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Abstract: The mapping of invasive plant species is essential for effective ecosystem control and
planning, especially in protected areas. One of the widespread invasive plants that threatens the
species richness of Natura 2000 habitats in Europe is the large-leaved lupine (Lupinus polyphyllus).
In our study, this species was identified at two Natura 2000 sites in southern Poland using airborne
HySpex hyperspectral images, and support vector machine (SVM) and random forest (RF) classifiers.
Aerial and field campaigns were conducted three times during the 2016 growing season (May, August,
and September). An iterative accuracy assessment was performed, and the influence of the number
of minimum noise fraction (MNF) bands on the obtained accuracy of lupine identification was
analyzed. The highest accuracies were obtained for the August campaign using 30 MNF bands as
input data (median F1 score for lupine was 0.82–0.85), with lower accuracies for the May (F1 score:
0.77–0.81) and September (F1 score: 0.78–0.80) campaigns. The use of more than 30 MNF bands did
not significantly increase the classification accuracy. The SVM and RF algorithms allowed us to obtain
comparable results in both research areas (OA: 89–94%). The method of the multiple classification
and thresholding of frequency images allowed the results of many predictions to be included in the
final map.

Keywords: biodiversity; agriculture; alien invasive species; HySpex; support vector machines;
random forest; iterative classification method

1. Introduction

Invasive alien plant species (IAS), exceeding the biogeographic borders of their natural
habitats [1,2], destroy natural ecosystems and cause ecological and economic dysfunc-
tion [3–5]. Therefore, it is crucial to prevent the further spread of IAS, especially in Natura
2000 sites, established to ensure the long-term sustainability of valuable species and habitats
in Europe. One of the widespread invasive species that threatens the biological richness
of mountain meadows and grasslands is Lupinus polyphyllus Lindl., also known as garden
lupin or large-leaved lupine. By creating dense patches and producing allelopathic sub-
stances, this species may limit the germination of native plants and be harmful to farm
animals, which is why it was chosen as the subject of this study [6,7].

Remote sensing and machine learning methods have been increasingly used for
monitoring the spread of invasive species [8,9]. Currently, various types of remote sensing
imagery are available, and their selection involves a compromise between spatial, spectral,
and temporal resolution and the spatial extent of the image [8,10]. Satellite data have been
successfully used to identify invasive trees, shrubs, and tall perennials [11,12]. However,
to detect herbaceous plants in the initial phases of invasion, it is helpful to use data
with higher spatial resolution from airplanes or unmanned aerial vehicles (UAVs, [13,14]),
but such analyses are oriented toward local case studies. Hyperspectral data are useful
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for morphologically similar plants [15–17] due to the identification of unique spectral
signatures of plant species [18]. The use of HySpex hyperspectral data has enabled the
accurate identification of wild cucumber (Echinocystis lobata, OARF: 97%, F1: 0.87) [9],
steeplebush (Spiraea tomentosa, OARF: 99%, F1: 0.83) [19], purple moor-grass (Molinia
caerulea, F1RF: 0.86), and wood small-reed (Calamagrostis epigejos, F1RF: 0.72) [20]. The
Cubert S185 imaging spectrometer was successfully used to identify bitter vine (Mikania
micrantha Kunth, OARF: 88%, OASVM: 84%) [21], and the Cubert UHD-185 hyperspectral
camera was used for mapping common milkweed (Asclepias syriaca, OASVM: 92%, OAANN:
99%) [22].

Hyperspectral data consume a lot of space on a hard drive and contain noise and
redundant information [23,24]; the solution is the use of dimensionality reduction meth-
ods, such as a principal component analysis (PCA, [25]), independent component analysis
(ICA, [26]), or minimum noise fraction (MNF, considering image noise and principal compo-
nent analysis data variation, [27]). The MNF method is the most commonly used, because it
quickly and effectively compresses data and removes noise [23]. In several studies [28,29],
the use of MNF-transformed data yielded higher classification accuracy than the original
hyperspectral bands. For example, using nine MNF bands to classify herbaceous plant
species in Hortobágy National Park provided higher overall accuracy for the support vector
machine (SVM; OA: 82%) and random forest (RF; OA: 79%) classifications than the 128
original AISA spectral bands (OA: 73% for both algorithms) [30]. Many researchers have
observed that the date of data acquisition also has a significant impact on the accuracy of
invasive species identification [9,31,32].

Different algorithms produce maps with different accuracies for heterogeneous spatial
systems [24]; the following algorithms have been used most often to identify invasive
plants: spectral angle mapper (SAM; [33,34]; OA: 63–95%), mixture tuned match filtering
(MTMF; [35,36]; OA: 64–90%), random forest (RF; [37,38]; OA: 84–97%), support vector
machine (SVM; [22,38]; OA: 92–98%), and neural networks (NNs; [22,39]; OA: 97–99%).
Owing to the high accuracy of invasive vegetation classification, the most popular methods
are machine learning (ML) algorithms, such as SVM [40], RF [41], and NNs [24]. For
example, in identifying the kudzu vine in Georgia (USA), the SVM, RF, and NN methods
gave high overall accuracies of 92%, 96%, and 97%, respectively, using AVIRIS data [39]. ML
methods are also less sensitive to unbalanced training datasets (common in invasive species
identification) because they do not make assumptions about the distribution of input
variables [42]. Despite their high precision [43,44], neural network methods have certain
limitations, such as high dependence on the amount of training data, long training times,
high-performance hardware requirements, and lower interpretability of the outcomes,
resulting from the use of hidden layers in the network structure [13,45,46]. The use of
convolutional neural networks (CNNs) and UAV images enabled the identification of
seven invasive plant species with high accuracy (OA: 93%; F1 score oscillated between
0.87 and 0.99) [13]. However, SVM and RF algorithms are used more often in the case of
hyperspectral images because of their high accuracy and computational efficiency [22,47].
In a study comparing SVM and CNN for hyperspectral image classification [48], it was
shown that SVM with an RBF kernel gives better accuracies in land use classification
(OA = 98.84%) and the result was more reliable than for the CNN method (OA = 94.01%).
SVM uses a hyperplane to separate classes in a high-dimensional space with an optimal
margin for class separation [49] to distinguish spectrally similar classes well, even when
noisy bands or a small training dataset are used [50,51]. In a study using five pixel-based
classifiers to identify saltcedar (Tamarix spp.) species on AISA hyperspectral data, the SVM
algorithm achieved higher accuracies (OA: 86%) than the maximum-likelihood algorithms
(MLC, OA: 84%), SAM (OA: 69%), NN (OA: 64%), and maximum matching feature (MMF;
OA: 45%) [52]. In contrast, RF is a machine learning algorithm based on decision trees and
the principle of majority voting; the simple operating principle makes the RF algorithm
require less processing time and less computational power in the case of heterogeneous
systems [53,54] than other ML algorithms [47,55]. Both RF and SVM algorithms were



Remote Sens. 2024, 16, 580 3 of 22

successfully used to identify, among others, seven herbaceous plants (Mikania micrantha,
Sphagneticola calendulacea, Ageratum conyzoides, Mimosa pudica, Lantana camara, Lpomoea
cairica, and Bidens pilosa) in China using 138 hyperspectral bands of spectrograph S185
(OASVM: 89%; OARF: 84%) [56] and wood small-reed (Calamagrostis epigejos), blackberry
(Rubus), and goldenrod (Solidago) in southern Poland using 30 MNF bands of airborne
HySpex images (OASVM: 91%; OARF: 93%) [57].

The aim of this study was to create a reliable map of Lupinus polyphyllus spatial distribu-
tion based on multiple classification and thresholding methods. The influence of the raster
dataset on the obtained accuracies was analyzed by comparing the original hyperspectral
image data (430 HySpex spectral bands) and a variable number of MNF bands (1–50 most
informative bands). The second important task was to assess the informativeness of data
obtained in different periods of the growing season because plant species characterize
unique absorption features, which change due to phenology. The research area is located on
valuable Natura 2000 meadows used for agriculture, i.e., cows graze and grass is mowed
for hay, which significantly changes the plant species composition during the growing
season. This is important because lupine has bacteria in its roots that synthesize nitrogen
compounds, allowing the gain of a competitive advantage over surrounding plants. This
study further expands the methodology presented in two previous articles, which focused
on identifying goldenrods, reed grass, and blackberries in suburban areas of the Silesian
agglomeration [57,58]. The aim of the present study was to verify whether the methodology
used is repeatable in a completely different area and in the case of other invasive plants,
thus confirming the potential of aerial hyperspectral data and machine learning in the
identification of invasive plants regardless of their location and species composition.

2. Materials and Methods
2.1. Research Areas and Objects

Lupinus polyphyllus is a perennial plant of the family Fabaceae, which is native to
North America and was intentionally introduced to Europe as an ornamental plant in
the 19th century [6]. The species quickly spread, especially in ruderal habitats (roadsides,
wastelands, degraded areas) and semi-natural habitats, such as meadows, grasslands, and
forest edges. Lupine grows up to 1.5 m in height [59]. It has long, clustered purple or
dark blue inflorescences and leaves that form a characteristic rosette (Figure 1). The plant
blooms from June to August [60]. Lupine spreads via the vegetative growth of clumps
and seeds collected from long, hairy pods. The plant is frost-resistant, insensitive to water
shortages, and can easily regenerate after the destruction of the aboveground parts. In
addition, this species can fix nitrogen and allelopathically reduce the germination of other
plants, leading to significant changes in the structure of plant communities and a decrease
in species richness [32,61].

The research was conducted in two research areas located in south-western Poland:
the Kamienne Mountains (Natura 2000 site: PLH020038; 9.3 km2; KA1) and Rudawy
Janowickie (Natura 2000 site: PLH020011; 13 km2; RJ1); see Figure 2. Both are mountainous
areas where the spread of lupines threatens valuable natural habitats protected under
the Natura 2000 program, that is, habitat types 6510 (lowland hay meadows) and 6520
(mountain hay meadows). These areas are very heterogeneous because the small meadows
belong to different farmers who use different farming practices, such as mowing for hay
and cows grazing on pastures.



Remote Sens. 2024, 16, 580 4 of 22Remote Sens. 2024, 16, x FOR PEER REVIEW 4 of 23 
 

 

 
Figure 1. A lupine specimen with a characteristic inflorescence (left); recording the location of the 
reference polygon in the Kamienne Mountains area (right). Photos taken on 7 August 2016. 

 
Figure 2. Location of research areas in SW Poland (overview map at the top) and the extent of aerial 
images for the Rudawy Janowickie (RJ1, left) and Kamienne Mountains (KA1, right) areas. The lo-
cations of the reference polygons in the first field campaign are marked on the aerial images. 

Figure 1. A lupine specimen with a characteristic inflorescence (left); recording the location of the
reference polygon in the Kamienne Mountains area (right). Photos taken on 7 August 2016.
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Figure 2. Location of research areas in SW Poland (overview map at the top) and the extent of aerial
images for the Rudawy Janowickie (RJ1, left) and Kamienne Mountains (KA1, right) areas. The
locations of the reference polygons in the first field campaign are marked on the aerial images.
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2.2. Research Methodology Overview

The method presented in this article continues and extends previous studies on the
identification of invasive plant species using hyperspectral images and machine learning
methods [57,58]. This process is divided into the following steps:

• The acquisition and processing of airborne hyperspectral images.
• Obtaining and preparing reference field data.
• Classifier training and iterative accuracy assessment.
• The preparation of final maps using thresholding frequency images and statistical

accuracy reports.

The methodology is presented in the scheme below (Figure 3) and described in detail
in the subsequent subsections.
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2.3. Airborne HySpex Hyperspectral Images

Aerial hyperspectral images were obtained and processed by the MGGP Aero com-
pany three times during the 2016 growing season in both research areas (Table 1). For
this purpose, two HySpex VNIR-1800 and SWIR-384 (Norsk Elektro Optikk, Skedsmoko-
rset, Norway) cameras were placed on a Cessna 402 B aircraft [62]. Using the HySpex
VNIR-1800 scanner, 182 spectral bands in the range 416–995 nm with a spatial resolution
of 0.5 m were acquired; while using the HySpex SWIR-384 sensor, 288 spectral bands in
the range 954–2510 nm with a resolution of 1 m were acquired. HySpex RAD software was
used to convert the original image digital number (DN) value into a radiation brightness
value. Geometric corrections were made using the digital terrain model in PARGE 3.1
software (PARametric GEocoding) [63], and atmospheric corrections were made using
the MODTRAN5 algorithm in ATCOR-4 6.2 software (ATmospheric CORrection) [64–66].
Hyperspectral data from both sensors were combined and resampled to 1 m spatial resolu-
tion, and 19 spectral bands of the HySpex VNIR-1800 scanner were removed due to the
overlap in the spectral ranges of both sensors. The last 21 bands in the SWIR range (longer
than 2.35 µm) were removed owing to extensive noise, which resulted in 430-band images
acquired in the spectral range 416–2396 nm and 16-bit radiometric resolution. An MNF
transformation removed noise and compressed the most important information.

Table 1. Dates of flight campaigns and field measurements.

Number of
Campaign

Date of Flight Campaigns Date of Field
MeasurementsKamienne Mountains Rudawy Janowickie

C1 21 May 2016 21 May 2016 May/June 2016
C2 7 August 2016 7 August 2016 August 2016
C3 12 September 2016 11 September 2016 September 2016

2.4. Field Research

Field measurements were conducted a few days after the flight campaigns. Dense
patches of lupine and co-occurring plants were located in the research areas, including
Aegopodium podagraria L. (goutweed), Arrhenatherum elatius (bulbous oat grass), Cirsium
rivulare (plume thistle), Festuca rubra (creeping red fescue), Geranium sylvaticum (wood
cranesbill), Petasites hybribus (butterbur), and Urtica dioica (nettle). Based on field measure-
ments (location of plant patches recorded using a GNSS device) and photointerpretation
techniques using HySpex images, reference polygons for lupine, surrounding plants, and
other land cover types were created (Figure 2).

The polygons covered a square approximately 4 × 4 pixels in size. The number of
reference polygons for lupine and co-occurring plants depended on the number of plant
patches found during the first field campaign in the study areas. In the area of the Kamienne
Mountains, 180 reference polygons were initially established for lupine and 250 for co-
occurring plants, while in the Rudawy Janowickie area, there were 100 for lupine and
200 for other plants. For each other land cover class occurring in the studied areas, i.e., trees,
soils, buildings, and water, 50 polygons were prepared. The location of the polygons was
constant and determined for the first campaign and repeated for subsequent measurement
campaigns. If the reference polygon was disturbed in subsequent campaigns (e.g., mowed
or shaded), it was removed from the reference set. The final numbers of reference polygons
for both areas and individual campaigns are presented in Table 2.

Reference polygons were then randomly divided in a 50/50% ratio into a training–
testing set and a validation set. If the number of reference polygons was smaller than that in
the first campaign, the number of validation polygons was increased at the expense of the
training set to ensure a constant and equal validation set for each campaign (90 polygons
for lupines in the KA1 area and 50 polygons for lupines in the RJ1 area). From the set of
training–testing polygons, 300 pixels for each class were randomly selected for classifier
training. This is the recommended number of training pixels from previous research [57],
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which is sufficient to identify invasive plant species with high and stable accuracy. Splitting
the training–testing and validation sets at the polygon level made the set of validation pixels
spatially independent of the training pixels. Moreover, the validation dataset remained
unchanged between iterations. Avoiding the spatial autocorrelation of these sets and
multiple sampling (separate for each iteration) allowed for a more reliable and objective
assessment of accuracy.

Table 2. The numbers of reference polygons for lupine, co-occurring plants, and land cover classes
in three campaigns (C1–C3) in both research areas (Kamienne Mountains—KA1 and Rudawy
Janowickie—RJ1).

Research
Area Campaign

Number of Reference Polygons

Lupine (Training/Validation
Polygons)

Co-Occurring
Plants Land Cover Classes

KA1
C1 180 (90/90) 250 200 (50 for each class: buildings, soil, trees, water)
C2 170 (80/90) 250 200 (50 for each class: buildings, soil, trees, water)
C3 145 (55/90) 250 200 (50 for each class: buildings, soil, trees, water)

RJ1
C1 100 (50/50) 200 150 (50 for each class: buildings, soil, trees)
C2 96 (46/50) 200 150 (50 for each class: buildings, soil, trees)
C3 98 (48/50) 200 150 (50 for each class: buildings, soil, trees)

2.5. Classification Process and Accuracy Assessment

The next stage involved testing and optimizing the SVM and RF classification algo-
rithms. The radial basis function (RBF) kernel was chosen for the SVM algorithm due to its
effectiveness as confirmed with numerous studies [54,67]. Various penalty costs (10, 100,
1000) and gamma parameters (0.01, 0.1, 0.25, and 0.5) were tested using pixels from the
training–testing sets and the grid search method with 10-fold cross validation. Taking error
and dispersion into account, the optimal values (gamma: 0.01, cost: 1000 for the spectral
bands, and gamma: 0.1 and cost: 1000 for 50 MNF bands) were selected. For the RF, the
number of trees was set to 500 and the out-of-bag (OOB) error analysis was performed
to select the mtry parameter (number of variables randomly sampled as candidates at
each tree branch split). The optimal mtry = 140 was selected for the classification of
430 spectral bands and mtry = 10 was selected for 50 MNF transformation bands.

We used an iterative accuracy assessment method [68–70], which enabled a more
objective comparison of the results for different input datasets, classification algorithms,
or campaigns.

The procedure involved the following steps repeated 25 times:

• the random selection of 300 training pixels for each class from the training–testing
dataset (number of pixels recommended according to a previous study [57]);

• RF and SVM classifiers trained on a variable number of MNF bands (from 1 to 50) and
a set of 430 HySpex hyperspectral bands for each campaign;

• accuracy assessment based on the spatially unchanging validation dataset (spatially
separated from the training set).

The following parameters were calculated using the confusion matrix: overall accuracy
(OA), Cohen’s kappa, producer’s accuracy (PA), user’s accuracy (UA), and F1 score for
classes. For each tested data scenario, a boxplot of the F1 score distribution was generated
to determine how the selected raster dataset and classifier affected the obtained lupine
identification accuracies.

Based on the F1 score distributions for lupine, campaign and raster datasets were
selected that allowed for the most accurate identification of lupine in both research areas.
The Shapiro–Wilk test was used to check whether the F1 score for lupine was normally dis-
tributed. Mann–Whitney–Wilcoxon tests [71] at a significance level of 0.05 were performed
to indicate whether there were statistically significant differences between the F1 scores for
lupine obtained for various campaigns and raster datasets.
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2.6. Image Post-Classification Analysis

For the selected data scenarios (best campaign and raster dataset), the classification and
accuracy assessment processes were repeated 100 times. One hundred post-classification
images were generated, and the number of lupine occurrences in each pixel of each image
was counted to create frequency images. The frequency images were then thresholded to
present on the final map only pixels that were consistently indicated by the classifiers as
lupine. Following the recommendations from previous research [58], a threshold of 95 was
chosen, which indicated pixels recognized by the algorithm as given species for a minimum
of 95 out of 100 iterations. This high threshold reduced class overestimation, reduced the
salt and pepper effect, and indicated locations that were almost unambiguously identified
as lupine.

Accuracy reports, including confusion matrices and classification accuracy parameters
(i.e., OA, Cohen’s kappa, PA, and UA), were prepared on the validation datasets that were
spatially independent of the training datasets. The verification data for KA1 consisted of
90 reference polygons for lupine and 225 polygons for the background (other plant and
land cover classes), whereas the verification set consisted of 50 polygons for lupine and
175 polygons for the background for the RJ1 area.

3. Results

The classifications enabled identifying lupine, with a median F1 score of 0.85 in the
area RJ1 and 0.83 in the area KA1. The accuracy increased with the number of MNF
bands used in the classification of datasets comprising fewer than 20 bands (Figure 4).
The highest accuracies were obtained for classifications performed on about 20 to 40 MNF
bands (median F1 score from 0.76 to 0.85 depending on the campaign and classification
algorithm). In all analyzed cases (except RF classification in the second campaign and
SVM in the third campaign), there were no statistically significant differences between
classifications made for 30 and 40 MNF bands (Figure A1 in Appendix A). The use of
more than 40 MNF bands did not significantly affect the RF classification accuracy. For the
SVM algorithm, this did not significantly improve accuracy or resulted in a reduction in
accuracy of up to 6 percentage points. Hence, it can be concluded that the set of 30 MNF
bands is the optimal choice for lupine identification, and allows for obtaining the highest
accuracies while reducing the data volume and classification time. For the RF algorithm,
the interquartile distance for 25 classification iterations on different numbers of MNF bands
was smaller than that for the SVM algorithm. Therefore, the results obtained were less
variable between the iterations.

The analysis of the eigenvalue graphs generated during the MNF transformations also
showed that approximately the first 30 bands of the MNF transformation were the most
informative (Figure 5). For the data with respect to each tested campaign, the curves flatten
out for more than 30 MNF bands.

The use of 20–40 MNF transformation bands allowed us to obtain up to 0.17 higher
F1 scores for lupine compared to that using 430 HySpex spectral bands (Table 3). The
accuracies obtained on 430 spectral bands using the SVM algorithm were higher (median
F1 score from 0.72 to 0.81) than with the RF algorithm (median F1 score from 0.62 to 0.75,
Table 3, Figure A2 in Appendix A).
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Figure 4. Distribution of F1 scores for the lupine class for random forest and support vector machine
classifications carried out in two research areas—Kamienne Mountains and Rudawy Janowickie
(tested datasets containing from 1 to 50 MNF bands, 25 iterations for each tested classification
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represent, respectively, Q1 − 1.5 × IQR and Q3 + 1.5 × IQR [57]. The box marked with a green line
highlights the highest median.
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Figure 5. Eigenvalue plots for 50 first bands of the minimum noise fraction transformation for HySpex
images in the Kamienne Mountains (KA1) and Rudawy Janowickie (RJ1) areas in three research
campaigns (C1–C3).

Table 3. Accuracy of support vector machine (SVM) and random forest (RF) classifications for
different scenarios—430 spectral bands of HySpex image or different numbers of minimum noise
fraction (MNF) bands (10–50) in the three campaigns (C1–C3). Bold values are the results with the
highest lupine identification accuracy. The best results for each campaign are grayed out. Statistically
significant differences between the accuracies obtained using subsequent raster datasets for each
classifier are marked with *. Detailed tables showing statistically significant differences between
raster datasets, campaigns, and algorithms are included in Appendix A.

Area Raster Datasets

Median F1 Score Accuracy for Lupine (25 Iterations)

C1 C2 C3

RF SVM RF SVM RF SVM

Kamienne
Mountains

(KA1)

430 spectral
bands 0.64 * 0.76 * 0.75 * 0.80 * 0.70 * 0.77 *

10 MNFs 0.75 * 0.74 * 0.80 * 0.76 * 0.77 * 0.76 *
20 MNFs 0.80 * 0.77 * 0.83 * 0.80 * 0.79 * 0.76 *
30 MNFs 0.81 0.78 0.82 0.82 0.80 0.78
40 MNFs 0.81 0.79 0.82 0.83 0.80 0.78
50 MNFs 0.81 0.78 * 0.82 0.82 0.80 0.77 *

Rudawy
Janowickie

(RJ1)

430 spectral
bands 0.70 * 0.81 * 0.70 * 0.79 * 0.62 * 0.72 *

10 MNFs 0.69 * 0.70 * 0.79 * 0.79 * 0.72 * 0.72 *
20 MNFs 0.77 * 0.77 0.82 * 0.82 * 0.78 * 0.77 *
30 MNFs 0.79 0.77 0.84 * 0.85 0.80 0.79 *
40 MNFs 0.79 0.77 0.83 0.84 0.79 0.78 *
50 MNFs 0.79 0.77 0.83 0.82 * 0.79 0.73 *

The frequency of occurrence of a
median F1 score above 0.8 3 1 8 7 0 0

In both study areas, the highest lupine identification accuracy was obtained during
the second campaign (F1 score: 0.85 for RJ1, F1 score: 0.83 for KA1). Considering the
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scenarios listed in the table above, a median F1 score above 0.8 was most often obtained for
this campaign (C2). At the beginning of August (C2), lupine was at its peak of growth; it
bloomed and filled large, compact patches, which made it easier to identify. Statistically
significant lower accuracies were obtained in the spring (F1 score: 0.81) and autumn (F1
score: 0.80) campaigns (Table 3, Figure A3 in Appendix A). During the first campaign in
May (C1), lupine was identified before the flowering period and some specimens were
still small and visually similar to co-occurring plants. In the third campaign (September
C3), lupine inflorescences were withered, and some of the plant patches were attacked by
a fungal disease of lupine, i.e., powdery mildew (Erysiphe pisi). The use of meadows and
pastures, especially mowing and grazing of animals, also made identification difficult. For
campaign C1, the highest median F1 score (SVM: 0.79, RF: 0.81) for lupine was obtained for
scenarios using 30–50 MNF bands (Figure 4, Table 3) for both research areas. For campaign
C2, the highest F1 scores (SVM: 0.85, RF: 0.84) were obtained for 20–40 MNF bands in KA1
and 30 MNF bands in RJ1. Campaign C3 showed similar tendencies, with scenarios using
30 and 40 MNF bands achieving the highest F1 scores (SVM: 0.79, RF: 0.80). The results
show that, regardless of the time of data acquisition (campaign) or study area, the datasets
containing 30 and 40 MNF bands performed best. Space used on a hard disk (HDD) for
30 MNF bands was more than 5 times lower than the full set of original hyperspectral
bands. Moreover, in the best-case scenarios, both the RF and SVM algorithms obtained
comparable results (a maximum difference of two percentage points).

Based on the above results, 30 MNF bands from the second campaign (C2) were used
to prepare the final lupine maps for both research areas. Pixels classified by RF and SVM
classifiers as lupine a minimum of 95 times (out of 100 iterations) are marked in red on the
maps below (Figures 6 and 7).

Maps obtained using thresholding frequency images in the KA1 area achieved similar
map accuracies for both classification methods (OA: 89%, Cohen’s kappa: 0.73, F1 score for
lupine: 0.80, Table 4). Lupine invasions were mainly located in the meadows and pastures
in the northwest and southeast regions of the area.

Table 4. Confusion matrices for lupine spatial distribution maps in the Kamienne Mountains area
obtained using support vector machine and random forest algorithms. The set of validation pixels
included 90 validation polygons for lupine and 225 background polygons (125 polygons for co-
occurring plants and 25 polygons for each land cover class: buildings, soil, trees, water).

Kamienne Mountains

Support Vector Machines

Class Lupine Background Total UA (%) Commission
(%)

Lupine 784 69 853 91.91 8.09
Background 332 2751 3083 89.23 10.77

Total 1116 2820 3936
PA (%) 70.25 97.55

Omission (%) 29.75 2.45

Random Forest

Class Lupine Background Total UA (%) Commission
(%)

Lupine 793 85 878 90.32 9.68
Background 323 2735 3058 89.44 10.56

Total 1116 2820 3936
PA (%) 71.06 96.99

Omission (%) 28.94 3.01
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Figure 6. Maps of lupine spatial distribution, created using 30-MNF-band classifications from the
second campaign and thresholding frequency images for SVM (left) and RF (right) classification in
the Kamienne Mountains area.

Both post-classification images had an omission error of approximately 29%, especially
in places where the lupine density was lower (over 20% of the reference polygon for lupines
covered with co-occurring species). Some patches of lupine were poorly regrown after
mowing or grazing by farm animals. A possible reason for the underestimation was also
the use of a high threshold, which resulted in the rejection of less reliable pixels classified
as lupins from the final map.

The overestimation error on both maps was approximately 9% and occurred where
visually similar plants, such as butterbur (Petasites hybribus), nettle, meadow thistle (Cirsium
rivulare), and bulbous oat grass, grew.
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In the Rudawy Janowickie area, the SVM method yielded a higher identification
accuracy (OA: 94%, Cohen’s kappa: 0.82, F1 score for lupine: 0.86) than the RF algorithm
(OA: 93%, Cohen’s kappa: 0.78, F1 score for lupine: 0.83, Table 5). The overestimation error
for the lupine class was lower in the support vector machine image (8%) than in the RF
image (12%), and the lupines were mostly mixed with tall grasses, that is, bulbous oat grass.

Table 5. Confusion matrices for lupine spatial distribution maps in the Kamienne Mountains area
obtained using support vector machine and random forest algorithms. The set of validation pixels
included 50 validation polygons for lupine and 175 background polygons (100 polygons for co-
occurring plants and 25 polygons for each land cover class: buildings, soil, trees).

Rudawy Janowickie

Support Vector Machines

Class Lupine Background Total UA (%) Commission
(%)

Lupine 796 66 862 92.34 7.66
Background 193 3361 3554 94.57 5.43

Total 989 3427 4416
PA (%) 80.49 98.07

Omission (%) 19.51 1.93

Random Forest

Class Lupine Background Total UA (%) Commission
(%)

Lupine 773 107 880 87.84 12.16
Background 216 3320 3536 93.89 6.11

Total 989 3427 4416
PA (%) 78.16 96.88

Omission (%) 21.84 3.12

4. Discussion

In this paper, we have presented the original processing chain for invasive species map-
ping using machine learning algorithms and hyperspectral data. The presented method of
multiple classification and thresholding of frequency images allows the results of many
inferred images to be included in the final map. The final maps show only those pixels that
were classified as lupine in 95 out of 100 classification iterations, based on a random selec-
tion of training and validation patterns from field polygons. This increases the reliability of
the results and reduces the “salt and pepper” effect. Despite the similarity of Lupinus poly-
phyllus to co-occurring plants (similar leaf color and physiological characteristics to native
plants, occurring in heterogeneous, small patches), it was possible to identify this species
using the SVM and RF algorithms with satisfactory accuracy (F1 score from 0.8 to 0.86) in
two research areas. The high potential and repeatability of the method were also confirmed
in a different location in Poland (Malinowice village), where wood small-reed, blackberry,
and goldenrod were identified with high accuracies (F1 score above 0.9, [57,58]). However,
these species were more distinguishable from the surrounding plants than lupines because
of their characteristic inflorescences and their occurrence in large and dense patches.

It can be concluded that the Lupinus polyphyllus identification results using both
machine learning algorithms (RF and SVM) were similar (F1 score for lupine: 0.8 and
OA: 89% in the Kamienne Mountains area and F1 scoreRF: 0.83, OARF: 93%, F1 score
SVM: 0.86, and OASVM: 94% in the Rudawy Janowickie area). The methods used by other
researchers to identify lupines have yielded similar accuracies to those presented in this
article (Table 6); however, they refer to a different spatial scale [32,72,73]. The identification
of lupine in the UNESCO biosphere reserve “Rhön” in Germany using UAV RGB, thermal
imagery, and an object-based image analysis (OBIA) with the RF algorithm gave a similar
mean overall accuracy of approximately 89%, but some models highly overestimated the



Remote Sens. 2024, 16, 580 15 of 22

results (false positive rate up to 47%) [72]. A further comparison of the results is difficult
because of the lack of reported class-accuracy metrics for individual classes in the above-
mentioned studies. The object classification method worked well for data with very high
spatial resolution (0.5 m), but the research was limited to a small area (1.5 km2) due to
the capabilities of the drone (DJI-Phantom IV quadcopter). Lupine identification has also
been carried out in the same reserve using WorldView-3 satellite data and the gradient-
boosting machine method [32], but a lower classification accuracy was obtained (F1 score
for lupine: 0.76) than those presented in the present article. Panchromatic and multispectral
data from this satellite enabled a prediction map to be obtained for a larger “Leitgraben”
area, but the authors noted that only large patches of lupine (area at least 3 × 3 m2) were
detected. Similar conclusions were drawn when identifying another lupine species, Lupinus
nootkatensis, in Iceland using SPOT 5 images [73]. The authors used a maximum likelihood
classifier to achieve high accuracy (OA: 94% and Kappa: 0.88); however, they observed that
sparse and freestanding lupine areas and patches with a combination of other vegetation
were not detected. However, these small, solitary patches of lupine are indicated as the
main factor causing the spread of this species into new areas. Low accuracies for white
and yellow lupine (F1 score below 0.04) were also obtained when mapping annual crops
in Portugal using Sentinel-2 data and the random forest method [74]. This confirms that,
in the case of lupine identification, high spatial and spectral resolutions of the images are
important, especially if the beginning of the invasion is to be detected.

Table 6. Comparison of the obtained results with those reported in the literature. Explanation of
abbreviations: UAV—unmanned aerial vehicle; RGB—image with red (R), green (G), and blue (B)
bands; OBIA—object-based image analysis; CHM—canopy height model; RF—random forest; SVM—
support vector machine; MLC—maximum likelihood classifier; GBM—gradient-boosting machine.

Author Sensor Algorithm Invasive Species F1 Score OA (%)

Present paper HySpex RF Lupinus polyphyllus 0.80–0.83 89–93
SVM Lupinus polyphyllus 0.80–0.86 89–94

[72] UAV (RGB and
thermal cameras) OBIA + RF Lupinus polyphyllus - 78–97

[32] WorldView-3 GBM Lupinus polyphyllus 0.76 -

[73] SPOT 5 MLC Lupinus nootkatensis 0.76–0.92 64–94

[19] HySpex RF Spiraea tomentosa 0.83 99

[58] HySpex SVM
Calamagrostis epigejos 0.87–0.9 -

Rubus spp. 0.89–0.98 -
Solidago spp. 0.96–0.99 -

[20] HySpex RF
Molinia caerulea 0.78–0.89 -

Calamagrostis epigejos 0.61–0.72 -

[9] HySpex RF Echinocystis lobata 0.64–0.87 97

[37] PROBE-1 RF
Centaurea maculosa 0.67 84

Euphorbia esula 0.72 86

[75] HySpex RF

Solidago gigantea 0.73 -
Phragmites australis 0.79 -

Molinia caerulea 0.80 -
Filipendula ulmaria 0.80 -

[76] AISA SVM Carduus nutans 0.74–0.88 79–91

[52] AISA SVM Tamarix spp. 93–95 86–88
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In this paper, the impact of the number of MNF bands used on the accuracy achieved
was also analyzed. The accuracy of lupine classification increased with the number of MNF
bands in the input set but stabilized for sets consisting of more than 20 transformed bands.
Datasets containing about the first 30 MNF bands gave the highest classification accuracies
(median F1 score for lupine from 0.77 to 0.85), while accuracies obtained for the 430 HySpex
spectral bands were lower (median F1 score from 0.62 to 0.81). Improvements in species
identification accuracy after using dimensionality reduction methods have also been noted
in other studies [28,30]. The use of 30 MNF bands to classify small-reed wood, goldenrod,
and blackberry in southern Poland resulted in higher average F1 score accuracies for the
three species (F1: 0.86–0.91) compared to the results with 430 HySpex hyperspectral bands
(F1: 0.93–0.95, [57]). The use of 20 MNF bands resulted in higher classification accuracies for
seven tree species for RF (OA: 87%) and a multi-class classifier (MCC, OA: 89%), compared
to using 118 HyMap bands (OA: 46% for RF and OA: 79% for MCC) [29]. Additionally,
testing different raster data (MNF bands from HySpex data, lidar products, and vegetation
indices) for the identification of steeplebush (Spiraea tomentosa) in the Lower Silesian forests
gave the highest RF classification accuracies for 25 MNF bands (OA: 99%, F1 score for
steeplebush: 0.83) and the obtained accuracies were similar to those for lupine in this
article [19].

The study showed that the best period for mapping lupines was the second campaign
(August). The F1 score for lupine obtained in the summer campaign (SVM up to 0.85;
RF up to 0.84) was higher than that in the other campaigns. Other authors have also
shown that the beginning of September is not the best time to identify lupines in central
Europe (Germany) and recommended collecting data during the peak flowering period
of Lupinus polyphyllus [32]. The campaign during the flowering period of the identified
plants (August) was also optimal for classifying small-reed wood (F1: 0.90) and blackberry
(0.98), whereas goldenrod was well identified in every campaign (F1 from 0.96 to 0.99) [58].
Similar conclusions were reached during the classification of Echinocystis lobata in the Bzura
River valley in central Poland using the RF algorithm and HySpex images [9]. The F1 score
for the species was the highest in summer (0.87) and was lower in spring (F1: 0.64) and
autumn (F1: 0.75). The blooming time was also the best period for identifying Molinia
caerulea; in August, the F1 score for this species ranged from 0.86 to 0.89, while the accuracy
was lower in June (F1 score from 0.78 to 0.87) and September (F1 score from 0.84 to 0.88) [20].
Significant differences in the accuracy obtained depending on the time of data acquisition
were also observed during Carduus nutans identification using the SVM algorithm and
AISA data, when OA = 91% was obtained for the peak flowering period for musk thistle
(June) and OA = 79% was obtained before flowering (April) [76]. The variability in the
spectral characteristics of co-occurring plants is also worthy of attention. In the case of
steeplebush identification, a higher F1 for the species was obtained for the September
campaign (F1: 82.96%) compared to the August campaign (F1: 77.25%) [19]. The woody
parts of the steeplebush were more visible in autumn, owing to changes in the spectral
characteristics of the surrounding plants and lower biomass.

5. Conclusions

Monitoring the spread of invasive plant species in protected areas is crucial for imple-
menting appropriate management and control programs that will limit the negative effects
of the invasion. In this paper, using the example of lupine, we presented step-by-step how
to reliably map invasive species using HySpex hyperspectral data and machine learning
methods. The proposed methodology of the multiple classification and thresholding of
frequency images allows the results of multiple predictions to be included in the final map,
which improves the quality and reliability of species maps created for control purposes.
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The following conclusions were drawn:

• The results show that aerial and field data should be collected at the peak of flowering
of the identified plant to obtain the most accurate maps. The highest accuracy of
the lupine class in both research areas was obtained during the summer campaign
(August, median F1 score ranging from 0.82 to 0.85). Statistically significantly lower
accuracies were obtained for the spring (F1 score: 0.77–0.81) and autumn (F1 score:
0.78–0.80) campaigns.

• The use of approximately 30 MNF bands must be considered for classification pur-
poses when hyperspectral data are used. Input datasets consisting of 30 MNF bands
produced the highest accuracies for the lupine class (median F1 score ranging from 0.77
to 0.85), and the use of a higher number of MNF bands did not significantly increase
the identification accuracy. The classification accuracies obtained on the original 430
spectral bands were lower (median F1 score from 0.62 to 0.81) in both study areas.

• The classifiers gave similar results for lupine identification in both research areas (F1
score: 0.80–0.86), which confirms that both RF and SVMs can be successfully used to
identify IAS.

In the next stages of research, consideration should be given to checking whether the
presented method can be applied to publicly available satellite data and what information
loss this may cause. Multispectral data from satellites, e.g., Sentinel-2 or WorldView-4, could
reduce costs and provide the ability to frequently acquire data for large areas to update
existing maps. However, they may be insufficient to detect the beginnings of an invasion,
especially in the case of plant species that are spectrally similar to the surroundings. It
would also be possible to consider using other algorithms, e.g., deep neural networks or
object-based classification, on high-spatial-resolution UAV data [77–79].
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between support vector machine (SVM) and random forest (RF) results, grouped by the campaigns
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both classifiers (RF—random forest and SVM—support vector machine), grouped by the raster
data used (430HS—430 HySpex spectral bands, 10/20/30/40/50MNF—number of minimum noise
fraction transformation bands) for two research areas—Kamienne Mountains and Rudawy Janowickie.
Statistically significant differences between campaigns and algorithms are grayed out.
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