note that the LCC and CCC values
of winter wheat under N0 treatment reached their maximum at the heading stage. This
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relative delay phenomenon may be caused by the slow growth of wheat leaves due to
nitrogen deficiency. The standard deviations of LCC at high N levels were lower than those
at low N levels, indicating that the crop canopies with sufficient N fertilizer were more
homogeneous, while the standard deviation results of LCC were the opposite for LAI and
CCC. Overall, the values of three bio-parameters were roughly correlated with N fertilizer
and presented a similar changing trend across the four growth stages.
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3.1.2. Correlation Analysis

Figure 5 shows a mantel test heat map of correlation analysis between bio parameters
and different spectral variables of four growth stages of winter wheat. The correlation
between bio-parameters and variables is represented by line color and thickness, while
the correlation between variables is represented by color and rectangular area. Mantel’s P
refers to p-value; the larger the Mantel test’s r and the smaller the p-value, the greater the
impact of the variable on the bio-parameter. The results indicated significant correlation
between bio-parameters and most of the spectral variables across different growth stages.
Meanwhile, a high correlation was observed among spectral variables, posing potential
multicollinearity challenges for regression modeling. By using spectral variable selection,
some redundant variables will be removed to obtain a more simplified model.

3.2. Estimation Models of Winter Wheat Bio-Parameters
3.2.1. Feature Variable Selection

Eighteen variable candidates, including five spectral bands and 13 vegetation indices,
were used to select the optimal variables suitable for modeling to estimate each of the three
bio-parameters. LASSO, RF important measurement, and SFS were implemented on the
18 spectral variables to select the optimal variable combination at four growth stages.

Figure 6 shows the selected feature variables by the LASSO model for each bio-
parameter and growth stage. The optimal combination of variables can be selected by
the LASSO internal selector to simplify the model. LASSO reduces the coefficients of
unimportant features to zero, and the size of the coefficient reflects the impact of the feature
on the target variable. A coefficient with a larger absolute value indicates that the feature
has a significant impact on the target variable, while a coefficient with a smaller or zero
value indicates that the feature has a smaller or non-existent impact on the dependent
variable [29,52]. The results showed that the selected feature variables at each growth stage
were quite different; thus, this also demonstrated that it was not appropriate to choose
a unified variable for further research. It was noted that MTVI2 and NDVI were the top
selected feature variables for LAI across all growth stages, CCCI, NDVI, and SIPI were the
preferred feature variables for LCC across all growth stages, while MSAVI, and MTCI were
the favored feature variables for CCC across all growth stages.
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The feature importance score of all variable candidates derived from the RF model for
each bio-parameter and growth stage are shown in Figure 7. RF considers the importance
of each feature variable and assigns greater weights to more important features on the
model. This means that the variable with a high importance score contributed a larger
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share in the model’s prediction and had a more significant impact on the final regression
results. When the variable importance score is very low, it either means the variable is not
important or it is highly collinear with one or more other variables [50]. It should be noted
that although RF can estimate the importance of the feature variable, it cannot provide
specific information on how the feature variable explains the target variable. GNDVI and
SIPI made a relatively high contribution to the RF model for LAI at all growth stages.
Rededge, CCCI, NDRE, and SIPI had relatively high and stable contributions to the RF
model for LCC at all growth stages. Red, GNDVI, and SIPI had relatively high and stable
contributions to the RF model for CCC at all growth stages.
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Figure 7. The feature importance ranking from RF of winter wheat at four growth stages. (a) LAI,
(b) LCC, and (c) CCC.

Different LASSOs and RFs embed internal selectors; SFS is a wrapper variable selection
algorithm that separates from the regression modeling. SFS can form a feature subset from
all feature candidates for the following regression modeling. The feature subset is the
optimal combination of feature variables determined by the induction learner during the
forward search process. This reflects which features are considered to have a positive
impact on model performance, while which features are ignored or excluded.

The optimal variables selected by the three methods for the bio-parameters modeling
are listed in Tables 5–7, respectively. Among them, the variables with the importance score
are more than 0.7 derived from RF were presented in the tables. The results showed that
the optimal variables were quite different among the three methods for each bio-parameter
and growth stage. We marked the variable selected more than two in each growth stage
for the three methods in the tables. For LAI, the selected frequency of rededge and MTVI2
were highest at the late jointing stage, the selected frequency of blue, red, rededge, ACI
and MTVI2 were highest at the booting stage, the selected frequency of LCI, MSAVI,
MTVI2 and NDVI were highest at the heading stage, NDVI was the only variable that was
commonly selected by all three methods at the early filling stage. For LCC, CCCI was the
only variable that was commonly selected by all three models at the late jointing stage, the
selected frequencies of CCCI, MTCI and SIPI were highest at the booting stage, the selected
frequency of MTCI and NDVI were highest at the heading stage, the selected frequency
of blue, rededge, CCCI and SIPI were highest at the early filling stage. For CCC, MSAVI
and CIre were the variables commonly selected by all three models at the late jointing and
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booting stage, respectively. The selected frequency of NIR and MTCI was highest at the
heading stage, while the selected frequency of CIre and CVI was highest at the early filling
stage. Overall, SFS selected fewer variables from all variable candidates than LASSO and
RF, thus having better performance in reducing data redundancy.

Table 5. The results of variable selection for LAI modeling.

Variables
Late Jointing Booting Heading Early Filling

LASSO RF SFS LASSO RF SFS LASSO RF SFS LASSO RF SFS
B

√ √ √ √ √

G
√ √

R
√ √ √

RE
√ √ √ √

NIR
√

ACI
√ √ √

CCCI
CIre

√ √ √

CVI
√

GNDVI
√ √

LCI
√ √

MSAVI
√ √

MTCI
MTVI2

√ √ √ √ √ √ √ √

NDRE
NDVI

√ √ √ √ √

NDVIg
√

SIPI
√ √ √ √ √

Table 6. The results of variable selection for LCC modeling.

Variables
Jointing Booting Heading Filling

LASSO RF SFS LASSO RF SFS LASSO RF SFS LASSO RF SFS
B

√ √ √ √

G
√ √

R
√

RE
√ √ √

NIR
√ √

ACI
√ √ √

CCCI
√ √ √ √ √ √ √ √ √

CIre
√ √

CVI
√ √ √

GNDVI
LCI

√ √

MSAVI
√ √ √

MTCI
√ √ √ √

MTVI2
√ √

NDRE
√

NDVI
√ √ √ √

NDVIg
√

SIPI
√ √ √ √ √ √
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Table 7. The results of variable selection for CCC modeling.

Variables
Jointing Booting Heading Filling

LASSO RF SFS LASSO RF SFS LASSO RF SFS LASSO RF SFS

B
√ √ √

G
R

√ √

RE
√ √

NIR
√ √ √ √

ACI
√ √

CCCI
CIre

√ √ √ √ √

CVI
√ √ √ √

GNDVI
√ √ √

LCI
√

MSAVI
√ √ √ √

MTCI
√ √ √ √ √

MTVI2
√

NDRE
NDVI

NDVIg
√

SIPI
√ √ √

3.2.2. Model Accuracy Comparison

The regression results of bio-parameters at each growth stage conducted by LASSO,
RFR, and SFS-SVR are presented in Table 8. The optimal variable combination selected by
SFS was applied for SVR-based bio parameter prediction. The LASSO and RFR applied
their internal selector to screen optimal variables for bio-parameter prediction.

Table 8. The results of the regression models for winter wheat bio-parameters prediction at the four
growth stages.

Model

LAI LCC CCC
Training set Test set Training set Test set Training set Test set

RMSE RPD RMSE RPD RMSE
(µg/cm2) RPD RMSE

(µg/cm2) RPD RMSE
(g/m2) RPD RMSE

(g/m2) RPD

LASSO 0.204 4.417 0.318 2.502 5.224 2.022 5.993 1.771 0.132 3.432 0.114 3.503
RFR 0.108 7.111 0.267 2.439 1.992 5.588 6.405 1.461 0.056 7.247 0.113 3.101

La
te

Jo
in

ti
ng

SFS-SVR 0.201 4.129 0.243 3.184 5.032 1.876 5.93 1.786 0.076 5.738 0.189 2.249

Model

LAI LCC CCC
Training set Test set Training set Test set Training set Test set

RMSE RPD RMSE RPD RMSE
(µg/cm2) RPD RMSE

(µg/cm2) RPD RMSE
(g/m2) RPD RMSE

(g/m2) RPD

LASSO 0.25 4.650 0.301 4.392 3.34 3.396 5.201 1.501 0.141 5.701 0.218 3.837
RFR 0.094 14.699 0.403 3.543 3.127 3.933 5.097 2.071 0.098 9.362 0.227 4.069B

oo
ti

ng

SFS-SVR 0.255 4.702 0.235 4.856 3.477 2.831 3.393 2.530 0.140 5.531 0.147 5.279

Model

LAI LCC CCC
Training set Test set Training set Test set Training set Test set

RMSE RPD RMSE RPD RMSE
(µg/cm2) RPD RMSE

(µg/cm2) RPD RMSE
(g/m2) RPD RMSE

(g/m2) RPD

LASSO 0.261 3.904 0.314 2.795 4.349 1.562 3.893 1.818 0.162 3.349 0.151 3.383
RFR 0.124 9.954 0.377 2.671 2.408 3.962 4.219 2.186 0.073 11.404 0.300 2.290H

ea
di

ng

SFS-SVR 0.250 3.760 0.341 2.449 4.277 1.804 2.711 2.872 0.125 5.190 0.149 4.460

Model

LAI LCC CCC
Training set Test set Training set Test set Training set Test set

RMSE RPD RMSE RPD RMSE
(µg/cm2) RPD RMSE

(µg/cm2) RPD RMSE
(g/m2) RPD RMSE

(g/m2) RPD

LASSO 0.255 3.840 0.404 2.852 4.336 2.773 4.671 2.565 0.166 4.226 0.184 3.603
RFR 0.126 10.277 0.337 3.987 2.236 6.257 6.784 1.736 0.086 10.241 0.209 4.242

Ea
rl

y
Fi

ll
in

g

SFS-SVR 0.229 4.956 0.225 4.905 5.022 2.524 4.872 2.222 0.160 4.906 0.151 4.884
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The results showed that, at most, one bio-parameter model built by LASSO across
the four growth stages had the highest testing accuracy, namely the heading stage for LAI,
the early filling stage for LCC, and the late joining stage for CCC. RFR had the highest
training accuracy and the lowest testing accuracy. According to the comparison results,
the SFS-SVR exhibited optimal accuracy in evaluating the LAI, LCC, and CCC. The LAI
evaluation model based on the SFS-SVR resulted in the highest test performance having R2,
RMSE and RPD of 0.967, 0.225 and 4.905 at the early filling stage; the LCC evaluation model
resulted in the highest test performance having R2, RMSE and RPD of 0.912, 2.711 µg/cm2

and 2.872 at the heading stage; and the CCC evaluation model resulted in the highest test
performance having R2, RMSE and RPD of 0.968, 0.147 g/m2 and 5.279 at the booting
stage, respectively. For estimating the three bio parameters levels of winter wheat, SFS-SVR
shows better accuracy and robustness in predicting winter wheat bio-parameters during
the four growth stages. Compared to LAI and CCC, the accuracy of LCC modeling using
SFS-SVR was relatively poor. Scatter plots for the optimal regression model in evaluating
each of the three bio-parameters are shown in Figure 8.
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ment was low, and the difference between plot treatments was obvious, particularly for the 
results of CCC. Consequently, the results were available for further field-level precision 
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Figure 8. The validation results of the SFS-SVR model in evaluating the LAI (a), LCC (b) and CCC
(c) status of winter wheat at four growth stages. (LJ: late jointing, BS: booting, HS: heading, EF: early
filling stage).

3.2.3. Winter Wheat Bio-Parameters Mapping

The models with the highest predictive capability among those developed in this study
were used to construct pixel-level spatial mapping of the three bio-parameter values at each
growth stage. Figure 9 displays the predicted maps of winter wheat bio-parameter values
across four growth stages using the SFS-SVR model. The visualization results were highly
consistent with the field experiment, as displayed in Figures 1 and 4, which indicates that
the inversion results were reliable. The within-plot variance for each fertilization treatment
was low, and the difference between plot treatments was obvious, particularly for the
results of CCC. Consequently, the results were available for further field-level precision
fertilization study.
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Figure 9. The maps of winter wheat bio parameters retrieved by SFS-SVR at four growth stages.
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3.3. The Relationship between Winter Wheat Grain Yield and Biochemical Parameters

Remote sensing estimation of winter wheat bio-parameters is based on Vis, which can
serve as indicators of grain yield [53]. It is necessary to verify whether the relationship
between wheat LAI, LCC, CCC, and yield (measured) is significant. The average values of
bio-parameters of each plot were extracted using the ArcGIS zoom statistics tool. Figure 10
shows the relationship between LAI, LCC, CCC, and yield under different stages. The
results displayed that the LAI, LCC, and CCC were related to yield, and the relationship
varied with the growth stage. For LAI, the goodness of fit (R2) values were 0.561 (late
jointing), 0.631 (booting), 0.674 (heading) and 0.722 (early filling). For LCC, the R2 values
were 0.534 (late jointing), 0.278 (booting), 0.297 (heading) and 0.525 (early filling). For CCC,
the R2 values were 0.461 (late jointing), 0.601 (booting), 0.563 (heading) and 0.523 (early
filling), respectively. The growth stages with the highest correlation between yield and
LAI, LCC, and CCC, were early filling (R2 = 0.722), late jointing (R2 = 0.534), and booting
stage (R2 = 0.601), respectively. The relevance ranking: LAI > CCC > LCC. The correlation
analysis results showed that the LAI and CCC were crucial indicators for assessing the
yield of winter wheat, but the assessing results can be affected by variations at the growth
stage. This also provided a basis for the prediction of winter wheat yield using the crop
bio-parameters.
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To explore the variations in wheat biochemical parameters and yield under different
nitrogen treatments, the bio-parameters values at the growth stage with the highest predic-
tion accuracy were compared with yield under different nitrogen treatments (Figure 11). It
can be seen that both bio-parameters and yield increased with N fertilizer level, except for
the treatment of N270 under T4, the difference of bio-parameter values and yield under
different treatments presented good consistency. For the four N fertilizer treatments, the
average yield ranking was T3 > T4 > T1 > T2, and the average values of the three bio-
parameters were T4 > T3 > T1 > T2. This indicated that wheat growth status and yield were
not only related to the N fertilizer level, but also to the fertilization approach of base and
topdressing fertilizers, and excessive fertilization cannot increase wheat yield. In this study,
the optimal N treatment for increasing yield was N225 under T3, rather than N270 under
T4, which had the highest fertilization rate. The reason could be that for the N270 under T4
treatment, its effective nutrients were not sufficient to supply the growth of wheat grain, but
rather to the growth of other organs such as leaves and stems. Overall, the trend of changes
in the three bio-parameters and yield presented consistency among different N treatments.
With the increase in N fertilizer level except for the treatment of N270 under T4, both
bio-parameters and yield increased. The results indicated that reasonable treatment with
base fertilizer and topdressing fertilizer can promote the improvement of wheat growth
and yield. This also indirectly demonstrated the accuracy of bio-parameter prediction
results. In addition, these findings will provide a scientific basis for enhanced monitoring
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and diagnosis of nitrogen nutrition, contributing to improved field management practices
for winter wheat.

Remote Sens. 2024, 16, 469 18 of 23 
 

 

parameter prediction results. In addition, these findings will provide a scientific basis for 
enhanced monitoring and diagnosis of nitrogen nutrition, contributing to improved field 
management practices for winter wheat. 

  
(a) (b) 

  
(c) (d) 

Figure 11. The variation in winter wheat LAI (a), LCC (b), CCC (c) and yield (d) under different N 
treatments. N represents the nitrogen fertilizer level (180, 225, 270 kg N/ha). Treatment T1 received 
fertilizer split a half mixing of urea and slow-release fertilizers in a proportion of 1:1 at sowing and 
a half mixing of urea and slow-release fertilizers in a proportion of 1:1 at the jointing state; T2 re-
ceived fertilizer split a half urea fertilizer at sowing and a half slow-release fertilizer at the jointing 
state; T3 received fertilizer split a half slow-release fertilizer at sowing, and a half urea fertilizer at 
the jointing state; T4 received fertilizer split a half urea fertilizer at sowing and a half slow-release 
fertilizer at the jointing state. 

4. Discussion 
4.1. Uncertainty of Observed Data 

Firstly, a commonly overlooked issue in UAV multispectral remote sensing applica-
tions is the presence of multi-source errors in multispectral data, which can affect the ac-
curacy of wheat bio-parameters estimation. Due to the multiple independent sensor lenses 
with different spectral bands, band registration and image mosaic are necessary for data 
preprocessing. However, the surface texture of the field crop canopy is uniform, so it is 
easy for it to result in fewer matching feature points due to less distinctive texture features 
[54]. The existing approach to processing image data was performed by popularly used 
software such as DJI Terra. In addition, the growth of winter wheat leads to changes in 
canopy structure, the growth and senescence of wheat leaves and spikes, as well as the 
differences in changes of light radiation of different flight operation times, which brings a 
certain degree of uncertainty in data consistency. A general method alleviating this issue 
was achieved by two approaches: (i) collecting data during periods of relatively stable and 

Figure 11. The variation in winter wheat LAI (a), LCC (b), CCC (c) and yield (d) under different N
treatments. N represents the nitrogen fertilizer level (180, 225, 270 kg N/ha). Treatment T1 received
fertilizer split a half mixing of urea and slow-release fertilizers in a proportion of 1:1 at sowing and a
half mixing of urea and slow-release fertilizers in a proportion of 1:1 at the jointing state; T2 received
fertilizer split a half urea fertilizer at sowing and a half slow-release fertilizer at the jointing state; T3
received fertilizer split a half slow-release fertilizer at sowing, and a half urea fertilizer at the jointing
state; T4 received fertilizer split a half urea fertilizer at sowing and a half slow-release fertilizer at the
jointing state.

4. Discussion
4.1. Uncertainty of Observed Data

Firstly, a commonly overlooked issue in UAV multispectral remote sensing appli-
cations is the presence of multi-source errors in multispectral data, which can affect the
accuracy of wheat bio-parameters estimation. Due to the multiple independent sensor
lenses with different spectral bands, band registration and image mosaic are necessary for
data preprocessing. However, the surface texture of the field crop canopy is uniform, so
it is easy for it to result in fewer matching feature points due to less distinctive texture
features [54]. The existing approach to processing image data was performed by popularly
used software such as DJI Terra. In addition, the growth of winter wheat leads to changes
in canopy structure, the growth and senescence of wheat leaves and spikes, as well as the
differences in changes of light radiation of different flight operation times, which brings a
certain degree of uncertainty in data consistency. A general method alleviating this issue
was achieved by two approaches: (i) collecting data during periods of relatively stable and
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sufficient solar radiation conditions and without cloud coverage; and (ii) recording light
radiation information using the built-in photometer of multispectral sensor and participat-
ing in subsequent calibration with a standard reflectance panel. Besides, this study did
not consider the heterogeneity of bio-parameters vertical distribution due to the influence
of light conditions, which have been reported in studies [55–57]. It was assumed that the
foliar chlorophyll content in the vertical layer of wheat was constant in this study. Thus,
using only the LCC of flag leaves may lack representativeness for the chlorophyll content
of the sample area, which has to some extent affected the estimation of LCC. Thus, we
used CCC to estimate canopy chlorophyll content. Finally, due to the similarity of the
spectral index calculation formula, when using the five broadband multispectral bands to
calculate VIs, a lot of highly correlated VIs will be generated during regression modeling.
We attempt to use different algorithms to reduce collinearity effects and screen an optimal
variable combination to reduce the redundancy of VIs. The results of this study showed
that the variable candidates can be reduced from 18 spectral variables to only a few feature
variables, further improving the accuracy and efficiency of modeling prediction.

4.2. Comparison of Different Models

This study evaluated the effectiveness of three different regression methods combined
with variable selection, including LASSO, RFR, and SFS-SVR, on estimating winter wheat
growth bio-parameters traits. Previous studies have indicated that due to the saturation
of a single VI and its low sensitivity during the growth stages, it is difficult to accurately
estimate the multi-temporal changes in crop bio-parameters using traditional VI meth-
ods [16–20]. Non-parametric machine learning methods, such as RFR and SVR, are less
sensitive to skewness in data distribution, and can therefore be used to handle non-normal
data [21–25]. In this study, the results demonstrate that it is feasible to accurately predict the
bio-parameters of winter wheat at variable stages based on the VIs and machine learning
regression combined with variable selection. Moreover, the combination of machine learn-
ing with variable selection is suitable for solving data redundancy and multicollinearity
problems. In addition, the relative importance of each input variable may vary depending
on the crop growth stage and severity of crop stress. The utilization of different stages
of data as input variables resulted in variations in model accuracy. Comparing SFS with
LASSO and RF internal feature selector, the input variables selected by the three methods
were different. Specifically, SFS selected the fewest variables for bio-parameters modeling
at four growth stages. The training accuracy of the RFR model was the highest among all
three models, but its training accuracy was much higher than the testing accuracy, and the
testing accuracy was the lowest among the three models. It indicated that the constructed
RFR model was overfitted, which may be due to limited modeling samples and the use
of inappropriate optimization model parameters. For the regression results of the LASSO
model at each growth stage, at most one bio-parameter prediction had the highest testing
accuracy. By comparing the three models, we found that the performance of SFS-SVR was
more robust, and it showed a better ability to predict wheat bio-parameters across different
growth stages. In addition, compared to the other two methods, the SFS usually selected
the least input variables, which can reduce data redundancy while greatly saving model
prediction time and improving model efficiency.

4.3. Effects of Crop Phenology on Bio-Parameters Estimation

Effects of growth stage, crop type and the range of variation in bio-parameters should
be taken into account when applying remote sensing in precision agriculture [16,58,59]. The
findings in this study confirmed varying accuracies of the models across different growth
stages, and that the phenological factor can impact model accuracy within the experimental
setup. Specifically, the results indicated that the LAI estimation at the early filling stage of
winter wheat had the highest prediction accuracy, the LCC estimation at the heading stage
had the highest prediction accuracy, and the CCC estimation at the booting stage had the
highest prediction accuracy. For the prediction accuracy of winter wheat bio-parameters
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values at the four growth stages, LAI: early filling > booting > late jointing > heading, LCC:
heading > early filling > booting > late jointing, CCC: booting > early filling > heading
> late jointing. The accuracy of bio-parameter estimation varied with different growth
stages of winter wheat, which can be attributed to changes in various factors including
crop canopy structure, leaf thickness and cell structure, leaf pigment content, and crop
coverage [15,31,36,60]. In addition, the LAI, LCC, and CCC change with the increase in leaf
size and number in the vertical distribution of wheat, and the growth and senescence of
wheat spikes also affect the estimation of wheat canopy reflectance and bio-parameters. At
the jointing stage, due to the small size of winter wheat, multiple scattering of leaves and
soil background mixing significantly affect the canopy reflectance. At the peak booting
stage of bio-parameters, the VIs may become saturated, reducing the prediction accuracy of
three bio-parameters models. At the early filling stage, the senescent of wheat leaves and
spikes may affect the canopy reflectance, which reduces the prediction accuracy at LCC at
the early filling stage compared to that at the heading stage.

The study also demonstrated the importance of bio-parameters in evaluating com-
prehensive yield traits of winter wheat, which is consistent with previous research re-
sults [59,61]. Further correlation analysis between wheat yield and LAI, LCC, and CCC
confirmed that the bio-parameters are important indicators for yield estimation, but their
relationship varied depending on the growth stage (Figure 10). In addition, the correlation
between yield and LCC was low (R2 = 0.534 at LJ), indicating that it is difficult to accurately
evaluate wheat yield using LCC alone. As a product of the combination of LAI and LCC,
the correlation between CCC and yield had improved (R2 = 0.601 at BS), but did not exceed
the correlation between LAI and yield (R2 = 0.722 at EF). The high correlation between
yield and LAI indicated that LAI can better characterize the winter wheat growth status,
while achieving better yield evaluation. Therefore, further research should use LAI as an
important factor for assimilating the wheat yield prediction model.

5. Conclusions

In this study, UAV-based spectral variables were adopted to estimate the growth-
related bio-parameters of winter wheat at the four growth stages. We proposed three
statistical methods with regard to feature selection and machine learning, including LASSO,
RFR, and SFS-SVR, for winter wheat LAI, LCC and CCC estimation. The finding of this
study revealed that: (1) the values of three bio-parameters were generally correlated with
N fertilizer and presented similar changing trends across the four growth stages; (2) LAI
estimates at the early filling stage, LCC estimates at the heading stage and CCC estimates at
the booting of winter wheat were more suitable than estimates at other stages; (3) SFS-SVR
was a robust method for the bio-parameters estimation of winter wheat at key growth
stages based on UAV multispectral imagery, effectively reducing data redundancy and
enhancing predicted accuracy; and (4) LAI was a more crucial indicator related to the yield
of winter wheat than CCC and LCC, and the correlation can be impacted by the variations
in the growth stage.

In summary, the results demonstrated the potential of using the SFS-SVR regression to
estimate winter wheat bio-parameters traits in field scale. This study is valuable for moni-
toring and estimating winter wheat bio-parameter-based on UAV multispectral imaging
of specific crop phenology periods, thereby offering guidance for field management and
optimizing agricultural practices to enhance crop yield. Future studies should encompass
multiple crops across diverse agricultural contexts, which would enhance the generaliz-
ability of findings. A more in-depth temporal analysis over multiple growing seasons can
assess model robustness under varying environmental conditions. Exploring sensor fusion
with different types of sensors, on-farm validation studies, and optimizing UAV flight
parameters contribute to the scalability and practical applicability of the methodology.
Additionally, incorporating advanced machine learning techniques and assessing crop
yield is crucial for comprehensive advancements.
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