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Abstract: Sea ice motion (SIM) plays a crucial role in setting the distribution of the ice cover in the
Arctic. Limited by images’ spatial resolution and tracking algorithms, challenges exist in obtaining
coastal sea ice motion (SIM) based on passive microwave satellite sensors. In this study, we developed
a method based on random forest (RF) models to obtain Arctic SIM in winter by incorporating wind
field and coastal geographic location information. These random forest models were trained using
Synthetic Aperture Radar (SAR) SIM data. Our results show good consistency with SIM data retrieved
from satellite imagery and buoy observations. With respect to the SAR data, compared with SIM
estimated with RF model training using reanalysis surface wind, the results by additional coastal
information input had a lower root mean square error (RMSE) and a higher correlation coefficient
by 31% and 14% relative improvement, respectively. The latter SIM result also showed a better
performance for magnitude, especially within 100 km of the coastline in the north of the Canadian
Arctic Archipelago. In addition, the influence of coastline on SIM is quantified through variable
importance calculation, at 22% and 28% importance of all RF variables for east and north SIM
components, respectively. These results indicate the great potential of RF models for estimating SIM
over the whole Arctic Ocean in winter.

Keywords: sea ice motion; random forest; cryosphere

1. Introduction

Sea ice motion (SIM) is largely controlled by winds and ocean currents and is also
affected by sea ice internal stress and the Coriolis force. The influence of coastal conditions
on sea ice drift can be conveyed through internal friction when the ice field is compact.
The shape of the coastline also affects the ocean currents that further modify the motion of
sea ice [1–4]. The differential sea ice velocity causes deformation including the opening
and closing of leads, which affects not only the mass balance of sea ice but also the spatial
variation in the latent and sensible heat fluxes in the Arctic Ocean [5].

At present, sea ice motion data based on microwave imagery are the most extensively
utilized data for studying the drift of sea ice in the polar regions [6–8]. Due to the limitations
of image resolution and algorithms, the existing passive microwave SIM products typically
do not cover the sea area 100–150 km from the coastline. In recent years, high-resolution
Synthetic Aperture Radar (SAR) SIM datasets have gradually become an important source
of high-resolution sea ice motion features [9–11]. While SAR ice velocity data can include
coastal ice motion, they are limited by their spatial and temporal coverage. Additionally, in
near-shore areas, due to the interaction between sea ice and shore, sea ice drift is slower
than further offshore [3], which makes it difficult for satellite tracking methods to estimate
ice motion. Therefore, challenges remain in obtaining SIM over the whole Arctic Ocean
through satellite remote sensing methods.
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In addition to extracting ice motion from consecutive satellite images, it can be directly
estimated from surface wind data [8,12]. However, such SIM data cannot accurately reflect
the dynamics of sea ice under the impact of internal friction, ocean currents, and coastal
boundaries [3,8]. In recent years, machine learning (ML) methods have been shown to have
great potential for sea ice motion estimation and prediction [13–16]. For example, Palerme
and Müller (2021) [14] reproduced the result that the wind field is the most important factor
affecting the Arctic ice speed, and the influence of parameters related to sea ice and shore
boundaries cannot be ignored since they accounted for 20–30% of the variable importances
(for the concept of importance in RF models, see [17]). in addition, Hoffman et al. (2023) [16]
compared the performance of persistence (PS), linear regression (LR), and a convolutional
neural network (CNN) model, and found that different machine learning methods have
better SIM estimation and prediction quality in areas far from the coast than in near-shore
areas. But to our knowledge, the impact of shore boundaries on SIM has not yet been
quantitatively considered.

In this study, we employed a random forest model to generate Arctic sea ice motion
with only wind and coastline forcing parameters as the input variables. We used the
random forest method to estimate SIM because it has been successfully used in previous
works and can quantify the contributions of different input variables. This article aimed to
obtain the pan-Arctic covered sea ice motion data over the Arctic Ocean with a particular
focus on reducing the uncertainties in the coastal area. The remainder of this paper is
organized as follows: Sections 2 and 3 introduce the data used and the random forest
model. The evaluation and comparison of the results are presented in Section 4. The
limitations of this study are discussed in Section 5. Finally, the conclusions are presented
in Section 6.

2. Data
2.1. Target and Input Variables for the RF Model
2.1.1. The Target Variable

The daily gridded sea ice drift derived from Sentinel-1 SAR imagery (SEAICE_GLO_
SEAICE_L4_NRT_OBSERVATIONS _011_006) distributed by Copernicus Marine Service
(CMEMS) was used as the target SIM for the training of the random forest model and
as the reference dataset for verification in this study (Table 1). It has a 10 km spatial
resolution and one-day temporal resolution from daily data at 12:00 UTC. Although there
are inconsistencies with buoy SIM data [14], SAR SIM data are still the optimum for random
forest model training, mainly due to the most abundant near-shore SIM data.

Table 1. Variables and configurations of different RF SIM models used in this work.

Input Variable Target
Variable

ERA5
10 m

Wind (W)

Distance
(D)

Azimuth
Angle (α)

Sector Angle
of Coastline
Based on a
Maximum
Extend of

90 km (θ90 km)

OSI SAF
OSI-401-d

Ice Concen-
tration (SIC)

PIOMAS Sea
Ice Thickness

(SIT)
SAR SIM

RF-W
√

*
√

RF-all
√ √ √ √ √

RF-all + SIC
√ √ √ √ √

RF-all + SIC + SIT
√ √ √ √ √ √ √

*
√

represents that the variable is included.

2.1.2. Input Variables

This study divided the input variables into two categories: wind variables and coast-
line parameters (Table 1). Firstly, given that the wind field is a key factor influencing
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sea ice motion [18–20], we utilized 6-h wind field data from the European Centre for
Medium-Range Weather Forecasts (ECMWF) ERA5 10 m wind speed data [21].

Secondly, in the representation of coastal effects, we introduced three parameters for
each drift ice parcel (Figure 1a): (1) the distance to the nearest coastline (D); (2) the azimuth
angle of coastline (α) that is the counterclockwise angle from east axis to the line connecting
the nearest point of the ice pack at the shore boundary; and (3) the distance between the
farthest and closest points that can affect SIM (D′) and sector angle (θ) of effective coastline
that is an approximation of the extent width of the coastline that influence the SIM. Among
these parameters, the maximum extent width (D′) is used to determine the width range of
the coastal influence on ice. Then, the sector angle (θ) of sea ice and the coast is set within
the range of D + D′. In this study, the values of D′ are 10 km, 30 km, 50 km, 70 km, and
90 km. The coastline used in this article was extracted from the ocean bathymetry used by
a coupled ocean-sea ice data assimilation system for the North Atlantic Ocean and Arctic
in the TOPAZ4 prediction system [22].
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Figure 1. (a) Schematic diagram of the relationship between a drift ice parcel in the circle center
and the near-shore boundary, showing distance (D) and azimuth angle (α) to the nearest coastline,
and the distance between the farthest and closest points (D’), and sector angle (θ) of the influencing
coastline. (b) Flow chart of the sea ice motion estimation based on random forest model.

2.2. Comparison Datasets

Sea ice motion derived from buoy positions of the International Arctic Buoy Program
(IABP, data available at https://iabp.apl.uw.edu/data.html, accessed on 31 January 2024)
was used here to evaluate and compare with the SIM results derived from RF models. We
also used a newly distributed multi-sensor low-resolution sea ice motion dataset from
the Ocean and Sea Ice Satellite Application Facility (OSI SAF), which is based on Passive
Microwave Radiometer data (SSM/I, SSMIS, AMSR-E, and AMSR2). This dataset has a
75 km spatial resolution and a one-day time interval. It is referred to as OSI-455 hereafter.
Meanwhile, the National Snow and Ice Data Center (NSIDC) Polar Pathfinder Daily 25 km
EASE-Grid Sea Ice Motion Vectors, Version 4 data, which provides daily sea ice motion
in the polar regions with a spatial resolution of 25 km, were used for verification as well.
This daily NSIDC sea ice motion product (referred to as NSIDC-merged hereafter) merges
several types of data such as gridded satellite imagery (AVHRR, AMSR-E, SMMR, SSM/I,

https://iabp.apl.uw.edu/data.html
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and SSMIS), data from the International Arctic Buoy Program, and surface winds from
NCEP/NCAR Reanalysis.

SIM variations are dominated by the surface wind [18], so wind-derived SIM is an
important supplement to satellite SIM observations, especially when satellite observations
are missing. Here, we considered two types of SIM derived solely from wind. One was
from NSIDC v4 based on NCEP/NCAR wind data (called NCEP-W), and it was estimated
under the assumption that the sea ice speed is approximately 1% of the surface wind
speed with a turning angle of about 20 degrees right to the wind following the results of
Thorndike and Colony with a reduced wind factor [18]. The second wind-derived SIM
was estimated from ERA5 10 m wind data using the same assumption as [18], with SIM
speed equal to 2% of surface speed and SIM direction 20 degrees to the right from the wind
(referred to as ERA5-W).

3. Methods
3.1. Configuration of Random Forest Models

Random forests (RF) is a machine learning algorithm commonly used for classification
and regression tasks [23]. It is an ensemble method that combines multiple decision trees
to make predictions. Here, the random forest regression model of the Python library
scikit-learn 1.3.0 [24] was used. Figure 1b shows the process flow of the approach used
in this paper. Two sets of models for the eastward and northward components were
separately developed using SAR data as the target variable. The quality of the split nodes
was measured using Friedman’s mean squared error as the standard.

Hyperparameters are used to control the learning process of an RF model. K-fold cross-
validation is a method for assessing the performance of a model that involves splitting
the dataset into k subsets or “folds” (here, k = 10), with each part/fold serving as the
validation set in turn with the remaining parts serving as the training set. This study used
the k-fold cross-validation method to conduct a sensitivity analysis of hyperparameters
(Section 3.4). We adopted the Palerme and Müller (2021) [14] methods to train random forest
models utilizing validation data from 80% of the training dates (16% of the total dataset,
as displayed in Figure 1b), which were randomly chosen within the training periods. The
remaining 84% of the dates were then employed to assess the model’s performance. This
process was repeated ten times, and each time, the average mean absolute error (MAE) of
the ten models was used to evaluate the quality of the hyperparameters. The performance
of each model was averaged over the ten iterations to provide a more robust estimate.

The result of a random forest regressor is the mean value of the results from all decision
trees. Thus, a property of the RF algorithm is that it tends to predict fewer extreme values
than the target variable has because the mean value from all decision trees is used as the
prediction, making it difficult to generate extremely low and high SIM magnitudes.

3.2. Constructing Training DatasetDatasets

Since sea ice melts and opens in summer in the Arctic, it is in a free drift state and less
affected by the coastline. Therefore, the study period of this article focused on consolidated
sea ice in the Arctic Ocean during the freezing period. Similar to Palerme and Müller
(2021) [14], the data during the winter months (December to April) of 2018 to 2020 were
taken into consideration. November was excluded because typically then Arctic Ocean
is not yet fully covered by sea ice during November (Chukchi Sea is still open), which
differs from the main applicable range of our model (winter full sea ice cover). The dataset
was randomly divided, with 80% designated as the training data and the remaining 20%
designated for model evaluation as the testing data. To maintain consistency, all models
were trained using the same training period. In addition, because of the large length scale
of dynamics of compact sea ice and the high spatial resolution of SAR SIM, the speed of
sea ice at nearby grid points showed a strong correlation. Considering all the grid points
where SAR observations were accessible after interpolating into 12.5 km grids could lead
to the use of numerous highly correlated points for model training, increasing the risk of
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overfitting (which means when models capture the noise in the training data, resulting in
worse performance). Palerme and Müller (2021) suggested that using 2% leads to the best
performance [14]. Hence, this study employed the same proportion. We also excluded the
Canadian Arctic Archipelago (CAA) area because there the SIM is largely influenced by the
presence of narrow channels and land boundaries instead of surface wind.

3.3. Method of Evaluation

In addition to the normal measures, including bias, mean absolute error (MAE), root
mean squared error (RMSE), and correlation (r), for the evaluation of SIM data, we also
took skill [15,16,25] into consideration, which was calculated as follows:

skillx,y = 1 −

√
(xi − yi)

2√
(xi − x)2

(1)

where x and y indicate observations and prediction values, respectively. Further, in
Section 4.2, we converted the eastward and northward components into magnitude and
direction to find how the coastline parameters affect the SIM results. The magnitude of
sea ice drift in the two datasets was straightforward, but due to the circular nature of the
directional data when comparing the direction of sea ice drift in the different datasets, we
followed the method described by Equation (2), in which Θx and Θy are directions with
the subscripts x and y representing observations and predictions, respectively, and

∆Θ = Θx − Θy, |∆Θ| ≤ 180◦ (2)

Here, to measure the contribution of each input variable in the total model, the variable
importance is used. The numerical value of the importance of each input variable is calculated
as the (normalized) total reduction in the Gini index, which is a measure of homogeneity in
the data, brought by the given variable [24].

3.4. Sensitivity Experiments of Hyperparameters and Setting up Input Variables

In this section, k-fold cross-validation was first used to identify the optimal hyper-
parameters for various input parameters. The number of decision trees and max features
were optimized. The max features parameter determines the number of features considered
when looking for the optimal split point in a decision tree (Figure 2a). An RF model uses
all the input variables but only considers the number of ‘max features’ input variables for
node splitting. MAE monotonically decreases with the increase in the number of decision
trees (Figure 2b). After 100, the increase in the number of decision trees has little impact
on MAE. In order to balance the computational efficiency and a relatively low MAE, we
used 300 decision trees for all sensitivity experiments of the input variables (there were no
significant improvements when using more trees). As for the max features, the number
was set to 1 for experiments including ERA5 surface wind (W), wind and distance (W + D),
wind, distance, and azimuth angle (W + D + α) as the input variables, and it was set to
2 in the case of experiments that incorporated θ (W + D + α + θ), as in each case their
MAE values were the lowest (Figure 2a). Since the hyperparameters for the scenarios with
different distances (10 km, 30 km, 50 km, 70 km, and 90 km) were essentially the same, only
the results for the 90 km scenario are presented here.

Subsequently, the impact of the different input variables was assessed using the
remaining 20% of the data (testing data) apart from 80% training data of the total SAR
data. This allowed us to evaluate the performance of the results when incorporating
different input variables. The process of adding input variables reduced the overall MAE
and RMSE and increased the correlation, as displayed in Figure 3. When the boundary
parameters were taken into account, the MAE and RMSE decreased by approximately 30%
and 31%, and the correlation with the SAR data improved by around 14%. As a result, the
model that takes into account all input variables and has a D’ of 90 km, was chosen as the
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optimal model. As summarized in Table 2, this pair of models is henceforth referred to as
‘RF-all’, and ‘RF-W’ (Table 2) refers to the model with only wind as the input variable. The
‘RF-all + SIC’ and ‘RF-all + SIC + SIT’ results are shown in Section 5 (Discussion).
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Table 2. Evaluation of the performances of the Arctic sea ice drift produced using random forest (RF)
algorithms and validation datasets during the period from January 2015 to December 2017 (except
for May, June, July, August, September, October, and November). Buoy, OSI SAF, and NSIDC merged
sea ice motion datasets were used as references.

Bias (cm/s) MAE (cm/s) r RMSE (cm/s) Skill

Reference Dataset: Buoys

RF-all 0.23 3.83 0.75 4.26 0.45
RF-W 0.12 4.95 0.57 5.50 0.39

ERA5-W 0.04 5.87 0.58 6.52 0.28
NCEP-W 0.44 5.26 0.79 7.51 0.19
OSI-455 −0.04 3.71 0.74 5.33 0.42

NSIDC-merged −0.04 1.26 0.97 1.98 0.79

Reference dataset: OSI-455

RF-all 0.13 3.31 0.84 3.68 0.56
RF-W 0.10 3.87 0.77 4.30 0.49

ERA5-W 0.39 4.93 0.78 6.27 0.28
NCEP-W 0.91 5.00 0.75 6.63 0.24

Reference dataset: NSIDC merged

RF-all −0.01 3.91 0.78 5.07 0.31
RF-W 0.02 3.99 0.72 4.43 0.39

ERA5-W −0.11 5.27 0.70 5.84 0.18
NCEP-W 0.54 3.59 0.79 4.81 0.33

4. Results and Analysis
4.1. Comparison with Reference Dataset

In order to maintain consistency with the three-year length of the training data, we
chose data from 2015 to 2017 to generate SIM data. In this section, the MAE and RMSE
were been calculated, as displayed in Table 2, to compare with reference data, and the
RF-W was used as a baseline. When compared to buoy observations, RF-all generally
outperformed the results obtained using only the wind field as the input variable for all
evaluation indicators, except that NCEP-W had a better correlation, and ERA5-W and
RF-W had lower bias. The RF-all SIM showed nearly the same performance as the OSI-455
data, with a slightly higher correlation (0.75), MAE (3.83 cm/s), and bias (0.23 cm/s) and a
lower RMSE (4.26 cm/s) and skill (0.41). In this context, the NSIDC-merged data were the
best match for the buoy SIM data, given that they used buoy data as one of the merged
sources [26]. Despite this, the use of the RF model that considers coastal information has
demonstrated excellent potential for retrieving sea ice drift.

When RF-all, RF-W, ERA5-W, and NCEP-W were compared with the OSI-455 SIM
data, RF-all showed the best results, with the highest correlation (0.84) and skill (0.56)
and the lowest MAE (3.31 cm/s) and RMSE (3.68 cm/s), followed by RF-W, though
RF-W had the lowest bias (0.10 cm/s). The other two wind-derived SIM datasets had
the worst performance.

When NSIDC-merged data were used for comparison, the situation was a bit different
as NCEP-W showed a lower RMSE and better correlation and skill than the RF-all results.
Inevitably systematic errors result because the acquisition time of SAR data used for
training the random forest model was not strictly consistent with that of NCEP-W and
NSIDC, which strictly use a unified UTC time, due to the characteristics of polar orbits. It is
noted that RF-W showed a lower RMSE and higher skill than RF-all when compared with
the NSIDC-merged data because the NSIDC-merged product presented a lower SIM speed
than OSI-455. When comparing RF-all and ERA5-W, the correlation (0.78) between RF-all
and NSIDC-merged was significantly higher than the result of ERA5-W (0.70). Overall, the
RF-all results showed excellent performance when compared to OSI-455 and NSIDC since
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the correlations with these two datasets were generally over 0.78, and only wind field and
coastline information were added as inputs.

The overall patterns of the 3-year averages in the different datasets are demonstrated
in Figure 4; RF-all reached a correlation of 0.9 with the three-year average SIM fields from
the OSI-455 and NSIDC-merged data, generally exhibiting a high degree of accordance.
Compared with the uniform SIM results obtained by using only the wind field (including
RF-W, ERA5-W, and NCEP-W results), RF-all showed a more accurate spatial distribution
of SIM as satellite observations. It successfully captured the clockwise circulation in
the Beaufort Sea, the Transpolar Drift Stream, and the fast sea ice motion in the Fram
Strait. Near the coast, especially in the area north of the CAA, the RF-all results showed a
significant decrease in the magnitude of SIM, indicating the coastal resistance to onshore sea
ice motion, which was also obvious in the OSI-455 and NSIDC-merged data. The average
monthly results are depicted in Figure 5, where the RF-all results align well with those from
the OSI-455 and NSIDC data, whether as a three-year average or a monthly average. The
RF-all SIM pattern was closer to the OSI-455 data (r = 0.84) than the NSIDC-merged data
(r = 0.78) (Table 2), especially in the area around the Svalbard Archipelago and Novaya
Zemlya. According to previous studies [26–28], OSI-405-c is recognized as a relatively more
reliable SIM product than NSIDC. OSI-455 adapted the OSI-405 algorithm’s baseline and
shortened the time interval from two days to one day. Hence, our results correlated better
with OSI-455, indicating they provided a better look into the real sea ice motion. In terms
of the performance of inter-annual variation, a slightly lower correlation with the OSI-455
and NSIDC-merged data occurs in April and March (Table 3). This may be attributed to the
transition to spring, when the physical properties of sea ice change and the influence of
wind becomes more significant. The main mean bias in the SIM pattern in April was mostly
due to the difference in the SIM direction in April 2016 and the magnitude in April 2015,
and the rest of the results were in good agreement (Figure A2 and Table A2). Conversely, in
December and February, RF-all had the best consistency with those two datasets (above
0.85 and 0.78).
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Table 3. Monthly correlation (r) between SIM data.

r
(RF-All)

-
(OSI-455)

(RF-All)
-

(NSIDC-Merged)

(NSIDC-Merged)
-

(OSI-455)

January 0.83 0.75 0.68
February 0.85 0.78 0.73

March 0.82 0.74 0.70
April 0.82 0.75 0.71

December 0.86 0.80 0.76
all 0.84 0.78 0.75

The ice motion results considering only wind (RF-W: Figure 4d, ERA5-W: Figure 4e,
and NCEP-W: Figure 4f) presented more homogenous sea ice motion than the other datasets.
Generally, ERA5-W with the 2% wind factor rule overestimated the SIM magnitude, while
NSIDC-W with a 1% magnitude ratio underestimated it. They were both unable to ac-
curately capture the overall pattern of SIM. Thus, it can be inferred that the RF model is
capable of learning ocean current information to a certain extent from SAR data, even when
the wind field is the only input variable, since there are strong ocean surface currents that
overcome the impact of wind in SIM east of Greenland [2,18,19], where RF-W showed
better performance than NCEP-W and ERA5-W.

Furthermore, it is noted that RF-all showed better results in the Beaufort Sea, the north
of the CAA and Greenland, and the central Arctic region, while in the East Siberian Sea
and the Laptev Sea, it did not perform so well. This indicates that the coastline parameters
have a more significant impact on the ice drift influenced by onshore wind, such as in
the region to the north of the CAA, while they have less impact in regions influenced by
offshore winds, especially in the Laptev Sea. This is reasonable because when sea ice is
affected by shoreward winds, the coast will restrict its mobility and change the magnitude
and direction of the velocity [3,29].

To further analyze the performance of RF-all and RF-W, the spatial distributions of the
MAE and RMSE for each scenario using OSI-455 and NSIDC-merged as reference datasets
were plotted in Figures 6 and A1, showing more details. It was observed that the MAE and
RMSE had similar patterns for RF-all. In the CAA and its surrounding region, as well as
in the coastal areas of the Laptev Sea and the Central Arctic, they were relatively small,
while in the Chukchi Sea and the Fram Strait, they were relatively large. The overall MAE
and RMSE showed great improvements compared with the RF-W, which were particularly
strong in the area near Greenland, the Fram Strait, and the north of the CAA. The only
exceptions were the Chukchi Sea and the Kara Sea, especially when NSIDC-merged was
used as the reference (Figure A1), but in the Chukchi Sea and Kara Sea, the improvements
were very small.

Although the performance of RF-all did not precisely align with the two datasets in
some small regions, the overall correlations with the OSI-455 and NSIDC-merged datasets
were both above 0.78 (see Table 2). The correlation was higher with the OSI-455 data than
with the NSIDC-merged data, especially in the Beaufort Sea region and north of the CAA,
while low correlations were obvious in the Greenland Sea, where the sea ice motion is
influenced by underlying strong southwest East Greenland Current [2,18,19]. In some areas
near the shore, e.g., north of Greenland and around the New Siberian Islands, RF-all SIM
showed low correlations with OSI-455 and NSIDC-merged. Comparing the correlations
of RF-W and RF-all in Figure 6i, the main improvements were located around Greenland,
while less significant changes occurred north of the CAA, as depicted by the MAE and
RMSE spatial maps.
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Figure 6. During the winter from 2015 to 2017, mean absolute error (MAE) of (a) RF-W and (b) RF-all
and (c) their difference (MAE(RF-W)–MAE(RF-all)), (d–f) show root mean squared error (RMSE), and
(g–i) show correlation. OSI-455 was used as reference.

4.2. Relationship between RF-Derived SIM and Coastline Parameters

The importance of each predictive variable was calculated using the built-in algorithm
of the Python library scikit-learn 1.3.0. As shown in Figure A3, due to the fact that the wind
field is a significant factor controlling sea ice motion, the east and west components of the
wind vector are the most important variables explaining the corresponding components
(u and v) of ice motion. The boundary parameters, accounting for 22% and 28% of the
u and v of SIM, respectively, show a relatively uniform distribution among the various
parameters. They have an indisputable influence on sea ice motion.

In order to clarify the impact of the coastline parameters on SIM, we converted the u
and v of SIM into magnitude and direction and calculated the improvement fraction of the
RF-all results compared to the RF-W and ERA5-W results (Figure 7). Here, we followed
the same method of improvement fraction as in Palerme and Müller’s research [14]. This
fraction was the proportion of the number of grid points that were better (smaller MAE)
than the corresponding grid points in the reference data. We used the ice speed field in
2021 because the SAR data (used as reference in this section) from 2018 to 2020 had already
been used as training data for our model and there was no public SAR data before 2018.
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The results of RF models demonstrated a marked enhancement in the coastal areas
north of the CAA and the Central Arctic Ocean, as shown in Figure 7a,c,e. When the
SIM was generated based on wind, using random forest improved the results significantly
in the area mentioned above compared to the empirical formula results (see Figure 7a).
Further enhancement of fractional improvement is seen from Figure 7c when the coastline
parameters were taken into account with a primary focus on the regions within 100 km of
the coast in the north of the CAA and near the Atlantic side of the Central Arctic Ocean.
Overall, RF-all SIM results performed better than ERA5-W results, especially in the north
of the CAA and the Central Arctic Ocean (as shown in Figure 7e). In terms of SIM direction,
these near-shore improvements were less pronounced, and instead, predominantly in the
Central Arctic Ocean and offshore a 200 km zone in the Fram Strait, the SIM was notably
improved in RF-all compared with RF-W and ERA5-W results (Figure 7d,f).

Considering the great improvement for SIM magnitude within the area in the north
of the CAA (magenta area in Figure 7e), we plotted the line graph below to compare how
the magnitude improvement fractions for the different RF model results varied with the
distance to the nearest land point. In general, the improvement fraction of RF models
gradually decreased as the distance of the sea ice from the coast increased. Among them,
both RF-W and RF-all demonstrated similar improvement performances compared to
ERA-W in this area (blue and magenta lines in Figure 7g), but RF-all further improved
within 100 km of the shore based on RF-W (indicated by the red line). The valid number of
SAR data (grey bars in Figure 7g) in this area did not show a rapid change with the distance
to the nearest coastline, indicating that the improvement of SIM with distance to coast was
unrelated to the uneven distribution of SAR data.

It has been observed that in the north of the CAA, the sea ice is primarily multi-year ice,
and the prevailing wind direction is onshore (as indicated by the black vector in Figure 7e).
This has resulted in the greatest improvement in terms of fractional coverage, which is
consistent with the SIM performance discussed in Section 4.1. Because the coast will restrict
the motion of ice when it is impacted by winds blowing towards the shore and the tight
packing of sea ice enables the influence of the shore boundary to spread through internal
stresses. However, the improvement was very limited in the Chukchi Sea and East Siberian
Sea where onshore wind exists. We infer this difference is related to different ice types. In
the north of the CAA, thick multi-year ice dominates; the Chukchi Sea and East Siberian
Sea, thin first-year ice is predominant. In the literature, the length scale of friction is more
for multi-year ice than first-year ice [3,29].

We also considered the NCEP-W results with a 1% wind factor results in the fraction
improvement analysis. Since we used ERA5 data when configurating the RF models, we
estimated SIM from ERA5 wind data using the same formula, and these SIM data are called
‘ERA5-W-1%’ hereafter (correlation between ERA5-W-1% and NCEP-W was 0.92). The
results are shown in Figure A4. In this case, the results for direction were similar with
the results for magnitude. For the magnitude compared to ERA5-W-1%, RF-W and RF-all
showed more pronounced improvements in the Nansen basin. However, the RF-all results
outperformed ERA5-W-1%, especially in the area within 100 km north of the CAA. This
also proves the great impact of the coastline parameters in generating SIM, and in the
context of sea ice drift estimation, the inclusion of boundary parameters can significantly
improve the performance for magnitude but has less impact on direction. The internal ice
stress in general tends to align onshore drift into shoreline orientation [29], but here the
low improvement could be partly due to the fact that the SIM direction has a high degree
of randomness under low speed.
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5. Discussion

Sea ice concentration (SIC) and sea ice thickness (SIT) play important roles in sea ice
motion estimation or prediction [1–3,13–16]. Here, we also attempted to train the RF model
by including SIC and SIT as input variables, to estimate SIM. The daily SIC from OSI SAF
OSI-401-d [30] and the SIT from PIOMAS [31] were used in the RF models. In general,
including SIC and SIT smoothed the SIM and decreased its differential field.

Our results show that when only the SIC was incorporated, the correlation of SIM and
SAR improved from 0.89 to 0.90 compared with SAR. From Figure 8d,e, we infer that the
difference between the effect of SIC and the boundary parameters is that inputting SIC
in RF models improved the direction more effectively (additionally considering SIT was
about the same for both), while the RF model with coastline parameters (RF-all) showed a
more significant improvement in SIM magnitude (Figure 7) Furthermore, when considering
SIT as an input variable, the correlation of SAR and SIM improved to 0.92. Although the
results show that SIC and SIT together accounted for a large proportion of the variable
importance (12% and 11% for u and v), when compared with buoy and OSI-455 SIM data
(Table A1), the bias, MAE, RMSE, r, and skill, were almost unchanged from those of the
RF-all results. According to Figure 8, compared to RF-all, adding SIC and SIT at the same
time mainly changed the SIM magnitude in the Kara Sea and Barents Sea, but in general,
changes neither in magnitude nor direction are obvious. According to Figure 8c, the overall
contribution of SIC and SIT to SIM was lower than that of the shore boundary parameters,
and the SIT’s contribution was twice that of the SIC. The improvements in the direction
of these two input parameters were slightly larger than in the magnitude, and there is no
obvious change near the shore (Figure 8d–g). Considering the limited contribution of SIC
and the high uncertainty of the daily SIT derived from the reanalysis system [32], as well
as the limited improvement of SIM over the whole Arctic Ocean, we focused on the SIM
estimated by the RF model without SIC and SIT inputs.

This article mainly focused on the impact of coastal boundaries on SIM, so the model
training relied on SAR data. However, the spatial distribution of the SAR data was un-
even, which may impact on the model performance. Our research results show that in
RF-all + SIC and RF-all + SIC + SIT results (Figure 8d–g), the regions with significant im-
provements in SIM basically overlapped with those with abundant SAR data (Figure 1c,d
in [14]), while the improvements were more limited in the Eurasian Basin region with
less SAR data. In future research, more extensive coverage of Arctic SAR data can be
introduced to reduce the impact of the insufficient spatial representation of training data
on SIM estimation.

The merging of SIM data from different sources is currently a hot topic in the research
and development of SIM products [8,12,33]. The abnormal changes in ice surface charac-
teristics caused by weather processes often lead to a failure of traditional SIM tracking
methods. These situations will become more frequent as polar atmospheric river events
increase [34,35]. Therefore, the SIM estimated in this study does not depend on the phys-
ical characteristics of the sea ice surface and can be used as a reliable SIM data source
to integrate with SIM retrieved using satellite imagery, improving the quality of merged
SIM products.
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Figure 8. The 2015–2017 monthly averages of sea ice drift speed (shading) and velocity (vectors)
for (a) magnitude of difference of considering SIC minus RF-all var and velocity of considering SIC.
(b) Same as (a) but for considering SIC and SIT. (c) Pie charts of the variable importance of each input
parameter of RF all var considering SIC and SIT. (d,e) Fraction of Arctic SIM estimated by the RF
models considering SIC which outperform RF-all. (f,g) Same as (d,e) but for considering SIC and SIT.
Daily SAR observations were used as reference. The blue, black, and red outlines represent offshore
distances of 100 km, 200 km, and 300 km, respectively.

6. Conclusions

Machine learning methods are superior in estimating and predicting sea ice motion [13–16].
However, the existing studies have not fully considered the impact of shore boundaries on
the sea ice motion. In this paper, we estimated the daily sea ice motion based on a random
forest model, which only depends on surface wind and explicit coastline information. Our
results show that the new model could accurately obtain the Arctic sea ice drift fields, and
in particular, by considering the coastline information, the correlation with SAR data could
be improved from 0.78 to 0.89. The correlations with OSI-455/NSIDC-merged data and
buoys were also high (0.78 and 0.75, or higher). Furthermore, this dataset also included the
near-shore area within 100–150 km, which fills the gap area near the shore in the existing
dataset. The RF-all results showed better results in the areas where SIM is influenced by
onshore wind, such as north of the CAA, while the improvement in the region on the
Siberian side of the Arctic was not significant. Based on variable importance calculation,
the coastline parameters accounted for 22% and 28% of the importance, and after further
consideration of sea ice concentration and sea ice thickness, the proportions were 16% and
21% for u and v, respectively.
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Previous studies have indicated that, in addition to surface winds, ocean surface
currents are also an important factor affecting sea ice motion [18]. Since accurate daily
observations of Arctic ocean surface currents are very difficult to obtain, this study did
not use them as input variables for the RF models. However, we believe that the coastline
parameters themselves limit the movement of ocean surface currents, so the coastline
parameters we used also imply information about ocean currents to some extent, and
internal friction of sea ice is a major factor in the near-shore zone at onshore wind. This is
why introducing coastline parameters can effectively improve ice speed estimation.

It should be noted that, in estimating sea ice motion, since both input variables (wind
field and boundary parameters) are relatively easier to obtain than remote sensing or buoy
observations, RF shows great potential in operationally retrieving the pan-Arctic sea ice motion.
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Appendix A

Table A1. Evaluation of the performances of the Arctic sea ice drift produced using random forest (RF)
algorithms considering sea ice concentration (SIC) and sea ice thickness (SIT) and validation datasets
during the period from January 2015 to December 2017(except for May, June, July, August, September,
and October). Buoy, OSISAF and NSIDC merged sea ice motion datasets were used as references.

Bias (cm/s) MAE (cm/s) r RMSE (cm/s) Skill

Reference Dataset: Buoys

RF-all + SIC 0.23 3.77 0.76 4.18 0.45
RF-all + SIC + SIT 0.47 3.70 0.76 4.11 0.46

Reference dataset: OSI-455

RF-all + SIC 0.08 3.32 0.84 3.69 0.56
RF-all + SIC + SIT 0.24 3.21 0.85 3.57 0.58

Reference dataset: NSIDC-merged

RF-all + SIC −0.01 3.77 0.78 4.19 0.44
RF-all + SIC + SIT 0.14 3.68 0.79 4.08 0.45

https://resources.marine.copernicus.eu
https://cds.climate.copernicus.eu
https://www.ncei.noaa.gov/products/international-arctic-buoy-program
https://nsidc.org/data/nsidc-0116/versions/4
https://osi-saf.eumetsat.int/products/osi-455
https://osi-saf.eumetsat.int/products/osi-401-d
https://osi-saf.eumetsat.int/products/osi-401-d
https://psc.apl.uw.edu/research/projects/arctic-sea-ice-volume-anomaly/data
https://psc.apl.uw.edu/research/projects/arctic-sea-ice-volume-anomaly/data
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Table A2. Correlation (r) in April each year between SIM data.

r
(RF-All) (RF-All) (NSIDC-Merged)

- - -
(OSI-455) (NSIDC-Merged) (OSI-455)

2015 0.82 0.76 0.72
2016 0.82 0.78 0.79
2017 0.84 0.80 0.75
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Figure A4. Same as Figure 7, but for ERA5-W-1% instead of EAR5-W. 
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