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Abstract: Ship detection in remote sensing images plays an important role in maritime surveillance.
Recently, convolution neural network (CNN)-based methods have achieved state-of-the-art perfor-
mance in ship detection. Even so, there are still two problems that remain in remote sensing. One is
that the different modal images observed by multiple satellite sensors and the existing dataset cannot
satisfy network-training requirements. The other is the false alarms in detection, as the ship target
is usually faint in real view remote sensing images and many false-alarm targets can be detected
in ocean backgrounds. To solve these issues, we propose a double augmentation framework for
ship detection in cross-modal remote sensing imagery. Our method can be divided into two main
steps: the front augmentation in the training process and the back augmentation verification in the
detection process; the front augmentation uses a modal recognition network to reduce the modal
difference in training and in using the detection network. The back augmentation verification uses
batch augmentation and results clustering to reduce the rate of false-alarm detections and improve
detection accuracy. Real-satellite-sensing experiments have been conducted to demonstrate the

effectiveness of our method, which shows promising performance in quantitative evaluation metrics.

Keywords: remote sensing processing; maritime surveillance; ship detection; ocean engineering;
cross-modal transforming

1. Introduction

Achievement of the capability to automatically detect sailing ships would allow a
wide range of applications in marine and commercial fields [1]. Remote sensing has a
wide view with high resolution, which plays an irreplaceable role in ocean surveillance [2],
especially when the target’s Automatic Identification System (AIS) is disabled.

Currently, a large number of remote sensing satellites are launched to perform earth
observation, including WorldView, QuickBird, SPOT, Landsat, IKONOS, and GaoFen
satellites, which provides a convenient and effective approach for maritime surveillance
[3,4]. Satellites can obtain different kinds of images in entirely different modalities, such
as multi-spectral (color) images, synthetic aperture radar (SAR) images and panchromatic
(PAN) images. These images have different spectral resolutions, spatial resolutions and
image properties, and their datasets are also incompatible [5-7].

For ship detection, there are several datasets for multi-spectral images and SAR
images; however, there are much fewer data for PAN images. PAN images have low
spectral resolution but high spatial resolution, and they are more susceptible to image noise.
Recently, convolution neural network (CNN)-based methods have achieved state-of-the-art
performance in ship detection. However, there are still two problems remaining for ship
detection in remote sensing images. One is that different modal images are observed by
multiple satellite sensors and the existing datasets cannot satisfy the network-training
requirements for all modalities. The other is false alarms in detection; the ship target
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(especially if it is a fishing boat) is usually faint in a real view remote sensing image, which
has a small region, and clouds, islands, wakes and noise points can easily cause false alarms
in ocean backgrounds, especially with high spatial resolution.

To solve these problems, this study proposes a double augmentation framework for
ship detection in cross-modal remote sensing imagery. The proposed method can be divided
into two main steps: front augmentation in the training process and back augmentation
verification in the detection process. The front augmentation acquires a transformation
relation for training that uses a modal recognition network to reduce the modal difference
in training and when using a detection network. After achieving a detection network, the
back augmentation verification uses batch augmentation and results clustering to reduce
the false-alarm rate and improve the detection accuracy. Real-satellite-sensing experiments
have been conducted to demonstrate the effectiveness of our method. The experimental
results show that the proposed method can generate the closest result to the ground truth,
despite the huge differences between the multi-spectral (color) image in training and the
panchromatic (PAN) image in testing.

The contributions of this study can be summarized as follows.

1.  The proposed method achieves effective modal transforming and generalization of
detection, the method only needs little images from a target domain and no labeled
images are required. This makes it convenient to use the existing dataset in training.

2. The proposed method is run in a transparent way without changing the network,
no matter what kind of backbone network is used. So, an open-source light-weight
model can be easily used, which significantly reduces the requirements and difficulty
of training and deployment, making it suitable for running in edge node.

3. The proposed method can effectively reduce the false-alarm rate in detection and
improve the confidence of detection.

The remainder of this paper is organized as follows. Section 2 introduces the existing
work related to ship detection in remote sensing. Section 3 describes the proposed research
methodology. Section 4 describes the experiments and results, including the experimental
conditions, dataset introduction, performance comparison experiment, ablation study and
limitations. Finally, conclusions and future work are discussed in Section 5.

2. Related Works

Related works on ship detection in remote sensing are introduced as follows.

The object detection task is used to find the interesting object in images by using a
specific algorithm, and to calibrate the position and size of the object by using a rectangular
boundary box. Most of the early target-detection methods use manually designed feature
to distinguish targets; the traditional ship detection method extracts the difference of the
image information between the ship target and the background through image processing
methods, so as to separate the ship target. Typical methods include the following: detec-
tion based on gray features and texture features; detection based on gradient and edge
contour features and detection methods based on visual significance [8]. However, with
the improved spatial resolution of remote sensing images, the observed target information
is richer and more complex background information is acquired. Traditional methods
are often simple in design and used in simple application scenarios, which causes a huge
challenge for ship detection in complex backgrounds.

With the rapid development of deep learning, deep neural networks transform original
input information into higher-dimensional and more abstract features with excellent spatial
and semantic expression capabilities, which greatly improves the results of target detection.
On this basis, remote sensing detection technology based on deep neural network have also
begun to develop rapidly. Detection algorithms based on deep learning can generally be
divided into two-stage detection algorithms based on candidate regions and single-stage
detection algorithms based on regression according to whether regions of interest need to
be extracted. In the first stage of two-stage detection, the candidate region method is used
to create the region of interest for target detection. In the second stage of detection, the
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convolutional neural network is used to classify the target of the candidate region and select
the target prediction box. Two-stage detection algorithms generally have high detection
accuracy but slow detection speed, which are typically represented by R-CNN (Region
Convolutional Neural Networks) series algorithms such as R-CNN [9], SPP-net [10], Fast
R-CNN [11], R-FCN [12], Faster R-CNN [13] and Mask R-CNN [14].

The one-stage detection algorithm does not need to generate candidate regions and di-
rectly predicts the class probability and location information of the target, and the detection
speed is much higher than that of the two-stage detection algorithm. Typical representatives
of one-stage detection algorithms are YOLOv3 [15], YOLOv4 [16], YOLOV5 [17], SSD [18]
and RetinaNet [19].

The classical CNN-based target-detection algorithm has achieved good results on
natural image data sets, but in remote sensing images the background is often complex
and the scale of the ship target changes greatly, so the classical target-detection algorithm
sometimes cannot effectively extract the ship features. Al-saad et al. [20] proposed a method
of frequency domain enhancement by embedding a wavelet transform into Faster R-CNN,
and before extracting ROI the original image was decomposed into high and low frequency
components for training and testing in the frequency domain, thus improving the detection
accuracy. This method is simple and easy, but the accuracy is not high. Li et al. [21]
proposed a Hierarchical Selective Filtering (HSF) layer to improve Faster R-CNN. Multi-
scale ship features are generated using a hierarchical convolution operation, and different
sizes of nearshore and offshore ships are detected effectively. Jiao et al. [22] proposed a
densely connected multi-scale neural network based on the Faster-R-CNN framework.
This network draws on the DenseNet’s idea of dense connections between layers. Each
layer accepts the feature maps of all previous layers as additional inputs and splices the
feature maps from different layers to maintain the integrity of the feature information at
the lower layers. Tian et al. [23] designed a dense-feature-extraction module, integrating
low-level location information and high-level semantic information of different resolutions.
The module was applied to the classical detection networks YOLO and Mask-R-CNN, and
the detection accuracy of the improved network with both visible light image and SAR
image data sets was improved. In recent years, researchers have applied a transformer [24]
model, which has excellent performance in the field of natural processing, to the field
of image processing, achieving good results by constructing global context dependency.
Among them, DETR (Detection Transformer) [25], which transforms target detection into
unordered set prediction, overcomes the anchor frame mechanism of the prior design of
the CNN model and the post-processing non-maximum suppression (NMS) process of
manual design and expands the range of the effective receptive field. However, since the
self-attention mechanism of the ViT model is to model image context, it brings higher
memory and computational cost than CNN model.

In order to solve the problem of the scarcity of small-ship samples in remote sensing
image data sets, Shin et al. [26] proposed a “cut and paste” strategy to enhance images
for training models in which pre-trained Mask-R-CNN is used to extract ship slices and
paste them into various background ocean scenes to synthesize new images. The detection
results verify the effectiveness of the synthesized ship image. Hu et al. [27] proposed a
hybrid strategy that mixes the sea surface target area with multiple changing scenarios
to increase both diversity and the number of training samples. Chen et al. [28] proposed
a gaussian hybrid Wasserstein GAN using gradient punishment to generate a small-ship
target sample with sufficient information. CNNs are then trained using raw and generated
data to achieve accurate real-time detection of small ships. In order to solve the problem
that small targets disappear in deep-feature mapping, a common method is to make full use
of the information in shallow-feature mapping to detect small targets. HyperNet, proposed
by Kong et al. [29], utilizes layer-hopping feature extraction to obtain both high-level
features containing semantic information and shallow features containing high-resolution
location information, and uses shallow features to improve detection performance for small
targets. Recently, some rotating-ship-detection methods have also been proposed to meet
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the high requirements for ship-orientation detection. A directional R-CNN network is
designed specifically for rotating-target detection, which considers the speed requirements
while retaining the strong detection accuracy advantage of the two-stage target detection
network [30]. Zhu et al. [31] proposed an Automatic Organized Points Detector (AOPDet),
which derives precise localization results by applying a novel rotating-object representation,
and an Automatic Organization Mechanism (AOM) technique is designed to guide the
model to automatically organize points to object corners. Generally, the precision of
rotating-object detectors is still less than that of horizontal-object detectors, especially for
small targets.

In summary, most of the presented algorithms and datasets focus on ship detection
in color images or SAR images, and they have limited generalization ability and are less
precise when detecting small ships. To solve the problem of ship detection in PAN images
with barely any positive samples, this study proposes a modal transforming method that
uses cross-modal images to achieve high-precision detection.

3. Research Methodology

In this section, we describe the proposed modal transforming method, namely double
augmentation using cross-modal images for ship detection in remote sensing imagery. First,
we present the overview structure based on the CNNs. Then, we give detailed depictions of
the key parts of our approach with some implementation details from our real applications.

3.1. Overview of the Framework

As mentioned, for ship detection from remote sensing images there exist two main
problems: one is the false-alarm rate, as the ship target (especially if it is a fishing boat)
has a small region in a real view remote sensing image, and clouds, islands, wakes and
noise points can easily cause false alarms, which makes accurate detection more difficult.
The other problem is the various kinds of satellite payloads, and different payloads have
different kinds of image distribution, which causes less labeled data to be available for
training and also difficulty in network generalization.

We are aiming to meet the following requirements of real applications:

1.  Alarge color-image dataset for training the ship detection network given the barely
available PAN datasets for ship detection;

The modal difference between images causes great performance deterioration;

3. Deployment for edge nodes needs a light-weight model.

N

Hence, we propose a modal transforming method for ship detection in remote sensing
imagery. As illustrated in Figure 1, the general process of our method can be divided into
two main steps: the training process and the detection process. The proposed method is
run in a transparent way, no matter what kind of backbone network is used. The additional
input target domain images in our method can be all negative samples, as the target
information is unnecessary and there is no need to label the image for training.

Training process Detection process
Input: Input: Input:
Source domain images Target domain images Remote sensing images
Train modal Ship detection
recognition network network
l Use modal recognition network
Train front Back augmentation
augmentation verification
l Use front augmentation
Train ship detection Output:
network Detection results

Figure 1. Framework of our modal transforming method for ship detection in remote sensing imagery.
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3.2. Training Process

Generally, the training process is to construct a transformation relation from the source
domain to the target domain, and to use the transformation relation as image augmentation
to train a ship detection network. Specifically, the following steps are performed.

Step 1: train the modal recognition network

We first train a modal recognition network to distinguish different kind of images;
a conventional image-classification network like ResNet-101 [32] can be used to achieve
this goal. Here, the training data consist of different classes of images, including training
images that do not need to contain the detection targets (ship in our case), and we note
that the category of image is identified in the configuration file of remote sensing data.
This step is used to learn the potential features of different kinds of images, for example,
color images, SAR images and PAN images. Then we can use these potential features to
train the transformation relation to reduce the significant differences between different
modalities. An illustration of the modal recognition network is shown in Figure 2. Here,
the input images should have the same number of channels, since both the SAR image and
PAN image are single channel, and we first perform color image to gray processing for
color images.

Input: image

Output:
image category

Modal recognition network

Convolutions Convolutions Full connection 3.SAR

Figure 2. Illustration of modal recognition network.

Step 2: train the front augmentation process

After training the modal recognition network, we next train the front augmentation
process to achieve the transformation relation from the source domain to the target domain.
The aim of the front augmentation process is to find a reasonable way to generate different
kinds of target domain images using source domain images as input to reduce the modal
differences when further training the detection network. In order to obtain the augmen-
tation operation with explicit physical meaning, we use a combination of pixel-level and
spatial-level image augmentation transforms, and the basic transforms are chosen as follow:
contrast limited adaptive histogram equalization, cutout, gaussian noise, gaussian blur,
image compression and random gamma correction. We encode these transform parameters
and use heuristic algorithms like particle swarm optimization to obtain the front augmen-
tation process, and the objective function is the absolute error between soft prediction
of the modal recognition network and the one-hot encoding for the target domain. An
illustration of front augmentation training is shown in Figure 3. Here, ® = [01,...,0¢] are
the transform parameter set, for example, 81 = [0 1,01 2, 61 3] is the transform parameter for
contrast limited adaptive histogram equalization, 6 ; represents the upper threshold value
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for contrast limiting and [0 5, 61 3] represents the size of grid for histogram equalization.
After obtaining optimized @, we can ignore these parameters with small values to further
simplify the operations of front augmentation.

Input: Front augmentation ()
1. Source domain images Transform image

Contrast limited adaptive

histogram equalization (6;) Cutout (92)

1 Gaussian noise (83) Image compression (8,)

Gaussian blur (05) Random gamma (0)

2. Target domain label

Modal recognition network

PSO optimization % \
.

Figure 3. Illustration of training front augmentation.

Here, we note that the front augmentation is different from the image augmentation
used in training, and image augmentation is also used in further training to improve the
generalization of the network.

Step 3: train the ship detection network

Now we can use additional front augmentation after image input to train the ship
detection network; here, the ship detection network can be any kind of structure, such as
YOLOV5, YOLOvV8 or Mask-R-CNN. The train loss is the mean loss Lossy, for a certain
number of augmentations for one input image:

Lossp = Y Loss;/n 1)
i

where Loss; is the detection loss for one independent augmentation of the same input
image and 7 is the number of augmentations. Using Equation (1), the network can have
high average precision in the augmentations.

The training process is shown in Figure 4. The additional training process shown
is aimed at obtaining a detection network that has the following characteristics: the
network is more likely to detect correct targets when augmentation or noise is added
to the original image, which is the basic idea behind our further performance of back
augmentation verification.

Now that we have completed the front augmentation for training, we note that the
front augmentation is used to achieve data transforming from other modalities, which
reduces the modal differences in training and when using a detection network (in this
paper, we mainly focus on the transformation from color images to PAN images). We
aiming at using a large color-image dataset for training ship detection network the barely
available PAN datasets for ship detection in PAN images.
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For

\ one
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&
N\

Our additional training process

Batch
extension

—

Front

X ’ '}
augmentation
N
\
>
/

Mean loss

Source domain images !

Input:

“Conventional (raihiﬁg pr’oc’cés Train ship detection network

Figure 4. Illustration of process for training ship detection network.

3.3. Detection Process

For detection, we perform back augmentation verification to reduce the false-alarm
rate and improve the detection accuracy. Since a real view remote sensing image has a large
size, it is common to slice the original image and perform independent detection for each
slice. When detecting targets in one slice, the back augmentation verification is performed
in the following steps:

Step 1: generate the detection batch

We first generate the detection batch according to the slice having targets detected, the
general process is as shown in Figure 5. For one slice, as shown in Figure 5a, we perform
region padding with double the slice size based on the original image, and it is best for the
targets to lie in the center, as shown in Figure 5b. Then, we perform random translation
with same size of slice; the translation step should be sufficiently large, and in our case, the
minimum translation step is chosen as 5 times the detection-window size. The generated
slice is as shown in the blue window of Figure 5¢, and each target should have at least
n generated slices. The detection batch is achieved by using random augmentation for
generated slices, and the augmentation parameters are chosen to be the same as those in
the training process. The generated detection batch is as shown in Figure 5d.

(a) Detection slicing

(d) Random augmentation

(b) Region padding (c) Random translation

Figure 5. Process for generating a detection batch.
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Original slice

Original detection

Step 2: merge and eliminate targets

After generating a detection batch, we use the following method to obtain the final
detection targets. The process is as shown in Figure 6. We first use the ship detection
network to achieve the detection results for the generated detection batch, and the input
images and corresponding detection results are as shown in Figure 6a,b. Then, we construct
the feature vector f;, for each detection and use the density-based spatial clustering of an
application with noise (DBSCAN) method [33] to perform clustering for detections. The
feature vector f,, is defined as:

fw = [x, Y, kow, koh] 2)

where x is the x-coordinate of the center of detection; y is the y-coordinate of the center of
detection; w is the width of detection window; h is the height of detection window and
ko € (0,1) is a weight factor, since we are more concerned about the position than the size
of the detection window.

Detection batch

(a) Generating batch images for detection

Detection batch results

(b) Detection results for batch images

(c) DBSCAN for detection results

Figure 6. Process used to merge and eliminate targets using generated detection batch. Here, red
squares mean the detection results of network.

The DBSCAN algorithm constructs the e-neighborhood of the data point as

Ne(p) = {q € X | dist(p,q) < ¢} ®3)

where dist is the distance function, and we choose L, norm as the distance function in
our method.

The DBSCAN method uses the neighborhood density threshold M to discover the
clusters of the dataset that contains at least M, central points. Choosing M, > n/2, the
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false-alarm rate can be reduced so that the detection accuracy is improved, as shown in
Figure 6¢. In fact, there is no ship target in the original slice (checked manually according
to AIS data), and the proposed method can effectively eliminate the false-alarm target in
the original detection.

The proposed detection process has the following characteristic,

Remark 1. Let p; denote the true detection precision of the original ship network, p, denote
the false-alarm detection precision of the original ship network and p1, pa satisfy p1 > 0.5 > po,
then the true detection precision of our method can converge to 1 according to the probability, and
false-alarm detection precision can converge to 0 when the generated batch sizen — oo.

Proof. Letn = 2m,m > 1, the true detection precision of our method is given as

n

P(n) =Y Ckpk(1—py)" " 4)

k=m

We have

m
1=P(m) = L Cipf(l—p)""

m—1 1
" —k _ - 2m—1 k 5
= ngnfllk;o Pil—p)" " =L (1 - p)™ szo (t55) ®)
—cn-1 (1 2m—1 1- =
= Cp (= p)™ B (1= (55

According to Striling formula [34], when m — co, we can have

cm-1 _ @m-1) 2mam—1)(2n1)>"!
2m—1 (m—l)‘m' /27.[(m_1)(ml%1)m*1 /27'[111(%)?” (6)
_ 2m—1 (2m71>m*1(2m71)m
—V 2n(m-1)m\ m-1 m
This means
m—1
Jim £ Cipi(1- p)"
. = _1\m=1 01\ 2m—1 1—
< lim | [t (3" () (1= p )" R (- ()™ o
. 2m 2m—1 1—
= Jim 21— ) R - ()"
. 1— 2m—1 -1
= égﬂoﬁmﬁl @"A=p)™ " =21 —p)" PP
=0
And
r%l_r)r;oP(Zm -1)=1 8)

The true detection precision of our method can be proved as monotonically increasing
with respect to p;.

Mt = I k= 1pf (= )" = (= Rpf (= )"

m—1 B L _ 9
="E ark - p) = ) ©)
<0

That is 5P
) o (10)
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The false-alarm detection precision is given as the same form
Sk k n—k
Pr(n) =} Cypa(1=p2) (11)
k=m
Similarly, we have
. dPs(n)
lim Pf(2m —1) =0, <0 (12)
m—00 aPZ

And the false-alarm detection precision of our method can be proved as monotonically
decreasing with respect to ps.

From Equations (8), (10) and (12), we find that the true detection precision of our
method can converge to 1 and false-alarm detection precision can converge to 0 according
to the probability when the generated batch size n — oo. This completes the proof. [J

From the above analysis, we can observe that the true detection precision of the original
ship network p; and the false-alarm detection precision of the original ship network p,
are critical when performing back augmentation, which requires that the detection has
enough detection accuracy. Hence, the front augmentation is a necessary step that reduces
the modal difference in training and guarantees the basic detection accuracy in different
modal images.

4. Experiments and Discussion

In this section, we train the model mainly using the Kaggle Ship Detection Dataset [35]
and verify the effectiveness of our method using real remote sensing images observed by
GaoFen satellites. The total size of the training set is about 15,000, with about 80% of them
from the Kaggle Ship Detection Dataset, 10% from the AIR-MOT dataset, and 10% from the
GF-6 satellite. In the training process, the dataset is split into training and validation sets
with an 80-20 split. The general real-satellite experiment process is as follows.

We first analyze the historical AIS and weather data of the South China Sea and choose
a suitable region then we decide on the sensing time and report these to the management
team of the GaoFen satellite. In order to definitely observe a ship in the image, we rent a
small ship to sail within the selected region at the satellite-sensing time. The experiment
lasts for several weeks, and these remote sensing images with AIS data as the ground truth
compose our testing data.

The training dataset consists of color images and the real remote sensing image
is a PAN image. The detection backbone network is chosen from Mask-R-CNN [36],
Deformable DETR [37], YOLOvVS5 [38] and YOLOvVS [39], which are the most widely used
network forms in ship detection from remote sensing. The experiments are conducted on a
high-performance workstation equipped with a 24 GB Nvidia RTX 4090 GPU.

4.1. Comparison Experiments

In this experiment, we demonstrate the efficiency of the proposed method on a real
remote sensing image and compare it with widely used methods. Since our method needs
a detection backbone network, we give the comparative results of each backbone network,
and we note “(ours)” to indicate that the method is performed in our proposed framework.
All the detection networks are trained for 1000 epochs and choose the best performance
model. The Mask-R-CNN network is employed using the Detectron2 platform [40], and
the Deformable DETR network is employed using the mmdetection platform [41].

The mean average precision (mAP) and mean false-alarm rate (mFAR) of slices are
used to evaluate the ship detection performance. The AP is a measure of the quality of
detection results for a certain category, and the calculation of AP is as follows:

AP = /01 P(R)dR (13)
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where P is the precision, which measures how well you can find true positives out of all
positive predictions; R is the recall, which measures how well you can find true positives
out of all predictions and AP is the area enclosed by the P-R curve.

The mFAR is defined as follows:

FP,
FAR=Y) — -1
m Zl: N;(EP; + TP;)

/Nt (14)
where FP; is the number of false positives of all slices of one view image; TP; is the number
of true positives of all slices of one view image; N; is the number of slices of one view image
and N; is the number of views of a remote sensing image. The mFAR reflects the possibility
of false-alarm detection in one slice; because a lot of negative slices are generated for one
view image, mFAR =1 indicates that all slices or test images having false-alarm targets and
all detections are false alarms.

The training dataset and testing views of a real remote sensing image are as shown
in Figure 7, Figure 7a shows the training color images and Figure 7b illustrates the real
remote sensing PAN images. We can observe huge differences between different modal
images. The size of the real remote sensing image is about 14,000 x 24,000, the size of each
slice is 1500 x 1500 and the padding size is 1000, and we use 10 views of a real remote
sensing image with over 15,000 slices for evaluating the performance. The ground truth
of the real remote sensing image is checked manually according to the ship’s AIS data in
same time period.

Kaggle Ship Detection Dataset

GF-6 images

(a) Mlustration of training images

Figure 7. Cont.
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(b) Real remote sensing for testing
Figure 7. Training dataset and testing real remote sensing.

The statistical results of the precision and runtime are shown in Table 1; here, mAP,
means the mAP in the training dataset, mAP; means the mAP in the real PAN images,
mFAR means the mean false-alarm rate in the real remote sensing images and runtime
means the average computing time to complete the detection of one view image, which
indicates the total detections of all slices (about 1500 slices).

Table 1. Quantitative comparison of eight methods on real images observed by GaoFen satellites,
with all methods performed using the same equipment. Bold indicates the best result.

Method mAP, mAP, mFAR Runtime [s]
Mask-R-CNN 0.6897 0.3482 0.2364 1133
Mask-R-CNN (ours) 0.8554 0.8223 0.0121 1320
Deformable DETR 0.8175 0.5119 0.1459 835
Deformable DETR (ours)  0.8798 0.8421 0.0087 946
YOLOvV5 0.7025 0.4142 0.2104 157
YOLOVS5 (ours) 0.8602 0.8254 0.0120 162
YOLOvS8 0.8241 0.5315 0.1366 204
YOLOVS (ours) 0.8856 0.8513 0.0076 223

From the results, we see that all kinds of backbone detection networks have poor
performance in real remote sensing images because huge differences between different
modal images cause difficulty in generalization. Due to the modal gap, the detection
performance sharply decreases in real PAN images, and although mAP is over 0.8 in
training color images, the mAP is only about 0.53 in real PAN images. Our method can
improve the detection precision and reduce the false-alarm rate for all kinds of backbone
detection networks without changing the network structure, and the mAP in real PAN
images is improved by about 136% for Mask-R-CNN, 64.5% for Deformable DETR, 99.3%
for YOLOVS5 and 60.2% for YOLOvVS8. And the mFAR of detection network is less than 1.3%,
which indicates about 8 false-alarm targets detected in one view of an image, which has
decreased over 12% indicating that over 54 false-alarm targets have been removed in one
view of an image. These results can show that our method can generate the closest result
to the ground truth, despite the huge difference between a multi-spectral (color) image in
training and a panchromatic (PAN) image in testing.
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The detection results from real remote sensing images are as shown in Figures 8 and 9.
The other five real-satellite remote sensing images have the same characteristics as the pre-
sented images. Here, we show the best and least satisfactory performances from comparable
methods to better demonstrate the effectiveness of our method.

(a) Ground truth

(b) Mask-RCNN

Figure 8. Cont.
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(c) Mask-RCNN (ours)

(d) YOLOV8

(e) YOLOvVS8 (ours)

Figure 8. Illustration of detection results. Here, red squares mean the detection results of network.
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(a) Original remote sensing image (b) Ground truth

(¢) YOLOvVS8 (d) YOLOVS (ours)
Figure 9. Illustration of detection accuracy. Here, red squares mean the detection results of network.

Figure 8a shows the ground truth of these three views of PAN images; these images
are observed by GaoFen-3 with a resolution of 0.75 m, and only one ship target lies in the
middle-column image. Figure 8b shows the detection result from conventional Mask-R-
CNN, which generally has the least satisfying result of the comparative detection backbone
networks, with 23 detection results in the first image, 33 detection results in the second
image and 171 detection results in the third image; although the true ship target is detected,
a total of 225 false-alarm targets are also incorrectly detected and the mFAR is about
24%. Figure 8d shows the detection result of conventional YOLOVS, which has the best
satisfactory result of the detection backbone networks on average, with 19 detection results
in first image, 21 detection results in the second image and 29 detection results in the
third image. Similarly, the true ship target is detected, total 68 false-alarm targets are also
incorrectly detected and the mFAR is about 7.3%. Figure 8c,e show the detection results of
the same structure with the Mask-R-CNN and YOLOvVS8 networks, respectively; using our
method, all the networks can achieve 100% precision and 0% mFAR in these PAN images,
which verifies the efficiency and applicability of the proposed method.

Figure 8 shows the promising performance of our method in mitigating false alarms
induced by cross-modal images. Next, we demonstrate the performance of our method in
detection accuracy. The Figure 9 image was also observed by GaoFen-3 with a resolution of
0.75 m, and two adjacent views of images have been stitched together using longitude and
latitude information that causes rotation of the image, and the size of original remote sens-
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ing image was 22,352 x 21,478. As shown in Figure 9b, 24 ships exist according to manually
checked results using the AIS data. Figure 9c shows the detection result of conventional
YOLOVS, which has the most satisfactory results of the detection backbone networks on
average, with 12 positive true detections, 12 false-negative detections and 54 false-alarm
detections, and the detection recall and mFAR are 50% and 14.95%, respectively. Figure 9d
shows the detection result of same structure with the YOLOv8 network using our method,
with 20 positive true detections, 4 false-negative detections and 7 false-alarm detections,
and the detection recall and mFAR are 83.33% and 1.64%, respectively. From the results,
we can find that both the detection accuracy and false-alarm rates are influenced by cross-
modal images, causing significant performance degradation in real PAN images. Our
method can effectively reduce the influences of different cross-modal images, holding a
satisfactory detection accuracy and effectively mitigating false alarms, which verify the
efficiency and applicability of the proposed method.

The results of the training dataset of the Kaggle Ship Detection Dataset are as shown
in Figure 10. The detection results from the original YOLOv8 and from YOLOv8 with our
framework are shown in Figure 10a,b, respectively. From Figure 10a, we can observe that
original YOLOVS has satisfactory detection accuracy, most ships are detected with little
false-alarm targets. Since front augmentation is used, the original images are transferred to
single channel patterns as shown in Figure 10b. As observed, detection accuracy in training
dataset slightly decreased while the false-alarm rate also decreased in our framework. And
generally, the detection accuracy is still satisfactory with higher mAP (mainly caused by the
decreasing false-alarm rate). Here, we note that the detection accuracy in training dataset
may not further increase; however, the performance in the training dataset is not our
main concern, as our aim is to use the large color-image dataset for training ship detection
network instead of the barely available PAN datasets. And the presented results show that
the detection accuracy of our method is still satisfactory.

(a) YOLOV8

Figure 10. Cont.
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(b) YOLOVS (ours)

Figure 10. Results of the training dataset Kaggle Ship Detection Dataset. Here, red squares mean the
detection results of network.

We note that the runtime of our method in Table 1 can be divided into the network
prediction time and the results-clustering time. From these, the largest part of the running
time is for the network prediction time, and the clustering time is less than 0.4 s on average.
Generally, the additional running time relates to the original false-alarm rate of the backbone
detection network, as more false-alarm detections requires more time for completion of
the total detection process of our method. The additional running-time complexity of our
method is approximately O(Ngy4 - Tp), where Np4 is the number of false-alarm detections,
and Tp is the detection time of the network.

4.2. Ablation Study

An ablation study conducted on different structure combinations is described in this
section. Considering whether the front augmentation or back augmentation is used, four
structures are described in Figure 11.

The training dataset and testing dataset are as same as those used in Section 4.1, and
we have chosen Mask-R-CNN as the detection backbone network to better demonstrate the
effectiveness of different structures in our method. The statistical results of the metrics are
shown in Table 2, where Ty represents the training time of the network. The total size of the
training set is about 15,000, and the testing set consists of 10 views of real remote sensing
images with over 15,000 slices. We present the illustration results of ablation study using
the image shown in Figure 9, and the results are shown in Figure 12.

From these results, we can see that both the front augmentation and the back aug-
mentation are important in improving the network performance; the front augmentation
can sightly improve the generalization of the network and mainly influences the training
network time, and it is not related to runtime as it is only performed in training. Although
the improvement by only using front augmentation may seem to be not very obvious in
the experiment (increasing mAP by 0.0539 and decreasing mFAR by 0.0797), the front aug-
mentation is still necessary as it plays an important role in meeting the basic requirement
of our method that py, pp satisty p; > 0.5 > p,, which guarantees detection accuracy as
shown in Figure 12. The back augmentation can improve the generalization of the network
and reduce the false-alarm rate, mainly by influencing the network prediction time, and it
is not related to training time as it is only performed when running detection. As shown in
Figure 12, the back augmentation can achieve better performance when the network has
enough performance, which is acquired by using front augmentation. Hence, our method
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that combines front augmentation and back augmentation can effectively improve the
detection precision and reduce false alarms.

In conclusion, the front augmentation provides the potential detection ability of
training network, and the back augmentation improves the false-alarm rejection capability.
By applying these two structures simultaneously, we can get the best detection results in
cross-modal remote sensing images.

Input: Input: Input:
Source domain images Source domain images Target domain images

]

Training Train modal
recognition network

l Use modal recognition network

Input: Ship detection Train front
Remote sensing images network augmentation

l Use front augmentation

Input: Ship detection
—sl
Remote sensing images network
Output: Output:
Detection results Detection results
(a) Conventional framework (b) Only front augmentation
Input: Input: Input:
Source domain images Source domain images Target domain images
.. Train modal
Training .
recognition network
l Use modal recognition network
Input: Ship detection Train front
Remote sensing images network augmentation
l Use front augmentation
Input: Ship detection
) Remote sensing images network
Back augmentation
verification 1
Back augmentation
verification
Output: Output:
Detection results Detection results
(c) Only back augmentation (d) Both front augmentation and back augmentation

Figure 11. The four different structures of our proposed method for ablation study.

Table 2. Quantitative comparison of four different structures within our proposed method for an
ablation study. Bold indicates the best result.

Method mAP, mAP; mFAR Ty, [h] Runtime [s]
Conventional framework  0.6897 0.3482 0.3364 50 1133
Only front augmentation ~ 0.6954 0.4021 0.2567 103 1138
Only back augmentation ~ 0.7335 0.6828 0.1378 49 1325

Double augmentation 0.8554 0.8223 0.0121 103 1320
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(a) Ground truth (b) YOLOVS (only front augmentation)

(c) YOLOVS (only back augmentation) (d) YOLOVS (double augmentation)
Figure 12. Illustration of the ablation study. Here, red squares mean the detection results of network.

4.3. Detection Precision

In the experiment shown in Figure 8, the imaging time is from 29 June 2023, 11:23:17
to 29 June 2023, 11:23:25, and the observing ship’s AIS trajectory near the imaging time is
shown in Table 3. As only one ship is found according to AIS data in the imaging area, we
can directly analyze the detection precision.

Table 3. Ship’s AIS trajectory near the imaging time.

Update Time: Longitude (°): Latitude (°): Course (°): Speed (kn): Heading (°):
291]{1: Tg:égzg’ 1102312 18.18648 3274 7.8 82.0
291]5 ?Zégzg’ 110.22948 18.18898 325.8 82 3058
291];1: 2;;223 110.2151 18.20379 315.6 8.1 315.6
291]11: 2;5823 110.19424 18.2146 112.6 7.6 235.0
29 June 2023 110.1945 18.215475 290.0 7.5 290.0

11:41:23
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The detection result of our method is shown in Figure 13, and the detection position
of the analyzing ship is 110.2160° longitude, 18.2031° latitude. The detection error is about
96.4851 m, which shows the great potential of our method for automatic ship detection
and tracking.

18.206 s ® NearestAlSdata

= = = Fittrajectory
. Ship position atimaging time

18.205 S ® Detectionresult 1
o 18.204 o
S s
E 18203 L
<
-

18.202

18.201

110212 110214 110216 110218  110.22
LONGITUDE []
(a) Detection result (b) Detection performance

Figure 13. The detection result of our method. Here, red square mean the detection result of network.

4.4. Limitations

Although the proposed double-augmentation method shows satisfactory advantages
in ship detection for cross-modal remote sensing images, the presented study also has
certain limitations. First, the proposed method uses additional front augmentation to train
the detection network, which needs additional data of the target domains and costs more
training time. In our case, the total training time can be about double that of training for
conventional methods and more GPU memory is also needed in training. Second, the
back augmentation verification needs additional predictions and costs more detection time,
which causes a detection rate that is lower than that of conventional methods. In addition,
the proposed method can only be valid under the condition that the true detection precision
of the original ship network is over 0.5 and the false-alarm rate is less than 0.5, which
requires that the detection network has enough performance and the improvement also
has a boundary.

5. Conclusions

This paper presents a practical and effective scheme for ship detection in cross-modal
remote sensing images, which is suitable for ship detection in PAN images with little
training data using a light-weight detection network. Our method constructs a double
augmentation structure to improve the performance of a conventional detection backbone
network. We train a modal recognition network to distinguish different kinds of images and
use the extracted potential features to train the transformation relation between different
modal images, and the obtained transformation relation consists of the front augmentation.
Then, we use the front augmentation to train the detection backbone network and use back
augmentation verification to reduce the false-alarm rate and improve the detection accuracy.
Comparative results show that the proposed method can greatly improve ship-detection
precision and effectively reject the false alarms caused by cross-modal images.

However, the proposed method has some limitations. One limitation is that the
additional processes need more training and prediction time. Second, the improvement
has a boundary and requires that the detection network has enough performance, which
indicates that the true positive detection of the original ship detection network should
be greater than 0.5 and false-alarm detection precision of original ship detection network
should less than 0.5. In other words, when the augmentation is added to images, the ship
targets are more likely to be detected than are false alarms in background.
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In the future, we aim to attempt to optimize the running process of the method to
improve the efficiency. We also aim to further study the modal transformation and improve
the structure of the backbone detection network.
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