remote sensing

Article

Spectral-Spatial Domain Attention Network for Hyperspectral
Image Few-Shot Classification

Zhonggiang Zhang 2, Dahua Gao '*, Danhua Liu ! and Guangming Shi 3

check for
updates

Citation: Zhang, Z.; Gao, D.; Liu, D.;
Shi, G. Spectral-Spatial Domain
Attention Network for Hyperspectral
Image Few-Shot Classification. Renote
Sens. 2024, 16, 592. https://doi.org/
10.3390/rs16030592

Academic Editor: Salah Bourennane

Received: 14 December 2023
Revised: 15 January 2024
Accepted: 22 January 2024
Published: 4 February 2024

Copyright: © 2024 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

School of Artificial Intelligence, Xidian University, Xi’an 710071, China; zqzhang6@stu.xidian.edu.cn (Z.Z.);
dhliu@xidian.edu.cn (D.L.); gmshi@xidian.edu.cn (G.S.)

College of Information and Control Engineering, Xi’an University of Architecture and Tecnnology,

Xi’an 710055, China

3 Peng Cheng Laboratory, Shenzhen 518000, China

Correspondence: dhgao@xidian.edu.cn

Abstract: Recently, many deep learning-based methods have been successfully applied to hyperspec-
tral image (HSI) classification. Nevertheless, training a satisfactory network usually needs enough
labeled samples. This is unfeasible in practical applications since the labeling of samples is time-
consuming and expensive. The target domain samples that need to be classified are usually limited
in HSIs. To mitigate this issue, a novel spectral-spatial domain attention network (SSDA) is proposed
for HSI few-shot classification, which can transfer the learned classification knowledge from source
domain contained enough labeled samples to target domain. The SSDA includes a spectral-spatial
module, a domain attention module, and a multiple loss module. The spectral-spatial module can
learn discriminative and domain invariance spectral-spatial features. The domain attention module
can further enhance useful spectral-spatial features and avoid the interference of useless features.
The multiple loss module, including few-shot loss, coral loss, and mmd loss, can solve the domain
adaptation issue. Extensive experimental results demonstrate that on the Salinas, the University of
Pavia (UP), the Indian Pines (IP), and the Huoshaoyun datasets, the proposed SSDA obtains higher
classification accuracies than state-of-the art methods in the HSI few-shot classification.

Keywords: hyperspectral image few-shot classification; spectral-spatial module; domain attention
module; multiple loss module

1. Introduction

Hyperspectral images contain hundreds of bands, with rich spectral and spatial
information [1]. They have been explored in many areas, such as HSI classification [2],
geological survey [3], biomedicine [4]. In particular, the HSI classification task is the basis
of HSI analysis. It allocates a label to each pixel. However, the acquisition and learning of
HSI features have always been the focus of and difficult in HSI classification research. How
sufficiently and effectively features are extracted directly affects the classification results.

In the early stages of research, most of classification methods are mainly handcrafted
feature extraction [5] and conventional classifiers. The widely used handcraft feature
extraction methods contain principal component analysis (PCA) [6], linear discriminant
analysis (LDA) [7], and simple linear iterative cluster (SLIC) [8]. Feng Xue et al. proposed
an improved functional principal component analysis method, which can extract more
effective functional features by making full use of the label information of training sam-
ples [6]. Qiuling Hou et al. proposed a novel supervised dimensionality reduction method
termed linear discriminant analysis based on kernel-based possibilistic c-means, which
use a KPCM algorithm to generate different weights for different samples [7]. Munmun
Baisantry et al. proposed a band selection technique based on the FDA and functional
PCA fusion method. This method can select shape-preserving, discriminative bands that
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can highlight the important characteristics, variations as well as patterns of the hyperspec-
tral data [9]. Conventional classifiers mainly contain support vector machine (SVM) [10],
k-nearest neighbor (KNN) [11], logistic regression [12], and so on. Amos Bortiew et al.
proposed an active learning method for HSI classification using kernel sparse represen-
tation classifiers (KSRC). KSRC has proven to be a robust classifier and has successfully
been applied to HSI classification [13]. Nevertheless, the handcrafted features extracted by
these methods usually have weak representative and discriminative feature characteristics,
which result in unsatisfactory classification performance.

Recently, learning-based methods have been applied to classify HSIs and have achieved
great success due to their greater representation ability [2,14-28]. Yushi Chen et al. [2]
designed a stacked autoencoder to learn spectral information and spatial information.
Then, they proposed a deep learning framework combined PCA and logistic regression
to fuse two kinds of features. The classifier of the deep learning method unsurprisingly
achieved higher accuracy. Yushi Chen et al. [29] further designed a new deep framework
that combined spectral spatial feature extraction and classifier to improve classification
accuracy. Wei Hu et al. [20] presented a simple CNN architecture that contained multiple
convolutional layers for classification. Jiaojiao Li et al. [21] proposed a full CNN to learn
HSI features. Furthermore, a deconvolution network was proposed to enhance HSI fea-
tures. Qichao Liu et al. [18] proposed a novel guided feature extraction unit, which can
enhance the cross-classes region features and suppress the irregular features. Ghaderizadeh
Saeed et al. [17] proposed a mixed 3D-2D CNN, which could learn the useful spectral-
spatial features. Weiwei Song et al. proposed a novel hashing-based deep metric learning
method for hyperspectral images and light detection and ranging data classification. They
also elaborately designed a loss function to simultaneously consider the label-based seman-
tic loss and hashing-based metric loss [23]. Tan Guo et al. designed a dual-view spectral
and global spatial feature fusion network to extract the spatial-spectral features, which
included a spatial subnetwork and a spectral subnetwork [22]. Hao Zhou et al. proposed
a novel multiple feature fusion model, which included two subnetworks of multiscale
fully CNN and multihop GCN to extract the multilevel information from HSIs [24]. Yule
Duan et al. proposed a structure-preserved hyper GCN, which integrated local regular
convolution and irregular hypergraph convolution to learn the structured semantic feature
of HSIs [25]. M.E.Paoletti et al. presented a novel classification method combined the
ghost-module architecture with a CNN-based HSI classifier to reduce the computational
cost, which can achieve a satisfactory classification performance [26]. Swalpa Kumar
Roy et al. proposed a new end-to-end morphological deep learning framework to model
nonlinear information during the training process. The method included spectral and
spatial morphological blocks to extract relevant features from the HSI data [27]. Kazem
Safari et al. proposed a deep learning strategy that combined different convolutional
neural networks to efficiently extract joint spatial-spectral features over multiple scales [28].
Although these learning-based methods have more advantages than conventional methods
in HSI classification, they inevitably require extensive labeled samples to train a suitable
network for classification. Nevertheless, it is usually difficult to obtain labeled samples to
train a good performing neural network, because the collection of labeled samples requires
a lot of time and financial resources.

To mitigate this issue, many scholars have introduced unsupervised methods to assist
in HSI classification [30-32]. Shaohui Mei et al. [30] designed an unsupervised feature
learning method with 3D convolutional autoencoder (3D-CAE), which could effectively
learn spatial-spectral structure features. Lichao Mou et al. [31] proposed an unsuper-
vised network architecture, which introduced an encoder-decoder architecture to extract
unsupervised spectral-spatial features to assist classification.

Meanwhile, some researchers have also presented semi-supervised approaches [33-35].
Kun Tan et al. [33] argued that spatial neighborhood information of samples is very useful
in the semi-supervised HSI classification. Therefore, they used spatial neighborhood infor-
mation to enhance the classifier to improve the classification performance. Yue Wu et al. [34]
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designed a semi-supervised approach to fully extract unlabeled samples information. Fur-
ther, they used a self-training method to gradually increase the sample points confidence,
which could enhance the semi-supervised HSI classification ability. Fuding Xie et al. [35] de-
veloped a multinomial logistic regression module and a local mean-based pseudo nearest
neighbor module to learn labeled samples information. Then, a novel four steps strat-
egy was proposed to conduct semi-supervised classification. The above methods indeed
achieved good classification performance in the case of limited samples. But they mainly
learned the limited labeled features or further explored the features of unlabeled samples
to train the model. It meant that the labeled samples were exactly identical to the unla-
beled samples, which resulted in a network performance always limited by the number
of labeled samples from the target domain data to be classified (namely, the target do-
main). Meanwhile, they also hardly utilized enough labeled samples in other HSIs [36]
(namely, the source domain). In practice, the distribution of the source domain and the
target domain may be different, which makes it difficult to improve the accuracy of HSI
few-shot classification.

To further resolve this issue, meta-learning methods have been proposed to learn
classification abilities from HSIs [37,38]. In particular, meta-learning does not require strict
class consistency and the same distribution between source domain and target domain.
Few-shot learning (FSL) is an important implementation method of meta-learning [39-41],
which can transfer the extracted classification knowledge from source domain to target
domain. In recent years, a growing number of FSL methods have been proposed for HSI
classification [42—45]. Bing Liu et al. [42] proposed a deep FSL method to solve the small
sample size problem of HSI classification via learning the metric space from the training
set. Kuiliang Gao et al. [43] designed a novel classification method based on relational
network and trained it using the idea of meta-learning. Xuejian Liang et al. [44] proposed
an attention multisource fusion method for HSI few-shot classification, which could extract
features from fused homogeneous and heterogeneous data. Xibing Zuo et al. [45] proposed
an edge-labeling graph neural network, which could explicitly quantify the intraclass and
interclass features between different pixels.

Although these FSL methods have achieved good classification accuracy with the
limited labeled samples, the feature extraction ability of the source and target domain
data is still the main factor affecting classification accuracy and thus needs to be improved.
Meanwhile, it is necessary to further enhance useful spectral-spatial features and repress
useless features to improve the classification accuracy. To this end, a novel spectral-spatial
domain attention network (SSDA) is developed in this article. It is composed of a spectral-
spatial module, a domain attention module and a multiple loss module. The spectral-
spatial module is designed to extract discriminative and domain invariance spectral-spatial
features via a spectral branch and a multiscale spatial branch. The domain attention module
is proposed to enhance the contributions of useful spectral-spatial features. The multiple
loss module contains few-shot loss, coral loss, and mmd loss, which can jointly solve the
domain adaptation issue. In particular, the few-shot loss is utilized to minimize the cross
entropy between the predicted probability and the ground truth. The coral loss is utilized
to minimize the difference in learned feature covariances between source domain and
target domain. The mmd loss is utilized to reduce the distribution differences between
source domain and target domain. Extensive experimental results demonstrate that on the
Salinas, University of Pavia (UP), Indian Pines (IP), and Huoshaoyun datasets, the proposed
method achieves higher classification accuracy than state-of-the-art methods with few-shot
samples. This article mainly contains three contributions.

e  To extract discriminative and domain invariance spectral-spatial features, a spectral-
spatial module is developed via a spectral branch and a multiscale spatial branch.
The residual deformable 3D block of the spectral branch can learn rich spectral features,
which can well adapt to the spatial geometric transformations. The multiscale spatial
branch can learn multiscale spatial features, which can learn strong complementary
and related spatial information.
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o Different spectral-spatial features make different contributions to classification. The do-
main attention module is designed via a spectral attention block and a spatial attention
block to further enhance useful spectral-spatial features and suppress useless features.

e By combining the spectral-spatial module, the domain attention module, and the
multiple loss module, a novel spectral-spatial domain attention (SSDA) method is
proposed. It can transfer the classification knowledge from source domain to target
domain to improve the HSI few-shot classification accuracy.

2. Related Work

In this part, we firstly review the definition of few-shot learning, then introduce some
basic networks, such as the 3D convolution and the deformable convolution.

2.1. Few-Shot Learning

Few-shot learning is inspired by the rapid learning mechanism of the human brain.
Humans are very adept at identifying new targets via a very few shot samples. For example,
a child usually needs a few shot samples to recognize what a “tiger” is and what a “rabbit”
is. Few-shot learning is one of the applications of meta-learning [46]. In detail, researchers
hope that after learning many labeled samples (namely source domain), the learning model
can transfer the learned ability of classification to new categories of few shot labeled
samples (target domain). Specifically, during the training phase, C classes are randomly
selected from the two domains, with K samples in each class (total C x K samples), and a
meta-task are constructed as the input of the learning model’s support set. A batch of
samples is extracted from the remaining samples as the query set. That is, the meta-task
requires the learning model to learn how to distinguish the C classes from C x K samples,
which is called the C-way K-shot problem.

2.2. The 3D Convolution and the Deformable Convolution

Traditional CNN usually processes two-dimensional images, and the convolution
kernel used is also two-dimensional, but HSIs have an additional spectral dimension. The
3D-CNN uses three-dimensional convolution to directly learn the spectral and spatial
information of HSIs [47] simultaneously. Therefore, the 3D-CNN is more suitable for HSI
few-shot classification.

However, the traditional 3D convolution kernel is usually fixed in size, which makes
it difficult to handle the spatial geometric transformations. To solve this problem, a 3D de-
formable convolution operation is designed via combining 3D convolution and deformable
convolution [48].

The 3D convolution kernel G can be represented as:

G=(-1,-1,-1),(-1,-1,0),...,(1,1,0),(1,1,1) (1)
Therefore, for each location f( on the output feature map y, we have:

y(fo) = Y. wign)-x(fo+gn) )

gn€G

where x is the input of the feature, w is the weight matrix value of the convolution layer,
and y is the output of the feature. g, enumerates the locations in the convolution kernel
G. In 3D deformable convolution, the 3D convolution kernel G is augmented with offsets
{Agn|n =1,...,N}, where N = |G|. The 3D deformable convolution can be represented as:

y(fo) = Y, w(gn) - x(fo+ 8+ Agn) 3)

gn€G
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3. Materials and Methods

In this section, the spectral-spatial domain attention network (SSDA) architecture
will be introduced in detail, which includes a spectral-spatial module, a domain attention
module, and a multiple loss module.

3.1. SSDA Framework

Figure 1 displays the training framework of the SSDA. In particular, the SSDA contains
two types of FSL. One is the source domain FSL. The other is the FSL for few-shot labeled
samples in the target domain data. Two types of FSL are executed alternately. For each
kind of FSL, there are four steps. First, we designed two mapping layers (M*® and M)
to generate the same cube size from the source domain and target domain separately.
Second, a spectral-spatial module was proposed to learn the discriminative and domain
invariance spectral-spatial features via a spectral branch and a multiscale spatial branch.
Third, a domain attention module was designed to learn the informative and discriminative
spectral-spatial features, which can enhance useful features and avoid the interference
of useless features. Finally, to solve domain adaptation issue, we performed the source
domain FSL by calculating distances between th support set features and the query set
features of each class. Similarly, we could also perform the target domain FSL. Therefore,
we obtained the fsl loss (L), the coral 10ss (L¢orq1), and the mmd loss (L,4) on the source
domain and the target domain separately.

source data

e 99128 —_____ The spectral-spatial

7 11x1,100 MS: feature extraction module F——————— |
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Figure 1. The proposed spectral-spatial domain attention network (SSDA) for HSI few-shot classifica-
tion in the training phase.

Therefore, total loss function of source domain FSL can be repressed by
?otal = Lj’sl + Lioml + Lirzmd (4)

Total loss of target domain FSL can be represented by

cora mmd

Liotul = Lj‘sl + L 1+ L, (5)

Moreover, Figure 2 shows the classification process of the testing phase. It also contains
four steps. First, we used the target mapping layer (M!) to reduce the number of bands
of input samples. Second, the spectral-spatial module learned the supervised samples
features and the testing samples features separately. Third, a domain attention module was
utilized to enhance useful features. Finally, a KNN classifier was utilized to predict the
testing samples.
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Figure 2. The schematic diagram of the SSDA classification in the testing phase.

3.2. The Mapping Layer and the Spectral-Spatial Module

HSIs usually contain tens to hundreds of bands with redundant spectral information.
It always leads to high computational complexity. Therefore, we needed to perform certain
preprocessing on the HSIs, which maps the high-dimensional raw cube to low-dimensional
feature cube. In this case, we sent the data cubes of the same spatial size (9 x 9) from the
source and target domains to the mapping layer to generate the new source domain and
target domain data cubes with the same spectral dimensions (9 x 9 x 100).

To further learn the rich spectral-spatial features from source domain and target
domain data, we designed a novel spectral-spatial module (Figure 3) that contained a
spectral branch and a multiscale spatial branch. The spectral branch contained two residual
deformable 3D blocks (RD3B) and a max pooling layer, which could extract rich spectral
features that could well adapt to the spatial geometric transformations. In particular,
the RD3B contained three 3D deformable convolution layers and a shortcut. The multiscale
spatial branch contained a multiscale spatial block and a concatenate operation, which
could learn multiscale spatial features. In particular, the multiscale spatial block contained
three different spatial scale cubes (9 x 9 x 100, 7 x 7 x 100, 5 x 5 x 100). Three different 3D
convolution layers (16,5 x 5 x 4,16,3 x 3 x 4,16,1 x 1 x 4) could be utilized to generate the
same size spatial scale features (16,5 x 5 x 25). Different spatial scale features have strong
complementary and related information. After the spectral-spatial module, the feature
dimension output by the feature extractor is 5 x 5 x 32.

Spectral features

Max pOOl RD3B
RD3B 82><2><4 ]6,3><3><3 @
8,3x3x3

8,9x9x100 8,5x5%25 16,5x5x25
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D
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—_—
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Figure 3. The spectral-spatial module contains a spectral branch and a multiscale spatial branch.
The residual deformable 3D block contains three 3D deformable convolution layers and a shortcut.

3.3. The Domain Attention Module

Although the spectral-spatial module can extract rich spectral-spatial features, the fea-
tures of different channels usually have different contributions to the classification. To fur-
ther enhance the contribution of informative spectral-spatial features and avoid the inter-
ference of useless features, we propose a novel domain attention module that contains
a spectral attention block (Figure 4) and a spatial attention block (Figure 5). The spec-
tral attention block can produce a spectral attention weight to recalibrate spectral bands.
The proposed spatial attention block can aggregate useful spatial features.
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Figure 5. The spatial attention block.

3.3.1. The Spectral Attention Block

Suppressing useless spectral bands and enhancing informative spectral bands can
efficiently enhance classification performance [49]. Therefore, we built a spectral attention
block (Figure 4) based on a center pooling layer and a fully connection layer. It could gener-
ate an attention weight vector to recalibrate spectral features of input cube. The calculation
of attention weighting A can be represented as

A = ReLU(Wspe x Center(X;) + bspe) ©)

A
Xi=A®X; ()

where X; is the i-th feature, A; is the band weights for the input X;. Ws, is the fully
connected weight parameters, bsp, is the bias, @ denotes the multiplication. The spectral

A
attention features X ; represents the recalibrated X;, which can enhance informative spectral
bands and suppress useless spectral bands.

3.3.2. The Spatial Attention Block

A
The X € R¥*“** contains rich spatial information. To further enhance useful spatial
features and avoid the interference of useless features, a spatial attention block (Figure 5)
was designed to adaptively aggregate the useful spatial features according to the correlation

between different pixels. The correlation S;; € RY**%” can be calculated as:
Ao A
Sij(m,n) = Y X (i,j)@X (m,n) ®

A large value of S;;(m,n) indicates that the correlation between 5\( (,j) and 5\( (m,n)is
high. This operation can aggregate spatial features of similar pixels and avoid interference
from dissimilar pixels. To further enhance the attention weights of similar pixels, we
designed a rectified unit o(-) based on exponential function, which is formulated as:

o(x) = {e ,x > v-max(S;) )

cf,x<v- max(S,-j)

where v is the ratio of the maximum value of Sj;. ¢ is set to —20 that makes the attention
weight close to 0.
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Eventually, the softmax was used to normalize the rectified correlation to gener-
ate the spatial attention weight values. Therefore, the spectral-spatial attention features
Z € RY*%*S can be expressed as:

zZ= Y softmax(a(Sij(m,n)))®}A{(m,n) (10)

1<mn<w

To conveniently calculate the loss between the spectral-spatial attention features of
the source domain and target domain, we adopted a 3D convolution layer (w X w X s, q) to
obtain classification features vector Z' € R'*1%4,

3.4. The FSL and Multiple Loss Module

In the SSDA, FSL is conducted in source domain and target domain alternately. This
can discover transferable knowledge in the source domain and learn individual knowledge
to the target domain simultaneously. In particular, the FSL method is shown in Figure 6.
Taking a C-way K-shot task of source domain data as an example, we randomly selected C
classes from the source domain, and selected K samples for these C classes, respectively,
so that there were C x K samples in total, and used these samples to form a support set
S ={(x,vi) f::XlK Then, we selected N remaining samples from these C classes, a total of
C x N samples to form the query set Q = {(x/, y;) }]C:XlN. The support set samples and query
set samples were first passed through the mapping layer (M?®) to reduce dimensionality.
Further, we adopted the spectral-spatial module to learn spectral-spatial features. Finally,

a domain attention module was designed to learn useful spectral-spatial features.

Source data 19x9xch _|

ey 27/ 24

Randomly select

¢ 8 same classes

aanee [ s (][]

feature extraction
module

Domain attention
module

Mapping layer
MS
!
Spectral-spatial

Figure 6. 3-way, 1-shot few-shot learning task.

Moreover, the source domain and the target domain may come from different HSI
datasets. To alleviate domain adaptation issue, we designed a multiple loss module
consisted of the few-shot loss, coral loss, and mmd loss. In particular, the few-shot loss
was utilized to minimize the cross entropy between the predicted labels and the truth
labels. The coral loss was utilized to minimize the difference in learned feature covariances
between source domain and target domain. The mmd loss was utilized to minimize the
distribution discrepancy between source domain and target domain.

3.4.1. The Few-Shot Loss

For a query sample x;, the predicted probability can be written as:

exp (—d (Fw (xj), z;) )

Pl =11%€Q) = e T ()2

(11)
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where d(-) represents the Euclidean distance, F, () denotes the parameters w of the map-
ping layer, domain attention module, and spectral-spatial module, z; denotes the features
vector of the Iy, class in the support set S, C represents the number of classes, x; represents
sample of the query set and y; denotes the corresponding label.

Based on the cross entropy formula, the few-shot classification loss of a source episode
can be written as:

L=~ ). logPu(y=1x) (12)
(xy)€Qs

where Qs represents the query samples from source domain.

Likewise, the classification loss of a target episode can be represented as:

Lig=— ), logPu(y=1Ix) (13)
(xy)€Q:

where Q; represents the query set samples from target domain data.

3.4.2. The Coral Loss

In this work, we adopted the coral loss to better represent the feature covariances
difference between source domain and target domain and improve the classification per-
formance. In detail, given source domain training examples D; = {Zf},Zf € R? with
labels Ls = {y;},i € {1,...,L}. The unlabeled target domain data can be represented as
Dy = {Z!},Z! € R?, where 73 and Z! are the feature vectors obtained from the source
domain and target domain data through the SSDA, respectively. The number of source
domain samples and target domain samples were set as ns and n; respectively. To be
more specific, we defined Dy and D/ as the j-th dimension of the i-th source domain data
sample and target domain data sample separately. Further, we denoted Cs and C; as the
feature covariance matrices of source domain and target domain separately, which can be

computed by
C=- ! - (DJDS - nl(ﬂDs)T(lTDs)) (14)
s S
C; = ntl_l (DIDt - 7i(ﬂDt)T(lTDt)) (15)

where 1 is a unit column vector and the value of all elements in it is 1.
The coral loss can be represented as the second-order statistics distance between C;
and Cy:

1 2
Lcoml = 442 ||CS - Ct”p (16)
where || - |2 represents the squared matrix Frobenius norm.

3.4.3. The Maximum Mean Discrepancy
The maximum mean discrepancy (mmd) is an efficient nonparametric difference
metric, which is widely used to measure the distribution distance.

2

med(zs/ Zt) = (17)

TRNCIEENIC)

§i=1

H

This formula can calculate the mean discrepancy between source domain and target do-
main. The smaller the value of the mmd, the more similar the two domains, and vice versa.

4. Results

To prove the validity of the SSDA, we conducted extensive comparative experiments
on the four commonly used HSI datasets, including the Chikusei, the Salinas, the University
of Pavia (UP), the Indian Pines (IP), and a new Huoshaoyun mineral exploration dataset
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that was captured by the GF-5 satellite. In particular, the Chikusei was utilized as the
source domain. Other datasets were utilized as the target domain. Three standard evalu-
ation indicators included overall accuracy (OA) and average accuracy (AA), and kappa
coefficients (K) were utilized to verify the model performance.

4.1. Experimental Datasets

The Chikusei dataset: The Chikusei dataset [50] contains 128 bands, ranging from
363 to 1018 nm, and the size and the spatial resolution are 2517 x 2335 and 2.5 m, respec-
tively. It has 19 classes, including urban and rural areas. Figure 7 shows the false color
image and ground truth of the Chikusei dataset. Different colors in Figure 7b represent
different classes.

(b)

Figure 7. (a) False color image of the Chikusei dataset, (b) The ground truth of the Chikusei dataset.

The Salinas dataset: The Salinas Scene dataset has 512 x 217 pixels with 204 bands. It
has 16 classes and a spatial resolution of 3.7 m.

The UP dataset: The University of Pavia (UP) has 610 x 340 pixels with 103 bands. It
has 9 classes.

The IP dataset: The Indian Pines dataset includes 16 classes with a wavelength scope
of 400 to 2500 nm. It has 145 x 145 pixels with 200 bands.

The Huoshaoyun dataset: The Huoshaoyun dataset was captured by GF-5 satellite in
Xinjiang province, China. The size of the entire dataset is 150 x 150. It contains 9 lithology
classes with 164 bands, ranging from 390-2513 nm, which is mainly used for mineral explo-
ration. Most of the classes are rocks with similar characteristics, and thus their distribution
is disorderly and staggered, which leads to greater difficulty classifying Huoshaoyun
dataset. Tables 1-5 describe the detailed information of each class on Chikusei, Salinas, UP,
IP, and Huoshaoyun datasets, respectively.

Table 1. Class information for the Chikusei dataset (Chikusei).

Order Number Classification Number of Samples
1 Water 2845
2 Bare soil (school) 2859
3 Bare soil (park) 286
4 Bare soil (farmland) 48,525
5 Nature plants 4297
6 Weeds in farmland 1108
7 Forest 20,516
8 Grass 6515
9 Rice field (grown) 13,369
10 Rice field (first stage) 1268
11 Row crops 5961
12 Plastic house 2193
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Table 1. Cont.

Order Number Classification Number of Samples
13 Manmade (non-dark) 1220
14 Manmade (dark) 7664
15 Manmade (blue) 431
16 Manmade (red) 222
17 Manmade grass 1040
18 Asphalt 801
19 Paved ground 145
Total 77,592

Table 2. Class information for the Salinas dataset (Salinas).

Order Number Classification Number of Samples
1 Brocoli_green_weeds_1 2009
2 Brocoli_green_weeds_2 3726
3 Fallow 1976
4 Fallow_rough_plow 1394
5 Fallow_smooth 2678
6 Stubble 3959
7 Celery 3579
8 Grapes_untrained 11,271
9 Soli_vinyard_develop 6203
10 Corn_senesced_green_weeds 3278
11 Lettuce_romaine_4wk 1068
12 Lettuce_romaine_bwk 1927
13 Lettuce_romaine_6wk 916
14 Lettuce_romaine_7wk 1070
15 Vinyard_untrained 7268
16 Vinyard_vertical_trellis 1807

Total 54,129

Table 3. Class information for the University of Pavia dataset (UP).

Order Number Classification Number of Samples
1 Asphalt 6631
2 Meadows 18,649
3 Gravel 2099
4 Trees 3064
5 Painted metal sheets 1345
6 Bare soil 5029
7 Bitumen 1330
8 Self-blocking bricks 3692
9 Shadow 947

Total 42,776

Table 4. Class information for the Indian Pines dataset (IP).

Order Number Classification Number of Samples

1 Alfalfa 46

2 Corn—-notill 1428
3 Corn—mintill 830
4 Corn 237
5 Grass—pasture 483
6 Grass—tree 730
7 Grass—pasture-mowed 28

8 Hay-windrowed 478
9 Oats 20
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Table 4. Cont.
Order Number Classification Number of Samples

10 Soybean-notill 972
11 Soybean—mintill 2455

12 Soybean—clean 593

13 Wheat 205

14 Woods 1265

15 Bulldlngs—Grass—Trees— 386

Dribes
16 Stone-Steel-Towers 93
Total 10,249
Table 5. Class information for the Huoshaoyun dataset (Huoshaoyun).
Order Number Classification Number of Samples

1 Sandstone-1 2424

2 Sandstone-2 573

3 Sandstone-3 1826

4 Sandstone-4 897

5 Sandstone-5 779

6 Sandstone-6 1936

7 Sandstone-7 811

8 Sandstone-8 3438

9 Sandstone-9 4391

Total 17,075

4.2. Framework Setting
4.2.1. Basic Settings

In this study, we built the SSDA via using Pytorch as a backend. In the SSDA, the data
cube with the spatial size of 9 x 9 was utilized as the input to start the training. Before train-
ing the SSDA framework, some important parameters needed to be configured. We used
the Adam optimizer as stochastic optimization and the initial learning rate was set to 0.001.
We set the number of training epochs to 10,000. Every epoch was a C-way, K-shot classifica-
tion task. Here, C is the number of classes of the target domain dataset. For example, C
was set to 9 in the UP and Huoshaoyun datasets, and C was set to 16 in the Salinas and IP
datasets. The K was set to 1 in the support set, which meant that one sample was randomly
selected at a time and sent to the model for training. At the same time, K was set to 19 in
the query set because of the theory that the higher the sample number per class is in the
test dataset, the higher the accuracy of predicting samples of each class [42,43].

4.2.2. The Input Spatial Size

To explore the impact of input sample spatial size on classification results, we designed
a controlled experiment, which set the spatial size of input samplesto7 x 7,9 x 9,11 x 11,
13 x 13, respectively, and trained on four datasets. As shown in Figure 8, on the four
datasets (Salinas, UP, IP, and Huoshaoyun), when the spatial size of samples was set to
9 x 9, three evaluation indicators (OA, AA, K) achieved the highest value. Therefore, we
set the spatial size of the sample to 9 x 9.
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Figure 8. The OA, AA, and K for varying spatial size samples on Salinas, UP, IP, Huoshaoyun datasets.
(a) Salinas; (b) UP; (c) IP; (d) Huoshaoyun.

4.2.3. Learning Rate

The learning rate is a critical hyperparameter in the training process, determining
whether the multiple loss module can converge to a local minimum. To analyze the effect
of learning rate on the SSDA framework, we set the learning rate to 0.01, 0.001, and 0.0001,
separately. Taking the Salinas data as an example, we display the training loss curves
at different learning rates in Figure 9. It is easy to see that at a larger learning rate, it is
difficult to make the multiple loss module converge. When the learning rate is set to 0.001,
the multiple loss module obtains the best convergence effect. Therefore, the learning rate of

the SSDA was set to 0.001.

5

training loss value
P

| learning rate = 0.001
learning rate = 0.01
learning rate = 0.0001
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Figure 9. Training loss values with different learning rates on the Salinas data.
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4.3. Compared with Other Methods

In this part, we compare the SSDA to other learning-based methods, such as 3D-
DenseNet [51], SSRN [52], existing FSL. methods DFSL + NN [42], DFSL + SVM [42] and
deep relation network RN-FSC [43], and DCFSL [53]. For two supervised methods (3D-
DenseNet and SSRN methods), since the training and test classes need to be the same, we
randomly selected some labeled samples from the target domain data to train the classifier.
We set the number of labeled samples per class to five, and the rest of the target domain data
was used as test data. However, for the few-shot learning (FSL) methods (DFSL + SVM,
DFSL + NN, RN-FSC, and DCFSL), it is mainly to learn transferable knowledge through
source domain data to form a metric space. For the above methods, the classes between
two domains may be different, so the source domain data and five labeled samples for each
class of target domain data were used for training. All experiments were conducted ten
times to remove the impact of random sampling. In particular, OA, AA, and Kappa data
are given as mean = standard deviation and the highest accuracies are shown in bold.

Tables 6-9 display the OA, AA, K, and the classification accuracy of each class on
the four HSI datasets. The SSDA achieves the highest OA, AA, and K than all other
methods on the four HSI datasets. This is because our SSDA can extract discriminative and
domain invariance spectral-spatial features, which can effectively improve the classification
performance with the limited labeled samples.

In detail, on the Salinas dataset (Table 6), the proposed SSDA increases OA, AA,
and K by 3.23%, 2.40% and 3.32% than the state-of-the-art DCFSL method, respectively.
Meanwhile, it has obtained the highest accuracy in 11 of the 16 classes (class 1, 3, 4, 6, 9, 10,
11, 12, 14, 15, 16). On the UP dataset (Table 7), compared with the state-of-the-art DCFSL
method, our framework improves OA, AA, and K by 1.26%, 0.18% and 1.26%, respectively.
Meanwhile, it has obtained the highest accuracy in 3 of the 9 classes (class 4, 6, 9). On the IP
dataset (Table 8), the proposed SSDA increases OA, AA, and K by 4.25%, 2.38%, 3.00% than
the state-of-the-art DCFSL method respectively. Meanwhile, it has achieved the highest
accuracy in 6 of the 16 classes (class 3,4, 7, 9, 10, 11). Especially, on the Huoshaoyun dataset
(Table 9), compared with state-of-the-art DCFSL method, our framework improves OA,
AA, and K by 4.79%, 6.77% and 4.69% respectively. Meanwhile, it has obtained the highest
accuracy in 4 of the 9 classes (class 2, 3, 6, 7).

Table 6. Overall accuracy (OA), average accuracy (AA), and kappa coefficient (K) for each HSI class
on the Salinas dataset.

Method 3D- SSRN DFSL+ NN DFSL + SVM RN-FSC DCFSL SSDA
DenseNet
OA 4943 +4.19 86.39 £+ 2.68 87.05 + 0.83 86.95 + 1.30 84.11 +1.36 89.34 +2.19 92.57 4+ 0.49
AA 53.53 4-4.32 93.24 +1.29 91.01 4 0.66 90.08 + 1.44 88.83 4+ 2.07 94,04 +1.14 96.44 + 0.51
Kappa 60.01 4+ 3.84 84.95 +2.90 85.63 - 0.91 85.51 £+ 1.42 82.38 - 1.53 88.17 = 2.40 91.49 £ 0.56
1 35.58 97.55 95.63 73.92 97.47 99.40 99.75
2 72.84 98.97 99.09 96.85 99.47 99.76 98.58
3 40.99 92.47 94.01 96.28 85.05 91.96 98.88
4 51.74 96.50 99.54 99.11 98.75 99.55 100
5 62.60 94.20 90.58 80.72 83.45 92.70 94.13
6 81.16 99.28 98.47 91.63 96.73 99.52 100
7 70.96 99.98 99.81 97.73 99.61 98.88 99.61
8 56.61 86.90 77.74 82.33 72.11 74.57 78.29
9 92.02 99.64 91.13 94.44 88.35 99.59 100
10 67.26 92.01 60.98 80.96 70.53 86.42 92.18
11 55.07 95.86 95.99 93.38 90.03 96.61 99.62
12 62.27 99.15 93.13 97.94 93.15 99.93 99.95
13 73.61 89.24 99.34 95.79 98.54 99.30 99.23
14 28.73 95.15 98.06 98.87 96.43 98.85 99.53
15 48.83 55.97 77.54 71.13 70.18 75.38 84.00
16 59.97 98.91 85.05 90.57 82.39 92.22 99.33
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Table 7. Overall accuracy (OA), average accuracy (AA), and kappa coefficient (K) for each HSI class
on the University of Pavia (UP) dataset.

Method 3D- SSRN DFSL + NN  DFSL + SVM RN-FSC DCFSL SSDA
DenseNet
OA (%) 4521 + 8.32 76.26 + 5.78 77.75 £ 1.16 79.63 + 1.09 80.19 +2.18 83.65 £ 1.77 84.91 + 2.62
AA (%) 56.51 + 8.18 79.51 +£3.21 77.57 £ 0.31 76.41 +1.39 7712 £ 0.84 83.77 £ 1.74 83.95 + 0.28
K (%) 58.54 + 4.02 70.56 + 6.69 7111 £ 1.22 73.05 £+ 1.60 73.73 £2.79 78.70 £ 2.01 79.96 + 0.20
1 7491 91.84 69.19 73.43 68.55 82.20 78.81
2 73.98 95.13 84.63 89.25 93.44 87.74 87.88
3 28.63 55.23 57.47 48.09 49.81 67.46 68.24
4 79.27 78.02 89.99 84.72 92.15 93.16 93.85
5 76.90 98.34 100 99.65 99.43 99.49 99.70
6 27.93 53.56 71.23 67.81 57.99 77.32 91.34
7 18.29 60.07 70.62 64.48 70.04 81.18 73.96
8 60.55 85.34 58.13 67.37 63.48 66.73 61.84
9 86.37 98.08 96.92 92.92 99.19 98.66 99.89
Table 8. Overall accuracy (OA), average accuracy (AA), and kappa coefficient (K) for each HSI class
on the Indian Pines (IP) dataset.
Method 3D- SSRN DFSL + NN  DFSL + SVM RN-FSC DCFSL SSDA
DenseNet
OA (%) 41.61 +1.26 61.36 £ 0.49 59.65 £+ 0.63 61.69 £+ 1.85 58.17 £+ 0.02 66.81 £+ 2.37 71.06 £ 0.64
AA (%) 47.67 £ 1.31 59.75 + 0.20 72.24 +£ 042 73.05 + 0.84 69.90 + 0.40 77.89 £ 0.86 80.27 £+ 1.63
K (%) 43.06 + 1.79 56.91 4+ 0.48 54.55 4+ 0.52 56.78 + 1.90 52.52 +0.14 62.64 + 0.86 65.64 + 0.29
1 47 .47 18.38 96.74 96.75 96.34 95.37 95.12
2 35.69 64.79 38.65 36.38 46.13 43.26 28.25
3 26.34 27.65 42.79 38.34 40.61 43.26 56.48
4 20.33 26.97 68.10 77.16 58.62 80.60 96.98
5 39.97 80.76 71.20 73.92 64.96 72.91 79.92
6 84.60 86.87 76.18 86.25 69.45 87.96 87.72
7 12.16 32.24 100 97.10 100 99.57 100
8 78.28 100 74.84 81.82 77.70 86.26 99.37
9 13.29 57.69 100 75.56 100 99.33 100
10 33.89 59.69 47.98 52.22 25.49 62.44 62.87
11 62.63 70.87 57.95 59.96 65.51 62.75 77.02
12 29.23 45.00 38.21 36.56 27.13 48.72 39.12
13 53.41 88.29 97.50 98.00 99.75 99.35 99.50
14 75.40 97.18 83.44 84.63 76.35 85.40 91.90
15 55.64 36.64 62.29 74.10 70.34 66.69 71.13
16 20.63 60.98 100 100 100 97.61 98.86
Table 9. Overall accuracy (OA), average accuracy (AA), and kappa coefficient (K) for each HSI class
in the Huoshaoyun dataset.
Method 3D- SSRN DFSL + NN  DFSL + SVM RN-FSC DCFSL SSDA
DenseNet
OA (%) 25.04 + 0.64 40.85 + 1.37 37.83 +2.54 40.81 +£2.74 30.54 +1.70 39.58 + 0.58 44.37 + 0.36
AA (%) 28.30 + 0.78 31.16 +1.33 33.67 £ 3.16 35.84 +2.35 32.15+£ 291 43.10 +1.49 49.87 + 0.45
K (%) 14.48 + 0.94 3254+ 0.62 27.05 + 2.88 30.38 £2.92 20.75 £+ 2.53 29.97 +0.52 34.66+0.42
1 32.63 4472 55.77 57.12 59.81 44.61 44.56
2 3297 422 28.28 35.76 52.40 69.72 96.86
3 22.53 28.19 29.33 31.48 28.33 28.67 30.97
4 28.34 24.97 29.07 26.13 11.48 62.11 82.51
5 15.86 5.41 12.42 17.79 6.92 48.45 47.55
6 23.03 32.16 20.71 19.87 21.29 19.99 32.37
7 12.78 6.71 15.01 17.76 7.30 39.95 38.46
8 37.91 61.30 59.89 61.04 43.50 16.57 12.09
9 48.66 72.79 52.57 55.64 58.29 57.84 63.45
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To sum up, by comparing the FSL methods and deep learning methods, we found that
FSL methods have higher classification performance than the deep learning-based methods.
This is because the meta-learning strategy in the FSL methods can transfer the classification
knowledge from source domain to target domain, which can improve the classification
accuracy on the target domain.

4.4. Classification Maps Visualization

To further visually verify the validity of the SSDA, we have drawn the classification
maps obtained from the Salinas, UP, IP and Huoshaoyun datasets using different methods
in Figures 10-13 respectively.

As shown in Figure 10, Figure 10a-h display the classification maps of the ground
truth, 3D-DenseNet, SSRN, DFSL + NN, DSFL + SVM, RN-FSC, DCFSL, and our method on
the Salinas dataset. To compare the classification results in more detail, we perform a region
zoom in the middle of these classification maps (Figure 10i—p). Obviously, our method
(Figure 10p) can generate more accurate predictions than other methods (Figure 10i-o).
On the UP dataset (Figure 11), the classifiaction map (Figure 11p) of our method is the
closet to the ground truth (Figure 11i). On the IP dataset (Figure 12), we perform a
region zoom in the lower left corner of these classification maps. Our method (Figure 12p)
predicts fewer misclassification than other methods (Figure 12i-o). It is likely that on the
Huoshaoyun region zoom in the lower right corner of classification maps (Figure 13i—p), our
method (Figure 13p) also predicts fewer misclassification than other methods (Figure 13i-o).
In conclusion, the classification maps produced by our SSDA are the closest to the ground
truth on four datasets.

(@) (b) © @ ©  ®
M G ) () (m) (n)

d
1

(0) (P

Figure 10. Classification maps produced by different methods on the Salinas dataset. (a) Ground
truth map; (b) 3D-DenseNet; (c) SSRN; (d) DFSL + NN; (e) DFSL + SVM; (f) RN-FSC; (g) DCFSL;
(h) Our model; (i) The zoom in an area of ground truth map; (j) The zoom in an area of 3D-DenseNet;
(k) The zoom in an area of SSRN; (1) The zoom in an area of DFSL + NN; (m) The zoom in an area of
DFSL + SVM; (n) The zoom in an area of RN-FSC; (o) The zoom in an area of DCFSL; (p) The zoom in
an area of our model.
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Figure 11. Classification maps produced by different methods on the UP dataset. (a) Ground truth
map; (b) 3D-DenseNet; (c) SSRN; (d) DFSL + NN; (e) DFSL + SVM; (f) RN-FSC; (g) DCFSL; (h) Our
model; (i) The zoom in an area of ground truth map; (j) The zoom in an area of 3D-DenseNet;
(k) The zoom in an area of SSRN; (1) The zoom in an area of DFSL + NN; (m) The zoom in an area of
DFSL + SVM,; (n) The zoom in an area of RN-FSC; (0) The zoom in an area of DCFSL; (p) The zoom
in an area of our model.

(k)

Figure 12. Classification maps produced by different methods on the IP dataset. (a) Ground truth
map; (b) 3D-DenseNet; (c) SSRN; (d) DFSL + NN; (e) DFSL + SVM; (f) RN-FSC; (g) DCFSL; (h) Our
model; (i) The zoom in an area of ground truth map; (j) The zoom in an area of 3D-DenseNet;
(k) The zoom in an area of SSRN; (1) The zoom in an area of DFSL + NN; (m) The zoom in an area of
DFSL + SVM,; (n) The zoom in an area of RN-FSC; (0) The zoom in an area of DCFSL; (p) The zoom
in an area of our model.
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Figure 13. Classification maps produced by different methods on the Huoshaoyun dataset.
(a) Ground truth map; (b) 3D-DenseNet; (c) SSRN; (d) DFSL + NN; (e) DFSL + SVM; (f) RN-FSC;
(g) DCFSL; (h) Our model; (i) The zoom in an area of ground truth map; (j) The zoom in an area of
3D-DenseNet; (k) The zoom in an area of SSRN; (1) The zoom in an area of DFSL + NN (m) The zoom
in an area of DFSL + SVM; (n) The zoom in an area of RN-FSC; (0) The zoom in an area of DCFSL;
(p) The zoom in an area of our model.

5. Discussion
5.1. Ablation Study

In this part, we evaluate how the spectral-spatial module, the domain attention module,
the few-shot loss, the coral loss, and the mmd loss in our proposed SSDA influence the
classification performance. The detailed experimental results with different modules are
presented in Table 10 and the highest accuracies are shown in bold.

As shown in Table 10, we designed five SSDA variants: SSDA without spectral-spatial
module, SSDA without domain attention module, SSDA without the fsl loss, SSDA without
the coral loss, and SSDA without the mmd loss. The detailed classification results are
presented in Table 10 on four datasets. The results indicate that our SSDA achieves the
best accuracy than other methods, which means that the spectral-spatial module, domain
attention module, the few-shot loss, the coral loss, and the mmd loss can improve the
classification performance effectively.

Table 10. Ablation experiments with different variants on the four HSI datasets.

SSDA SSDA
without without SSDA SSDA SSDA
Datasets Methods Spectral- Domain without fsl without without SSDA
Spatial Attention Loss Coral Loss mmd Loss
Module Module
OA (%) 81.91 79.57 81.06 81.94 83.17 84.91
upP AA (%) 80.35 79.30 80.92 81.09 81.76 83.95
K (%) 76.25 74.05 77.73 78.18 77.85 79.96
OA (%) 91.84 90.98 91.01 91.36 91.76 92.57
Salinas AA (%) 96.19 94.08 95.33 95.87 96.02 96.44
K (%) 90.67 89.70 90.35 90.03 91.13 91.49
OA (%) 69.39 68.35 68.78 69.11 70.21 71.06
P AA (%) 80.01 79.04 79.61 78.59 79.23 80.27
K (%) 63.84 62.70 63.99 64.21 64.89 65.64
OA (%) 39.61 39.01 40.82 41.32 41.98 42.70
Huoshaoyun AA (%) 40.83 40.69 42.14 42.39 43.67 45.18
K (%) 28.86 28.84 29.58 30.98 31.74 32.73

To better verify the robustness of our proposed method, we performed extensive
comparative experiments among 3D-DenseNet, SSRN, DFSL + NN, DFSL + SVM, RN-FSC,
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DCEFSL, and our SSDA on the different number of labeled samples per class. We set the
number of samples of each class as 3, 5, 10, and 15 on four HSI datasets, respectively.
As shown in Figure 14, with the increase of the number of labeled sample, the OA of
different algorithms has been improved. In particular, our proposed SSDA also achieves
best classification performance among the compared methods. This indicates that our
method has stronger robustness than other methods.
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Figure 14. The OA of different methods for different number of labeled samples on Salinas, UP, IP,
Huoshaoyun datasets. (a) Salinas; (b) UP; (c) IP; (d) Huoshaoyun.

5.2. Computational Time Comparison

The above experimental results prove that the SSDA obtains higher classification accuracy
than state-of-the-art methods on few-shot samples. However, a superior classification method
should balance accuracy and efficiency properly. In this part, we show the training time
and test time of different methods and the minimum time is shown in bold (Table 11).
The computer was equipped with a 2.5 GHZ Intel Xeon CPU, 128 GB, and a Nvidia GeForce
GTX 2080 Ti GPU.

It has been found that although 3D-DenseNet and DFSL + NN require the least
training time and the testing time separately (Table 11); our proposed SSDA achieves the
best classification performance (Tables 6-9). Meanwhile, on the large scale Salinas and
Huoshaoyun datasets, our SSDA requires much less training time and testing time than
state-of-the-art DCFSL methods. These results indicate that our SSDA can achieve excellent
accuracy on HSI few-shot classification with a comparable time.
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Table 11. Computational time (second) on each dataset with different methods.

. 3D- DEFSL + DFSL +
Datasets Time DenseNet SSRN NN SVM RN-FSC DCFSL SSDA
Train 53.86 688.78 525.27 496.29 548.85 2155.09 1855.86

Test 6.23 521 4.35 4.13 42.58 7.24 8.14

Train 63.03 812.15 693.15 1011.73 304.29 2016.29 1207.28
Test 8.36 4.16 4.39 5.37 34.57 23.93 18.40

Train 62.35 553.36 331.54 527.77 617.89 1805.30 985.39
Test 1.5 1.68 2.14 3.69 17.21 6.39 11.09

Train 130,097.54 184.59 674.54 423.81 305.26 1171.28 773.54
Test 8404.65 27.74 2.17 3.93 33.68 2.31 20.46

ur

Salinas

1P

Huoshaoyun

6. Conclusions

In this article, to improve the HSI few-shot classification accuracy, we propose a novel
spectral-spatial domain attention network (SSDA), which includes a spectral-spatial mod-
ule, a domain attention module, and a multiple loss module. The spectral-spatial module
can extract discriminative and domain invariance spectral-spatial features. The domain
attention module is designed to further enhance useful features and suppress useless fea-
tures. The multiple loss module can minimize the difference of source domain and target
domain, which can alleviate the domain adaptation issue. Extensive experimental results
indicate that the proposed SSDA achieves higher classification accuracy than state-of-the-
art methods with few-shot samples on four HSI datasets. However, the complex model
results in a slightly high computational complexity. In the future, we will design a more
lightweight model structure for fast and high-precision classification.
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