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Abstract: Many previous studies have primarily focused on the use of deep learning for interfero-
metric processing or separate recognition purposes rather than targeted measurements of detected
wellpads. The present study centered around the integration of deep learning recognition and
interferometric measurements for Tengiz oilfield wellpads. This study proposes the optimization, au-
tomation, and acceleration of targeted ground deformation wellpad monitoring. Mask Region-based
Convolutional Neural Network (R-CNN)-based deep learning wellpad recognition and consequent
Small Baseline Subset Synthetic Aperture Radar Interferometry (SBAS-InSAR) analyses were used for
the assessment of ground deformation in the wellpads. The Mask R-CNN technique allowed us to de-
tect 159 wells with a confidence level of more than 95%. The Mask R-CNN model achieved a precision
value of 0.71 and a recall value of 0.91. SBAS-InSAR interferometric measurements identified 13 wells
for Sentinel-1 (SNT1), 8 wells for COSMO-SkyMed (CSK), and 20 wells for TerraSAR-X (TSX) located
within the −54–−40 mm/y class of vertical displacement (VD) velocity. Regression analyses for the
annual deformation velocities and cumulative displacements (CD) of wells derived from SNT1, CSK,
and TSX satellite missions showed a good agreement with R2 > 95. The predictions for cumulative
displacements showed that the vertical subsidence processes will continue and reach −339 mm on
31 December 2023, with increasing spatial coverage and the potential to impact a higher number
of wells. The hydrological analyses in the Tengiz oilfield clearly demonstrated that water flow has
been moving towards the detected hotspot of subsidence and that its accumulation will increase with
increasing subsidence. This detected subsidence hotspot was observed at a crossing with a seismic
fault that might always be subject to reactivation. The role of this seismic fault should also be investi-
gated as one of the ground deformation-controlling factors, even though this area is not considered
seismically active. The primary practical and scientific values of these studies were identified for the
operational risk assessment and maintenance needs of oilfield and gas field operators.

Keywords: remote sensing; oil reservoir; land deformations; wellpads; InSAR; SBAS-InSAR

1. Introduction

Interferometric Synthetic Aperture Radar (InSAR) is a remote sensing technique that
has been used in many studies focusing on ground deformation risk assessments in the
petroleum and gas industry [1–5].
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The present study focused on the Tengiz oilfield, which is located on the coast of
the Caspian Sea in Kazakhstan. The extraction of oil resources leads to ground surface
displacement, reservoir compartmentalization, and fault reactivation in this field, all of
which may damage wellpads [6–10].

The ongoing subsidence of the Tengiz oilfield was investigated and confirmed by Co-
mola et al. [11], Grebby et al. [12], Orynbassarova [13], Bayramov et al. [14], and Bayramov
et al. [15]. These studies used interferometric measurements based on radar images. Inter-
ferometry for oil and gas fields was used to quantitatively assess spatiotemporal surface
displacements induced by fluid extraction and injection to form a better understanding of
reservoir dynamic behavior, the optimization of operations for more effective exploitation,
reservoir characterization, geomechanical analysis, and geohazard risk assessment prin-
ciples [9,10,16,17]. Mahajan et al. [18] stated that ground displacements induced by fault
reactivations have damaged wells and facilities in Oman. The Tengiz oilfield is also crossed
by seismic faults which might always be subject to reactivations; therefore, strengthen-
ing the existing wells within the subsidence hotspots could be beneficial if engineering
standards are complied with.

Many research studies have evaluated the performance of different deep learning
methods, software, and imagery in terms of accuracy and speed in the context of recogniz-
ing wellpads and the consequent quantification of temporal changes [19–22]. To the extent
of our knowledge, a deep learning-based approach for the recognition of wellpads has
never been applied to the coastal oil and gas fields of the Caspian Sea. Regarding the key
novel aspect of this study, we optimized interferometric measurements via the preliminary
integration of deep learning to achieve the recognition of wells and a subsequent reduction
in interferometric processing speed. Since the Caspian Sea is surrounded by many oil and
gas fields, optimizing the collection of well data and interferometric processing speed is
crucial to cover larger areas targeted for the monitoring of wells.

The general objective of the present study was to use deep learning to achieve the
recognition of wells for targeted and optimized interferometric measurements, as deep
learning is a state-of-the-art methodology that could potentially be applied in the petroleum
and gas fields of the Caspian Sea’s coast.

The research goals of the present study were as follows:

1. To achieve wellpad recognition from 30 cm resolution Worldview-3 satellite images
using the Mask R-CNN deep learning technique.

2. To take interferometric measurements of vertical displacements for the detected wells
with a buffer zone of 500 m using COSMO-SkyMed (CSK), TerraSAR-X (TSX), and
Sentinel-1 (SNT1) satellite missions.

3. To carry out geospatial data analysis of vertical interferometric measurements (2018–2020)
derived from high-resolution CSK and TSX satellite missions and medium-resolution
SNT1 satellite missions for detected wellpads.

4. To carry out a comparison of interferometric measurements from three satellite missions.
5. To carry out the prediction of vertical interferometric displacements for wellpads.
6. To determine the natural and anthropogenic factors controlling ground deformations

in the Tengiz oilfield.

Many researchers have integrated machine learning and deep learning for the interfero-
metric processing or prediction of ground deformations measured by interferometry [23–25].
The advantage of the present study is that we optimized the process of well recognition and
the monitoring of their displacements through reducing SAR information redundancy.

Even though in situ geodetic measurements are of irreplaceable precision, they do
not always pertain to a sufficient historical range and achieve the spatial coverage needed
for proper decision making [26]. At the same time, satellite images are not able to capture
small objects like details of oil and gas terminal facilities. Therefore, both are often coupled
together for the cross-validation of results and improvement of interferometric measure-
ments. Satellite missions hold time-series of acquired images and provide broad spatial
coverage, which allows us to understand the entire picture of deformation processes.
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In the present study, we did not have access to in situ geodetic measurements to
validate our results; therefore, interferometric measurements derived from CSK, TSX, and
SNT1 satellite missions were cross-validated against each other for the detected wellpads.

This study holds practical value for the petroleum and gas industry, as it contributes
to the literature by showcasing the optimization and acceleration of InSAR measurements
through the preliminary deep learning recognition of wellpads and a comparison of mea-
sured displacements derived from different radar satellite missions. As an advantage, this
study also emphasizes the importance of accessible time-series satellite observations, broad
spatial coverage, site accessibility, cost and time efficiency, and safety for ensuring the
effectiveness of operational risk assessment activities.

This paper is organized as follows: The Introduction section describes previous in-
terferometric studies pertaining to the study area, as well as deep learning studies for the
recognition of wellpads, and proposes the advantages of their integration, in addition to
the study’s research goals and novelties regarding the Tengiz oilfield and the coastal areas
of the Caspian Sea. The Data Processing section describes the research area, the satellite
missions applied, deep learning for wellpad recognition, interferometric data processing,
and geospatial analyses techniques. The Results section describes the achieved research
goals. The Discussion session describes the achieved results and the limitations of the study,
and the Conclusions section contains a summary of the present study.

2. Data Processing
2.1. Study Area

The development of the Tengiz oilfield started in 1991. It is located on the northern–
eastern coast of the Caspian Sea and has an area of 2500 km2. It covers 19 km in length
and 21 km in width (Figure 1). It is known as one of the largest and deepest carbonate
oilfields in Kazakhstan, and it has an extensive natural fracture network and over 100 drilled
wells [27,28]. As presented in Figure 1, the Tengiz oilfield is crossed by faults which may
always be subject to activation [29]. According to Grebby et al. [12], the estimated reservoir
resources are 25.5 billion oil barrels within depths of 3.9–5.1 km. The current production rate
is around 720,000 barrels per day. The top of the oil reservoir is located at a depth of about
4 km (Figure 1). The terrain is flat with naturally formed depressions derived from snow and
rainfall [12]. The annual precipitation is 158 mm, and the annual air temperature is 11 ◦C. The
climate is semi-arid with temperatures of −30 ◦C in the winter and 40 ◦C in the summer.

Figure 1. A representation of the Tengiz oilfield showing oil reservoir depth contours in kilometers,
faults, and location coordinates.
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2.2. Deep Learning for the Recognition of Oil Wells, SBAS-InSAR Processing of CSK, TSX, and
SNT1 SAR Images, and Geostatistical Analyses

For the remote sensing-based recognition of oil wells, pansharpened 0.3 m images
from the Worldview-3 satellite mission were used to perform deep learning analyses
(Table 1). The pansharpenning was performed to achieve a better representation of wellpad
boundaries. For the optimization of image processing speed, it was critical to reduce the
size of the pansharpened images using two main techniques: the conversion of pixel depth
from 16 bit to 8 bit and the Principal Component Analysis (PCA) of 16 spectral bands.
The total size of the produced image was 600 megabytes. Both methods allowed for us
to reduce the redundancy of information that would not improve the quality of our deep
learning analyses and only serve to increase the processing speed. A mask region-based
convolutional neural network (R-CNN) deep learning model was used for object detection
and instance segmentation to precisely delineate the wellpad boundaries. Mask R-CNN,
developed based on Faster R-CNN, is a state-of-the-art model for instance segmentation
that generates bounding boxes for detected objects. The Mask R-CNN deep learning model
was trained using 174 polygons of wellpads in the Tengiz oilfield to produce image chips
(Figures 2–4). The parameters used to export the 174 training samples to chips and for
the training of the deep learning model are presented in Table 2. The validation of the
trained model was performed based on the analyses of training and validation loss over
epochs. The validation of detected objects was performed against ground reference data or
training data using the following accuracy metrics: precision, recall, F1_Score, The Average
Precision (AP) metric, true positive, false positive, and false negative (Table 3). Moreover,
additional validation was performed by visually inspecting each well and comparing them
with the training samples.

Figure 2. Samples of well type 1 collected for the generation of image chips.
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Figure 3. Samples of well type 2 collected for the generation of image chips.

Figure 4. Samples of well type 3 collected for the generation of image chips.
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Table 1. Characteristics of the Worldview-3 satellite image used for the present study (Satellite
Imaging Corporation 2023, Tomball, TX, USA).

Sensor
Imaging Mode Sensor Bands Sensor Resolution

(GSD)
Revisit Time
(Days) Dynamic Range Swath Width

Worldview-3

Panchromatic:
450-800 nm
8 Multispectral: (red,
red edge, coastal, blue,
green, yellow,
near-IR1, and near-IR2)
-400-1040 nm
8 SWIR: 1195-2365 nm

Panchromatic
Nadir: 30 cm GSD
at Nadir 0.34 m at
20◦ Off-Nadir
Multispectral
Nadir: 1.24 m at
Nadir, 1.38 m at
20◦ Off-Nadir
SWIR Nadir:
3.70 m at Nadir,
4.10 m at 20◦

Off-Nadir

1 day at 1 m GSD
resolution 4.5 days
at 20◦ off-nadir
(0.59 m GSD)

11 bits per pixel
Pan and MS; 14
bits per pixel SWIR

At nadir: 13.1 km

Table 2. Parameters for the preparation of training data, the training of the deep learning model, and
object detection [30,31].

Input for Export Training Data for Deep Learning Parameters Description

Input Raster TIFF (8 bit) The input source imagery.

Tile Size X 256 The size of the image chips for the x
dimension.

Tile Size Y 256 The size of the image chips for the y
dimension.

Stride X 128 The distance to move in the x direction
when creating the next image chips.

Stride Y 128 The distance to move in the y direction
when creating the next image chips.

Reference System Map Space Type of reference system that will be used
to interpret the input image.

Metadata Format RCNN Masks Format that will be used for the output
metadata labels.

Input for Training the Deep Learning Model

Input Training Data TIFF (8 bit) The image chips, labels, and statistics
required to train the model.

Max Epochs 20 The maximum number of epochs for
which the model will be trained.

Model Type Mask RCNN (Object detection) The model type that will be used to train
the deep learning model.

Batch Size 4 The number of training samples to be
processed for training at one time.

Chip Size 224
The size of the images used to train the
model. Images are cropped to the
specified chip size.

Monitor Valid loss Specified metrics to monitor while
checkpointing and early stopping.

Backbone Model ResNet-50
The specified preconfigured neural
network to be used as the architecture for
training the new model.
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Table 2. Cont.

Input for Export Training Data for Deep Learning Parameters Description

Validation (%) 10 The percentage of training samples that
will be used for validating the model.

Input for Detecting Objects Using Deep Learning

Imagery Format TIFF (8 bit) The input source imagery.

Model Definition Trained Model (dlpk)
This parameter can be an Esri model
definition JSON file (.emd), a JSON string,
or a deep learning model package (.dlpk).

Padding 56
The number of pixels at the border of
image tiles from which predictions are
blended for adjacent tiles.

Batch size 4 Number of image tiles the GPU can
process at once while inferencing.

Threshold 0.9 Minimum level of confidence that will be
included in the output.

Return boxes False Return bounding box is a Boolean
parameter with a true or false input.

Tile size 224
The width and height of the image tiles
into which the imagery is split for
prediction.

Non-Maximum Suppression Checked

Non-maximum suppression is
performed, in which duplicate objects are
identified and the duplicate features with
lower confidence value are removed.

Table 3. Accuracy computation metrics for object detection [32].

Accuracy Metrics Description

Precision The ratio of the number of true positives to the total
number of positive predictions.

Recall The ratio of the number of true positives to the total
number of actual (relevant) objects.

F1_Score The weighted average of the precision and recall. Values
range from 0 to 1, where 1 is the highest accuracy.

The Average Precision (AP) metric The Average Precision (AP) metric, which is the
precision averaged across all recall values.

True_Positive The number of true positives generated by the model.

False_Positive The number of false positives generated by the model.

False_Negative The number of false negatives generated by the model.

For the interferometric measurements, we used 96 descending and 235 ascending
SNT1 SAR images from the European Space Agency (ESA), 119 TSX ascending SAR images
from the German Aerospace Agency (DLR), and 87 descending and 88 CSK ascending SAR
images from the Italian Space Agency (ASI). As presented in Table 2, the CSK and TSX radar
images were considered as high-resolution images with a spatial resolution of 3 m, whereas
the SNT1 images were considered to have a medium resolution of 5 m by 20 m. The TSX
and CSK SAR images were accessible in horizontal–horizontal (HH) polarization, while the
SNT1 images were in vertical–vertical (VV) polarization. Both polarizations were verified
as suitable for interferometric measurements and shown to contribute higher coherence
and scattering [33–35]. The detailed characteristics of the SAR images are presented in
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Table 4. The ascending and descending footprints and counts of the CSK, SNT1, and TSX
images are presented in Figure 5. The connection graphs of the CSK, TSX, and SNT1 images
in Figure 6a–l show that all the SAR images were well connected in time for interferometric
processing. TSX images were only acquired from the descending track.

Table 4. Characteristics of the SAR images used for the present study [36,37].

Sensor Imaging
Mode Track

Resolutions:
Range x
Azimuth

[m × m] &
Swath [km]

Revisit Time
(Days)

Count of
Images Temporal Span Polarization

Used
Interferometric

Mode Wavelength

TerraSAR-X
(TSX) ACS 3 × 3; 30 11 119

1 January 2018
and 31 December

2021
HH StripMap X-band (3 cm,

9.65 GHz)

COSMO-
SkyMed (CSK)
Stripmap mode

DSC

3 × 3; 40 4

87
1 January 2018

and 31 December
2020

HH StripMap
HIMAGE

X-band
(3.1 cm, 9.6 GHz)ASC

28

60

Sentinel-1 (SNT1)

DSC

5 × 20; 250 6

117
1 January 2018

and 31 December
2021

VV
Interferometric
Wide Swath
(IW) mode

C-band (5.6 cm
wavelength and

5.4 GHz)ASC
121

114

Figure 5. Extents, acquisition periods, and counts of the TSX, CSK, and SNT1 images.
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Figure 6. Connection graphs: time–position and time–baseline plots for SBAS-InSAR: (a,b) CSK DSC;
(c,d) CSK ASC right track; (e,f) CSK ASC left track; (g,h) TSX ASC; (i,j) SNT1 DSC; (k,l) SNT1 ASC.

The SBAS-InSAR technique was used for the displacement measurements [38–40].
This technique is able to measure deformations for low-urbanized and low-vegetated areas,
like the Tengiz oilfield, with weak temporal coherence. For the minimization of temporal
decorrelations, optimal pairs of images were selected to reduce the spatial and temporal
baselines [38–45].

The Connection Graph step was performed to reduce the geometrical, temporal
decorrelation for interferometric processing. The SBAS-InSAR Interferometric Process
allowed for us to generate interferograms for the ascending and descending tracks of the
CSK, SNT1, and TSX images. The Refinement and Re-flattening step allowed us to refine
and re-flatten unwrapped interferometric phases using the polynomial method and ground
control points [46–48]. The First Inversion step was performed to flatten the complex
interferograms by re-calculating the phase unwrapping. The Second Inversion was used
to remove atmospheric phase components. The SBAS Geocoding step was performed for
the georeferencing of measured line-of-sight (LOS) velocities and displacements. Since
InSAR measures displacements along the LOS direction, for the computation of vertical
displacements, DSC and ASC tracks were decomposed along the vertical and horizontal
directions using Equation (1) [49–56].

Since TSX data were only acquired from DSC track, this dataset was decomposed with
the LOS measurements derived from the CSK ASC dataset, which has the same wavelength
and spatial resolution (Table 2).(

dasc

ddsc

)
=

(
cos θasc−cosαascsin θasc

cos θdsc − cosαdscsin θdsc

)(
dver

dhor

)
(1)

where θasc and θdsc are the local incidence angles, and αasc and αdsc are the satellite heading an-
gles of the ASC and DSC modes [57]. In the present study, we only used vertical displacements.

For the geostatistical analysis, vertical displacement velocities and cumulative dis-
placements derived from the CSK, TSX, and SNT1 satellite images were interpolated using
the Inverse Distance Weighting (IDW) interpolation method. This geostatistical interpola-
tion method was crucial for obtaining a more comprehensive interpretation of the produced
results, geospatial analytics, and the prediction of deformation trends. ENVI SARscape
software version 5.6.2 (Sarmap SA, Via Stazione 52, 6987 Caslano, Switzerland) was used
for the interferometric processing of the TSX, CSK, and SNT1 SAR images using the SBAS-
InSAR technique. ArcGIS Pro 3.2 software from Environmental Systems Research Institute
(ESRI) was used for our deep learning analyses to detect wellpads. The workflow for the
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recognition of wellpads using deep learning, as well as that for obtaining interferometric
measurements using SBAS-InSAR and geospatial analytics, is presented in Figure 7.

Figure 7. Integrated workflow for the deep learning-based recognition of wellpads and SBAS-InSAR
interferometric processing.

3. Results

The training of the Mask R-CNN model using RGB images of 0.3 m and 1.24 m spatial
resolutions showed different results in terms of fit between the training and validation
loss curves. As shown in in Figure 8, it was possible to observe that the lowering of
training loss over epochs indicated a moderate fit with the training data, whereas the
validation loss indicated some overfitting for the 1.24 m resolution RGB images. Regarding
the pansharpened 0.3 m RGB images, the lowering of training loss over epochs indicated
a good fit with the training data (Figure 9). In both cases, The Average Precision score
was observed to be in the range of 0.88. However, it was decided to proceed with the
pansharpened RGB images because of their higher potential and reliability for object
detection and obviously more accurate delineation of wellpad boundaries. It is necessary
to emphasize the limitation of using this type of image: lower processing speed because of
the higher spatial resolution.
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Figure 8. Training and validation losses over epochs obtained by training a Mask R-CNN model
based on 1.24 m resolution RGB images.

Figure 9. Training and validation losses over epochs obtained by training a Mask R-CNN model
based on pansharpened 0.3 m resolution RGB images.

As a result of Mask R-CNN object detection processing, it was possible to detect
159 wells out of 174 with a confidence level of more than 95% (Figure 10, Table 5). The
overlay analyses of the training and detected data of the wells showed that most of the
wrongly detected wells (20) were located within oil terminals (Figure 9). The precision,
which is considered as the ratio of the number of true positives (159) to the total number of
positive predictions (223), was observed to be 0.71 (Table 5). The recall, considered as the
ratio of the number of true positives (159) to the total number of actual (relevant) objects
(174), was observed to be 0.91 (Table 5). The F1_Score, considered as the weighted average
of the precision and recall, was observed to be 0.80 (Table 5). The Average Precision,
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considered as the precision averages across all recall values, was observed to be 0.77
(Table 5).

Figure 10. Training polygons overlaid with detected polygons of wells.

Table 5. Computed accuracy metrics for detected objects.

Precision Recall F1_Score AP True
Positive

False
Positive

False
Negative

0.713004 0.913793 0.801008 0.767871 159 64 15

The SBAS-InSAR interferometric measurements identified 13 wells for SNT1, 8 wells for
CSK, and 20 wells for TSX/CSK located within −54–−40 mm/y class of vertical displace-
ment velocity (Figure 11a; Table 6). For the cumulative displacement of −139–−120 and
−160–−140, the summarized number of identified wells was 9 for SNT1, 6 for CSK, and
15 for TSX/CSK (Figure 11b; Table 6). These wells are indicated in a reddish color in
Figures 12, 13 and 14a,b. As it is possible to observe, wells of higher subsidence vulner-
ability are located close to each other, being mainly concentrated in the north–west of the
Tengiz oilfield. This means that oil extraction and injection activities are not rationally dis-
tributed over the Tengiz oilfield. However, there was no accessible and specified engineering
standard that we could use to make a judgement about the criticality of this subsidence. Even
though SBAS-InSAR interferometric measurements from SNT1, CSK, and TSX/CSK images
showed a strong agreement with R2 > 0.95, it is necessary to emphasize that on the level
of each wellpad, the subsidence and uplift values differed for different satellite missions
(Figure 15a,b). This fact could certainly create uncertainty for oil and gas operators in risk
assessment and decision making. The authors of the present study did not have access to
ground GPS or leveling measurements; therefore, it was complicated to ascertain the accu-
racy of the measurements derived from the three satellites, but it was possible to confirm
that the overall deformations were correctly measured from all three satellite missions with
spatially identical subsidence and uplift patterns. In addition, it was also possible to clearly
observe that the combination of TSX and CSK SBAS-InSAR measurements showed higher
subsidence rates.
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Figure 11. Quantification of wellpads by (a) vertical displacement (VD) and (b) cumulative displace-
ment (CD) classes.

Figure 12. (a) VD from SNT1; (b) CD from SNT1.
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Figure 13. (a) VD from CSK; (b) CD from CSK.

Figure 14. (a) VD from TSX/CSK; (b) CD from TSX/CSK.
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Table 6. Quantification of wellpads by VD and CD classes.

Count of Wells

Range of VD SNT1 CSK TSX/CSK

−54–−40 13 8 20

−39–−30 23 34 28

−29–−20 28 39 35

−19–−10 39 45 40

−9–10 65 47 50

11–20 5 1 1

21–27 1

TOTAL 174 174 174

Range of CD SNT1 CSK TSX/CSK

−160–−140 3 1 5

−139–−120 6 5 10

−119–−100 15 19 20

−99–−80 19 20 17

−79–−60 16 26 25

−59–−40 28 35 32

−39–−20 32 31 22

−19–0 23 24 28

1–20 15 9 12

21–40 14 3 2

41–60 2 1 1

61–80 1

Total count 174 174 174

Figure 15. Regression analysis for the (a) VD and (b) CD of wellpads.

As mentioned before, regression analyses for the annual deformation velocities and
cumulative displacements of wells derived from SNT1, CSK, and TSX satellite missions
showed a good agreement with R2 > 95. Hence, both the medium- and high-resolution
satellite missions showed identical results (Figure 15a,b). Based on Figure 16a–c, it was
possible to observe that apart from subsidence, some wells were also affected by uplift
processes. The cumulative displacement reached −160 mm for SNT1 (24 December 2020),
−142 mm for CSK (16 December 2020), and −163 for TSX/CSK (10 December 2020). Since
SNT1 images were also available till 30 December 2021, it was possible to observe that
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the subsidence processes continued and reached −220 mm (30 December 2021). This
means that the trend of subsidence processes continues with the same spatial deformation
patterns. The predictions for cumulative displacements showed that the vertical subsidence
processes will continue and reach −339 mm on 31 December 2023, with increasing spatial
coverage and the potential to impact a higher number of wells (Figures 17a–c and 18;
Table 7).

Figure 16. CD for wellpads: (a) CSK—16 December 2020; (b) TSX/CSK—10 December 2020; (c) SNT1—24
December 2020; (d) SNT1—19 December 2021.

Figure 17. Cumulative displacement predicted for 31 December 2023: (a) SNT1; (b) CSK; (c) TSX/CSK.
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Table 7. Quantification of wellpads within predicted CD classes.

Number of Wells

Range of Predicted CD SNT1 CSK TSX/CSK

−339–−320 0 0 2

−319–−300 1 0 2

−299–−280 2 4 1

−279–−260 2 2 6

−259–−240 5 2 4

−239–−220 7 11 14

−219–−200 7 13 7

−199–−180 8 10 9

−179–−160 10 10 10

−159–−140 9 10 12

−139–−120 7 18 11

−119–−100 13 12 16

−99–−80 16 19 17

−79–−60 15 14 12

−59–−40 16 14 8

−39–−20 7 10 14

−19–0 19 12 12

1–20 4 6 8

21–40 8 3 5

41–60 12 3 3

61–80 3 0 0

81–100 2 0 0

101–120 0 1 1

141–150 1 0 0

Total count 174 174 174

The hydrological analyses in the Tengiz oilfield clearly demonstrated that water flow
has been moving towards a subsidence hotspot (Figure 19a). Thus, water accumulation
will also be increasing in the continuously subsiding hotspot. This detected subsidence
hotspot was observed at a crossing with a seismic fault that might always be subject to
reactivation (Figure 19a). The role of this seismic fault should also be investigated as one
of the ground deformation-controlling factors, even though this area is not considered
seismically active. Based on Figure 19b, which shows the shape and depth of the subsurface
of the reservoir, it was possible to observe that major subsidence trends move towards the
edge of this reservoir.
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Figure 18. Number of wells within cumulative displacements predicted for 31 December 2023.

Figure 19. (a) Hydrological water flow; (b) 3D model of vertical displacement velocity and reservoir
depths (adapted from Bayramov et al. [15]).

4. Discussion

In this study, we have demonstrated the reliability of our wellpad recognition ap-
proach, which achieved a precision value of 0.71 and a recall value of 0.91. It was possible
to detect 159 wells out of 174 with a confidence level of more than 95%. Most of the
false-positive or wrongly detected wells were located within oilfield facilities and had to
be cleaned manually. This allowed us to prioritize areas of primary interest for the subse-
quent targeted interferometric measurements of vertical displacements. These studies also
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demonstrated that the use of high-resolution optical images for the recognition of wellpads
and subsequent targeted interferometric measurements for the optimal buffer zones of
these wellpads, together, could significantly optimize operational monitoring and risk as-
sessment activities in the Tengiz oilfield. Our comparative analyses of InSAR measurements
using CSK, TSX, and SNT1 satellite missions showed good agreement with R2 > 95 for
vertical displacement velocities. It is possible to conclude that the Tengiz oilfield operator
could use either of these sensors or also consider using medium-resolution SNT1 satellite
images for operational cost saving. Besides the fact that the interferometric measurements
from three satellite missions provided identical results, they also allowed us to validate
the reliability of the vertical displacement measurements for the Tengiz oilfield. Since we
did not have any access to in situ geodetic measurements, this method was prioritized to
verify the quality of the measurements. The SBAS-InSAR interferometric measurements
identified 13 wells for SNT1, 8 wells for CSK, and 20 wells for TSX/CSK located within
−54–−40 mm/y class of vertical displacement velocity. For the cumulative displacement
of −139–−120 and −160–−140, the summarized number of identified wells was 9 for
SNT1, 6 for CSK, and 15 for TSX/CSK. Even though the number of wells varied within the
different vertical displacement classes, these variations were in the range of 5–10 mm. The
predictions for cumulative displacements showed that the vertical subsidence processes
will continue and reach −339 mm on 31 December 2023, with increasing spatial coverage
and the potential to impact a higher number of wells. The hydrological analyses in the
Tengiz oilfield clearly demonstrated that water flow has been moving towards a subsidence
hotspot. Thus, water accumulation will also increase in the continuously subsiding hotspot.
It is necessary to emphasize that the increasing accumulation of water could potentially
affect subsidence acceleration and the corrosion levels of existing facilities as well.

The studies by Wang et al. [20] and Giri et al. [21] presented identical precision and
recall values with our results but for Faster RCNN, SSD, and RetinaNet deep learning
models. The primary difference between these studies and ours is that these models gen-
erated bounding boxes for wellpads, whereas Mask R-CNN generated actual boundaries
of wellpads through the instance segmentation technique, which performed pixel-level
segmentation on detected wellpads. We also compared our results with previous studies
and determined the consistency of our results showing a continuous subsidence process
in the Tengiz oilfield [9,11–15]. Based on the work of Bayramov et al. [15], regarding
SBAS-InSAR processing times, around one month was needed for a satellite image of the
entire Tengiz oilfield. In the present study, we managed to decrease the processing time
to three days by targeting detected wellpads which were of primary interest to optimize
operational monitoring and risk assessment timing for oil and gas operators to mitigate
possible geohazard risks.

As for the shortcomings of the Mask R-CNN model, it is necessary to emphasize
that most of the false-positive wellpads were located within oilfield facilities. This means
that the introducing these facilities to a different class during the training data collec-
tion and model training would support the model in separating them from wellpads.
The same is relevant to some wellpads with a changed standard pattern which were
abandoned or in the process of construction. They also created some confusion for the
model, and it would also be reasonable to separate them into a different class. It was also
mentioned in the referenced study by Giri et al. [21] that by grouping the false positives
together into different categories for use as target classes for training, one can expect the
model to learn the differences among the classes during the model training process. This
would contribute to significantly reducing false positives. As for the shortcomings of the
SBAS-InSAR interferometric measurements, it is important to emphasize that our measure-
ments are differential relative to the reference point, and we can only judge the period of
2018–2020. This means that we could not be aware of what was going on in terms of ground
deformations before this period since historical GPS ground measurements were not acces-
sible. Another limitation is a lack of in situ geodetic measurements for the validation of
interferometric measurements. For future root cause analyses of natural seismic and flood-
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ing factors and man-made oil extraction activities, it is highly important to have subsurface
seismic data and time-series of production information. In addition, it is recommended
to regularly perform field observations of wells located within the detected subsidence
hotspot to look for any possible damage. Established engineering standards were not acces-
sible for the present study, hindering our ability to determine what level of displacement is
considered sensitive to wells; therefore, it is difficult to state anything about the criticality
of detected displacements, but it is possible to state that the subsidence will continue to
increase unless proper measures are taken in time. In addition, we should not dismiss the
fact that some of the wells are also affected by the uplift processes which occur around the
Tengiz oilfield. This should also be investigated in the future. The studies by Tamburini
et al. [58], Brew et al. [59], and Leezenberg et al. [60] related the role of InSAR measurements
to the depth of a petroleum reservoir. In the present study, it was complicated to determine
a direct relationship between oil extraction activities and the detected subsidence hotspot
since we did not have any geological and geophysical subsurface and production-related
data from the oilfield located at a depth of −3900 m. However, according to Nagel et al. [61],
the existence of oil reservoir deformation demonstrated its dynamic behavior in terms of
reservoir compaction, uplift, and subsidence, which could affect oil production and recov-
ery both negatively and positively. Therefore, the present study could play a significant role
for reservoir characterizations and be an important resource for researchers aiming to carry
out reservoir modeling to determine regular correlations between ground displacements
and production rates. Additionally, this study could contribute to the planning of future
injections, specifically with respect to ensuring their correct positioning, and production
wells to mitigate the risks of continuous subsidence and strengthen the foundations of
existing wells.

5. Conclusions

The Mask R-CNN model has been shown to be capable of detecting wellpads from
satellite images with different shapes, orientations, and sizes. In the present study, the
Mask R-CNN model reached a precision value of 0.71 and a recall value of 0.91. It was
possible to detect 159 wells out of 174 with a confidence level of more than 95%. The
model would perform better with the inclusion of oilfield facilities in a separate category of
training samples since most of the false-positive wellpads were located there. Additionally,
we also recommend the inclusion of abandoned or under-construction wellpads with lost
wellpad patterns in a separate category since they also created a confusion for the trained
model. Grouping the false positives together into different categories as target classes for
training would benefit the model by allowing it to learn the differences among the classes
during the model training process and, subsequently, carry out detection with reduced
false positives.

Regression analyses for the annual deformation velocities and cumulative displace-
ments of wells derived from SNT1, CSK, and TSX satellite missions showed a good agree-
ment with R2 > 95. Hence, both the medium- and high-resolution satellite missions showed
identical results. This means that operators of oil and gas fields could also apply freely
accessible medium-resolution radar images for operational cost saving. The SBAS-InSAR
interferometric measurements identified 13 wells for SNT1, 8 wells for CSK, and 20 wells
for TSX/CSK located within −54–−40 mm/y class of vertical displacement velocity. For
the cumulative displacement of −139–−120 and −160–−140, the summarized number of
identified wells was 9 for SNT1, 6 for CSK, and 15 for TSX/CSK. Apart from subsidence,
some wells were affected by uplift processes towards the boundaries of the Tengiz oilfield.
The predictions for cumulative displacements showed that the vertical subsidence pro-
cesses will continue and reach −339 mm on 31 December 2023, with increasing spatial
coverage and the potential to impact a higher number of wells. The hydrological analyses
in the Tengiz oilfield clearly demonstrated that water flow has been moving towards a
subsidence hotspot. This allowed us to conclude that water accumulation will also increase
in the continuously subsiding hotspot. This detected subsidence hotspot was observed
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at a crossing with a seismic fault that might always be subject to reactivation. The role of
this seismic fault should also be investigated as one of the ground deformation-controlling
factors, even though this area is not considered seismically active.

Our future research goal is to improve the performance of the developed Mask R-CNN
model by including more categories for the training samples and increasing the library of
training samples of different wellpad types from various high-resolution satellite missions
for all oil and gas fields located along the Caspian Sea. As for the InSAR measurements, we
also plan to increase the temporal range of observations and try other techniques pertaining
to interferometric measurements and radar satellite missions.
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