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Abstract: With the rapid advancement of technology, satellite and drone technologies have had
significant impacts on various fields, creating both opportunities and challenges. In areas like the
military, urban planning, and environmental monitoring, the application of remote sensing technology
is paramount. However, due to the unique characteristics of remote sensing images, such as high
resolution, large-scale scenes, and small, densely packed targets, remote sensing object detection
faces numerous technical challenges. Traditional detection methods are inadequate for effectively
detecting small targets, rendering the accurate and efficient detection of objects in complex remote
sensing images a pressing issue. Current detection techniques fall short in accurately detecting small
targets compared to medium and large ones, primarily due to limited feature information, insufficient
contextual data, and poor localization capabilities for small targets. In response, we propose an
innovative detection method. Unlike previous approaches that often focused solely on either local
or contextual information, we introduce a novel Global and Local Attention Mechanism (GAL),
providing an in-depth modeling method for input images. Our method integrates fine-grained local
feature analysis with global contextual information processing. The local attention concentrates on
details and spatial relationships within local windows, enabling the model to recognize intricate
details in complex images. Meanwhile, the global attention addresses the entire image’s global
information, capturing overarching patterns and structures, thus enhancing the model’s high-level
semantic understanding. Ultimately, a specific mechanism fuses local details with global context,
allowing the model to consider both aspects for a more precise and comprehensive interpretation of
images. Furthermore, we have developed a multi-head prediction module that leverages semantic
information at various scales to capture the multi-scale characteristics of remote sensing targets.
Adding decoupled prediction heads aims to improve the accuracy and robustness of target detection.
Additionally, we have innovatively designed the Ziou loss function, an advanced loss calculation, to
enhance the model’s precision in small target localization, thereby boosting its overall performance
in small target detection. Experimental results on the Visdrone2019 and DOTA datasets demonstrate
that our method significantly surpasses traditional methods in detecting small targets in remote
sensing imagery.

Keywords: remote-sensing detection; multi scale feature fusion; attention mechanism; loss function

1. Introduction

In the realm of remote sensing scenes captured by drones or satellites, target detection
is a crucial technology. Its primary purpose is to identify and locate specific objects or
targets in images or videos taken by drones or satellites. This technology is vital in
various applications, such as plant conservation [1], wildlife protection [2], and urban
monitoring [3]. In recent years, with the rapid development of deep learning, significant
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progress has been made in the development of target detection technology. Presently,
the mainstream target detection strategies can be divided into two types: the two-stage
strategy represented by the R-CNN series [4] and the one-stage strategy, with YOLO [5]
being one of the most popular frameworks. In the two-stage target detection strategy,
the initial step uses heuristic methods or region proposal generation techniques to obtain
multiple candidate boxes, which are then filtered, classified, and regressed in subsequent
steps. In contrast, the one-stage strategy processes in an end-to-end manner, transforming
the target detection task into a global regression problem. This global regression strategy
can simultaneously assign locations and categories to multiple candidate boxes and more
clearly differentiate between targets and background. Single-stage object detectors achieve
a balance between real-time metrics and performance, with the YOLO series algorithms
gaining attention for their rapid iterative updates. In the current general object detection
research field, researchers have widely explored various methods, including expanding
model width and depth and applying multi-scale fusion techniques [6]. These techniques
are typically applied to natural image processing. However, for high-resolution aerial
images in remote sensing scenes, target detection techniques for natural images often
cannot be directly applied. This is because aerial images face unique challenges, mainly
including two aspects: firstly, due to the high flight altitude of drones or satellites, images
often contain a large number of tiny micro-objects, ranging in size from 800 × 800 to 16 × 16
pixels, leading to a decrease in Average Precision (AP) when the object size decreases. This
is mainly due to the network’s insufficient focus on key details and features. Traditional
models often face challenges in fully exploiting fine-grained details, thereby impacting the
effectiveness of object detection. Consequently, it is imperative to explore more efficient
methods for capturing and recognizing these diminutive objects in high-resolution images.
Widely employed within the field, multi-scale feature extraction techniques offer a valuable
approach to enhance the discernment of intricate details.

Recently, FE-YOLOv5 [7] implemented a feature enhancement strategy to improve
model spatial perception and feature representation capabilities. QueryDet [8] introduced
an innovative coarse-to-fine cascading sparse query mechanism. LMSN [9] proposed a
multi-scale feature fusion and receptive field enhancement module to promote lightweight
multi-scale object detection. EFPN [10] developed a feature texture transfer module and
a novel foreground–background balance loss function. iS-YOLOv5 [11] optimized the
information path of feature fusion and improved the SPP module. Although these tech-
niques retain shallow features for subsequent learning to some extent, the prominence of
large targets often dominates due to the simultaneous presence of details of both large
and small targets, leading to weakened small target features. Therefore, contextual in-
formation becomes crucial in visual recognition tasks, and the attention mechanism has
become a popular technique for capturing this information. CANet [12] used a cross-layer
attention network to merge deep and shallow features through bidirectional feature fusion.
AFPN [13] designed three novel attention modules to enhance the model perception of
foreground and contextual information. Typically, these attention modules operate in-
dependently at their respective levels, and the interlayer contextual correlation is rarely
deeply explored. Existing methods still show inadequacies in balancing local details and
global structure in improving the accuracy of small target detection in remote sensing
images. Another challenge is the moving characteristics of tiny targets, which reduce the
tolerance for bounding box localization. Even a slight offset in the bounding box can lead
to a significant drop in Intersection over Union (IoU), causing a large number of false detec-
tions. Traditional loss functions have limitations when handling small target localization
precision, which may affect the model’s overall performance in object detection, especially
for small targets. Although many novel loss functions such as GWD [14] and KLD [15] have
been proposed recently, they still require further optimization and enhancement in terms of
tolerance and computation details for target bounding box offsets in remote sensing target
detection scenarios.
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In this study, we introduce new modules and structures to further enhance perfor-
mance and flexibility in remote sensing target detection models. This model, which we
named GALDET, primarily aims to provide new solutions for two major issues in remote
sensing target detection. Firstly, in GALDET, we introduced our designed CGAL module,
which significantly enhances feature extraction capability, enabling the model to more
effectively detect and parse fine-grained information carried by tiny targets. It allows
local details and global context information to be fused through a specific mechanism,
enabling the model to consider both local details and global structure for a more precise
and comprehensive understanding of images. Unlike previous research, our GALDET
introduces a structure based on Convolutional Neural Networks (CNN) with four decou-
pled prediction heads to mitigate the impact of target scale variation. This includes three
existing decoupled prediction heads and one newly added prediction head, which uses
low-level, high-resolution feature maps to increase sensitivity to remote sensing objects.
Simultaneously, to further enhance the model’s tolerance for bounding box offsets, we
propose an improved loss function—the Ziou loss. By optimizing the details of the loss
function’s calculation, it can enhance the model’s precision in small target localization,
thereby improving the overall performance of the model in small target detection tasks.
Compared to the original YOLO model, our modified model GALDET performs better
in processing high-resolution images in remote sensing scenes. In terms of Average Pre-
cision (AP) value, it shows an improvement of about 6.3% to 6.5% compared to recent
advanced methods.

The main contributions of our research are as follows:
1. To effectively capture the fine-level details embedded in targets, this study intro-

duces an innovative feature fusion module named CGAL, based on Global and Local
Attention Mechanisms. This module effectively balances the utilization of local details with
global contextual information.

2. Considering the diversity in target scales, we have developed a decoupled detection
framework featuring a four-head structure. This is aimed at more effectively tackling the
challenges posed by scale variations in remote sensing targets.

3. Addressing the challenges of detecting small objects, we designed a novel loss func-
tion that enhances the tolerance scale for bounding box offsets and refines the calculation
process, thereby increasing detection precision.

Through these innovative enhancements, our GALDET model has achieved signifi-
cant performance improvements in the task of target detection in remote sensing scenes.
This advancement brings broader application prospects in practical fields such as plant
conservation, wildlife protection, and urban monitoring.

The structure of this paper is as follows: Section 2 provides an overview of related
work. In Section 3, we offer a comprehensive description of our proposed method. Section 4
presents the experimental results and accompanying discussion. Section 5 delves into a
discussion of the limitations of our method and outlines future research directions. Finally,
Section 6 provides the concluding remarks for this paper.

2. Related Work
2.1. Data Augmentation

Data augmentation is a critical method for expanding the training sets in machine
learning and deep learning, which is essential for improving model performance. This tech-
nology is not only widely utilized in the field of object detection [16], but also excels in the
domain of image dehazing [17]. Common data augmentation techniques include flipping
and mirroring (suitable for targets with no fixed orientation, such as trees), rotation (for
targets that may appear from multiple angles, like vehicles or animals), scaling (to address
changes in the size of targets, such as pedestrians or vehicles), and cropping (to enhance the
model’s capability to process partially visible targets, like crowds in surveillance images).
Recently, several multi-image data augmentation strategies, such as MixUp [18], CutMix,
and Mosaic [19], have been introduced. MixUp trains the network to exhibit simple linear
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behavior between training samples through convex combination on pairs of examples and
labels, thus performing regularization. CutMix replaces obstructed areas with segments
from other images. Mosaic, extending CutMix, blends four different images into one larger
image, providing the model with additional scene and object information. In our GALDET
model, we incorporated a combination of MixUp and Mosaic to enrich the model’s feature
learning and enhance its generalization ability.

2.2. Object Detection

The process of object detection and recognition can primarily be divided into two types:
one-stage detection and two-stage detection. In two-stage detection, recognition and de-
tection are independent steps; in contrast, one-stage detection performs both tasks concur-
rently. There are two main types of two-stage object detectors: the sliding window type
and the region-based type. The latter includes two phases: generating region proposals
and then classifying and refining their locations. This category of detectors includes mod-
els like RCNN [20], Fast RCNN [21], and Mask RCNN [4]. Unlike two-stage detectors,
one-stage detectors directly perform classification and regression tasks, omitting the re-
gion proposal generation step, thus offering higher detection efficiency and requiring less
computational power. OverFeat [22] was an early application of one-stage object detectors
based on Convolutional Neural Networks (CNN), followed by the emergence of models
like YOLO [5] and SSD [23]. Recent one-stage object detection algorithms also include
YOLOv8 [24] and YOLOv5 [25], which provide different scale models according to various
scene requirements.

Object detection architecture consists of three key components: the Backbone, the
Neck, and the Head. The Backbone, such as VGG [26], CSPDarknet53 [27], and Swin
Transformer [28], is responsible for feature extraction. In this study, we enhance the CSP-
Darknet53 [27] with the addition of the CGAL module, optimizing feature extraction by
deepening the network and integrating global and local attention strategies. The Neck,
serving as a bridge between the Backbone network and Head, further processes feature
maps to enhance object detection accuracy. Typical structures include bottom-up and top-
down pathways, such as FPN [6] and PANet [29]. The Head part uses feature maps from
the Backbone for object localization and classification and can be divided into single-stage
and two-stage detectors, like the YOLO and RCNN series. Our proposed multi-decoupled
prediction head structure processes features at different scales, enhancing the model’s
perceptual abilities and capacity to handle complex visual tasks, thereby improving the
accuracy of object detection.

2.3. Attention Mechanism

The attention mechanism, inspired by the human visual system, is used to dynamically
select and weight relevant data and has been widely applied in object detection and
deep learning tasks. This mechanism enhances computational efficiency and performance
by focusing on important parts of the input and ignoring irrelevant information. The
groundbreaking RAM [30] model demonstrated the effectiveness of attention mechanisms
in neural networks, introducing dynamic positioning and information selection methods.
The STN [31] further developed the application of attention by using a sub-network to
select important regions. SENet [32] improved feature selection precision by introducing
attention mechanisms within feature channels. Others, such as Dual self attention [33]
and ECANet [34], successfully expanded the attention mechanism, employing different
strategies for precise feature selection and weighting. The attention mechanism is divided
into global and local attention: global attention helps to capture scene context information,
while local attention focuses on details, enabling the model to accurately capture minute
features. In our CGAL module, these two forms of attention are seamlessly integrated,
allowing the model to capture information on both a global and local scale. Such a fusion
not only strengthens the model’s comprehension of complex scenarios but also significantly
boosts its learning efficiency.
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3. The Proposed Method
3.1. Overall Structure

The structural details of our remote sensing object detection method are elaborately
presented in Figure 1. This method is built upon a profound algorithmic framework,
with its cornerstone being the CGAL feature fusion module, complemented by the neck
and the quad-decoupled prediction head structures optimized for multi-scale feature
handling. Recognizing the insensitivity of traditional loss functions towards targets in
remote sensing object detection, we have incorporated the Ziou loss function in addition to
classification and objectiveness losses. In the sections that follow, we will delve into the
pivotal components of the algorithm, encompassing the CGAL feature fusion module, the
quad-decoupled prediction head structure for multi-dimensional feature processing, and
our innovative Ziou loss function.

Figure 1. Illustrates the architecture of the proposed method: (a) The backbone structure integrated
with the proposed CGAL module (yellow part); (b) the neck designed to accommodate multi-scale
features (green part); (c) the four decoupled prediction heads leveraging multi-scale feature maps
from the neck (blue part).

3.2. Feature Fusion Module CGAL

In Section 3.2, we delve into the feature fusion module, CGAL. Initially, in Section 3.2.1,
we provide a concise recapitulation of the attention mechanism. Subsequently, in Section 3.2.2,
we introduce our novel Global and Local Attention (GAL) mechanism. This mechanism,
by conducting attention computations at both local and global levels on the input image
and applying attention weights to varied windows and key-value pairs, can extract a more
profound feature representation. Lastly, in Section 3.2.3, we elucidate how we devise our
feature fusion module, CGAL, leveraging GAL as the pivotal component.

3.2.1. Attention Mechanism

Given the query Q ∈ RNe×C, the key K ∈ RNk×C, and the value V ∈ RN⊙×C as inputs,
the attention function transforms each query Q ∈ RNq×C into a weighted sum of values
V ∈ RNv×C, where the weights are calculated as the normalized dot product between the
query and the corresponding key. This can be formally represented in the following concise
matrix notation:

Attention (Q, K, V) = soft max
(

QKT
√

C

)
V

By introducing a scalar factor
√

C, we can effectively address concerns associated with
weight concentration and the vanishing gradient problem. This innovative approach not
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only mitigates these issues but also contributes to enhancing the overall robustness and
stability of the model.

3.2.2. Global and Local Attention (GAL) Mechanism

Considering an input X ∈ RN×H×W×C, where N denotes the batch size,H represents
the height of the image, W signifies the width of the image, and C indicates the number
of channels. To simplify the process, we discuss the Global and Local Attention (GAL)
mechanism for a single input where (N = 1), as illustrated in Figure 2.

Figure 2. This diagram provides a visual representation of the GAL mechanism, utilizing the direc-
tional orientation of arrows and modular narrative to facilitate a more comprehensive understanding
of the entire GAL mechanism.

Firstly, we partition the input image, reshaping it from dimension X ∈ RH×W×C to

dimension Xα ∈ R
p2× HW

p2 ×C
. This results in p × p distinct non-overlapping windows, with

each window containing HW
p2 feature vectors. Subsequently, through linear transformations,

we derive the tensor forms of window-level queries Q, keys K, and values V.

Q = XαWq + Sq, K = XαWk + Sk, V = XαWv + Sv

The variables Wq, Wk, Wv ∈ RC×C represent the linear transformation weights for the

queries Q , keys K, and values V, respectively. Meanwhile, Sq, Sk, Sv ∈ R
p2× HW

p2 ×C
denote

the linear transformation bias values for the queries Q , keys K, and values V, respectively.
Implementing Local Attention Mechanism; After acquiring the tensor representations

of the queries Q, keys K, and values V, we apply average pooling to the queries Q and
keys K across the spatial dimension, resulting in window-level queries Qt and keys Kt .
Following this, we determine the similarity score matrix Ht using the similarity between
the window-level queries Qt and keys Kt .

Ht = Qt(Kt)T

Subsequently, we utilize the function softmax to normalize the similarity score matrix
Ht and multiply it by the value V to obtain the attention weight OP between each query Q
and all keys K in the given window.

OP = Attention
(
Qt, Kt)V = soft max

(
Qt(Kt)T

√
C

)
V

where O ∈ RH×W×C. This is used to concentrate on the interplay of information within the
local window and manage intricate details and spatial relationships.

Implementation of Global Attention.; For each query Q , we choose the top “i” values
from the similarity score matrix Ht across various local windows, resulting in the correlation
matrix Jt ∈ Rp2×i. This represents the “i” keys K most associated with each query Q.

Jt = First i
(

Ht)
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where first, i(·) represents choosing the top i values from Jt ∈ RS2×i. Subsequently, we
utilize Jt to extract the pertinent sections from the key K and value V tensors.

K f = Extract
(
K, Jt), V f = Extract

(
V, Jt)

K f , V f ∈ R
p2× iHW

p2 ×C
, In which Extract(A, B) denotes the extraction of sections related to

B from A. Upon extracting K f and V f , we execute a flattening process, resulting in a size

designated as K f , V f ∈ R
p2×m× iHW

p2 × C
m , representing the count of multi-head attentions.

Following this, the attention weights are determined between the query tensor Q and the
flattened tensors of key K f and value V f .

OG = Attention
(

Q, K f
)

V f = soft max

Q
(

K f
)T

√
C

V f

By doing so, we manage to restrict the attention mechanism to the key-value pairs most
pertinent to each query within p × p distinct non-overlapping windows, thus fulfilling
our objective of harnessing global attention. In the end, we combine the results from both
local and global attention and perform a reshaping operation to revert to the original input
dimensions, thereby producing the final output.

O = OP + OG

Wherein O ∈ RH×W×C. The GAL mechanism adeptly integrates in-depth analysis of
local fine-grained features with the processing of global contextual information, offering
a profound modeling approach for the input image. The local attention segment of this
mechanism conducts meticulous processing on the information within local windows,
allowing the model to concentrate on and delve into local nuances and spatial associations,
thereby identifying intricate details in complex images. Concurrently, the global attention
segment of the GAL mechanism focuses on capturing the macro contextual information
of the entire image. This global attention aims to holistically seize the overarching pat-
terns and structures within the image, assisting the model in attaining deeper semantic
comprehension based on local details. In the concluding phase, the outputs from these
two segments are integrated. This process is not merely an overlay of information; instead,
it involves a unique mechanism that harmonizes local intricacies with a global context in a
closely intertwined manner. This ensures that the model, during image processing, takes
into account both the fine-grained details and the broader structural aspects, leading to a
precise and comprehensive understanding of the image.

3.2.3. Feature Fusion Module: CGAL

Leveraging GAL as its core component, we have proposed an innovative feature
fusion module known as CGAL. As depicted in Figure 1, the structure of the CGAL module
is primarily composed of GAL and convolutional (CONV) blocks. Initially, the module
incorporates two CONV blocks with a stride of two, aiming to broaden the receptive
field of the network by reducing the spatial dimensions of the feature map. This design
ensures that the network comprehensively captures the overarching characteristics of
objects, subsequently enhancing their feature extraction capabilities. Following this, the
GAL block takes on a central role within the module. Implementing both local and global
attention mechanisms, the GAL block delineates the interrelations among input features,
producing a refined, weighted feature representation. The module concludes with a CONV
block set to a stride of one, a configuration that aids in the preservation of local object
features. These paired CONV blocks further process the features refined by the GAL block,
deepening the network’s capabilities. In essence, the CGAL module, by amplifying the
network’s depth and receptive field and synergizing local and global attention strategies,
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significantly bolsters its feature extraction prowess, enabling the model to delve deeper
into the intricate details inherent to remote sensing targets.

3.2.4. Multi-Decoupled Prediction Heads Structure

In this study, we designed a multi-decoupled prediction head structure based on
Convolutional Neural Networks (CNNs), as depicted in Figure 1. To address the challenges
posed by object scale variations, we devised a structure comprising four decoupled predic-
tion heads, three of which are conventional, with the fourth being a novel addition in our
research. This newly introduced prediction head utilizes low-level, high-resolution feature
maps, thereby exhibiting enhanced sensitivity to remote sensing objects. Our core rationale
is that by amalgamating feature maps of different scales from the Backbone network, we can
harness the semantic information extracted across multiple scales, effectively capturing the
multi-scale attributes of targets. Such multi-scale characteristics are pivotal for processing
remote sensing images, as they assist the model in comprehensively recognizing objects of
varying sizes, morphologies, and types within these images. By incorporating additional
decoupled prediction heads, our aim is to bolster the accuracy and robustness of object
detection. This strategy, both theoretically and empirically, has been proven to optimize
object detection performance, enhancing the model’s perceptual capabilities across diverse
scales, shapes, and categories. In summary, our approach, which leverages multi-scale
features combined with enhanced decoupled prediction heads, effectively elevates the
precision and stability of remote sensing object detection.

3.2.5. Ziou Loss Function

In remote sensing object detection applications, given that the sizes of remote sensing
targets are generally small, the position and size of an object’s bounding box play a signifi-
cant role in the detection outcome. Traditional loss functions might not adequately address
the precision required for small object localization, potentially leading to reduced detector
performance when dealing with such targets. To tackle this challenge, we optimized the
conventional loss function and introduced a novel loss function termed the Ziou loss. This
loss function aims to enhance the model’s accuracy in localizing small objects by employing
a more precise loss calculation, thereby improving the model’s detection performance on
small targets. Given the predicted bounding box BA and the ground truth bounding box
Bgt, the definition of the Ziou loss function is as follows:

LZIou = 1 − IOU + αν +
ρ2(b, bgt)

c2 +
ρ2(h, hgt)

c2
h

+
ρ2(w, wgt)

c2
w

Here, b and bgt represent the center points of B and Bgt, respectively; IOU =
∣∣B∩ Bgt

∣∣/∣∣B∪ Bgt
∣∣;

α = ν
(1−IOU)+ν

, ν = 4
π2

(
arctan wgt

hgt − arctan w
h

)2
; h and hgt respectively represent the

heights of B and Bgt; w and wgt respectively represent the widths of B and Bgt; ρ(·) =∥∥b − bgt
∥∥

2′ denotes the Euclidean distance; c represents the diagonal length of the minimal
bounding box C that encapsulates both the predicted box B and the target box Bgt; ch
and cw respectively represent the height and width of the minimal bounding box C that
encapsulates both the predicted box B and the target box Bgt.The visual representation of
the specific parameters and their interrelationships mentioned in the formula expression is
depicted in Figure 3.

Our proposed method initially adjusts the aspect ratio of the predicted box B using
α and ν to gradually converge it to an appropriate range. Upon reaching this range, the
edges of the predicted box B are further refined using the orientation loss Lasp and distance
loss Ldis until they approach the correct values. To expedite this convergence process, we
also directly regress the Euclidean distance between the center points of the predicted box
B and the actual box Bgt.
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Figure 3. Provides a visual representation of the various parameters.

4. Experiment

This section is divided into four subsections: Dataset and Evaluation Metrics; Imple-
mentation Details; Experimental Results and Comparative Analysis; and Ablation Study.

4.1. Dataset and Evaluation Metrics

To evaluate the performance of our proposed method, we selected two challenging and
popular benchmark datasets in aerial image detection, namely VisDrone [35] and DOTA [36].
For the VisDrone dataset, we adopted the COCO-style Average Precision (AP) [37] as the
evaluation metric and specifically reported the AP values for small, medium, and large-
sized objects, with a particular focus on the model’s performance in detecting small objects.
For the DOTA dataset, following the mainstream research practices [38], we reported the
AP for each category and the overall mAP of the model.

VisDrone The VisDrone-2019 dataset consists of 8599 images captured by drone
platforms across various locations and altitudes. This dataset is characterized by objects
that are small in size, densely distributed, and may be partially occluded. Moreover,
different scenes demonstrate variations in illumination and perspective effects. The dataset
encompasses over 540k annotated bounding boxes, categorized into ten predefined classes:
pedestrian, person, bicycle, car, van, truck, tricycle, awning tricycle, bus, and motorcycle.
The training and validation subsets are made up of 6471 and 548 images, respectively,
sourced from different locations yet under analogous environmental settings.

DOTA The DOTA-1.0 dataset is specifically designed for object detection in aerial
images and is extensively utilized in research related to remote sensing image object detec-
tion. Distinctive for its high resolution and the presence of a multitude of densely packed
small objects, it presents significant challenges for remote sensing image object detection.
The dataset comprises 2806 large-scale aerial images (approximately 4000 × 4000 pixels)
with a total of about 188,282 annotated object instances. These instances are classified into
15 distinct categories, including airplanes, ships, storage tanks, baseball fields, basketball
courts, ground track facilities, cars, helicopters, sports fields, harbors, bridges, roundabouts,
swimming pools, tennis courts, and runways.A visual display of the Visdrone2019-DET
and DOTA-1.0 data set samples is shown in Figure 4.
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Figure 4. Vividly illustrates the three central challenges confronted in the DOTA and VisDrone
datasets: diverse object sizes, high object density, and occlusions. Both datasets encapsulate com-
prehensive geospatial data, encompassing features such as topography, terrain variations, and
architectural structures, offering a substantial foundation for the exploration of geospatial informa-
tion’s role in object detection. (Examples on the left are from the VisDrone dataset, while those on the
right are from the DOTA dataset, separated by a black dashed line in the middle).

4.2. Implementation Details

We implemented the GALDET algorithm on the Pytorch 2.0.1 platform. For the
Visdrone2019-DET dataset, the input image size was adjusted to 640 × 640 for both train-
ing and inference phases. Training was conducted over 300 epochs using the Stochastic
Gradient Descent (SGD) approach. The set weight decay and momentum were 0.005 and
0.8, respectively. The batch size was kept at eight with an initial learning rate of 0.1. All
model training and testing were executed on an NVIDIA RTX4090 GPU. The initial phase
of the training began with 5 warm-up epochs, during which the learning rate gradually
increased from 0 to 0.005. For the DOTA 1.0 dataset, each image was pre-processed into
1024 × 1024 pixel patches with an overlap of 200 pixels between patches. To verify the
algorithm’s efficacy across different model scales, we reduced the overall model size. Dur-
ing training and inference, the input image size was adjusted to 1024 × 1024 while other
training parameters were kept consistent. Ultimately, considering the rich annotations of
the Visdrone2019-DET and DOTA-1.0 datasets, we set the masaic and mixup coefficients to
0.8 and 0.445, respectively.

4.3. Experimental Results and Comparative Analysis

To evaluate the performance of our method in detecting tiny objects in remote sensing,
we compared it with several state-of-the-art detection methods in Visdrone-2019, including
CNN-based and YOLO series-based approaches. Given that many remote sensing object
detection methods have not released their source codes, to avoid bias in the model retraining
process, we chose to directly reference the evaluation results provided in the related
literature for comparison, a common practice in the field of remote sensing tiny object
detection. To ensure the accuracy and validity of the comparison results, we made sure
our experimental setup was consistent with the settings of the methods being compared,
thus ensuring the experiments started from the same baseline. Simultaneously, we adjusted
the scale of our algorithm to match that of the compared algorithms. For instance, in the
Visdrone-2019 comparison, our algorithm maintained the same scale as EdgeYOLO [39],
YOLO5-X [25], etc., with a network depth setting of 1.33 and a network width setting
of 1.25. Similarly, in the DOTA-1.0 comparison, we matched the scale of PPYOLOE-R-
s [40], YOLOV8-S [24], etc., with a network depth setting of 0.33 and a network width
setting of 0.50. The evaluation results for different methods on Visdrone, DOTA, and are
listed in Tables 1 and 2, respectively, with the best-performing values highlighted in bold.
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Figures 5 and 6 show the performance of different remote sensing tiny object detection
methods on the AP75 and AP50 metrics for a better comparison. As can be seen from the
above tables and charts, the method proposed in this paper has a stronger competitive
performance compared to other methods.

Figure 5. presents a performance comparison of various remote sensing object detection algorithms
on the VisDrone2019-DET-val dataset.

Figure 6. We have meticulously reported the improvements between each category and the overall
mAP. Among them, “plane” is abbreviated as “PL”, “baseball diamond” as “BD”, “bridge” as “BR”,
“ground track field” as “GTF”, “small vehicle” as “SV”, “large vehicle” as “LV”, “ship” as “SH”,
“tennis court” as “TC”, “basketball court” as “BC”, “storage tank” as “ST”, “soccer ball field” as “SBF”,
“roundabout” as “RA”, “harbor” as “HA”, “swimming pool” as “SP”, and “helicopter” as “HC”.

In the Visdrone-2019 benchmark test, the method proposed in this study achieved
32.00% and 52.30% on the AP75 and AP50 metrics, respectively, which was significantly
higher than other reference methods by at least 4.1% and 6.7%. Compared with Cas-
cadeRCNN+ResNeXt [41] and TOOD+SF+SAHI+FI+PO [42] in remote sensing tiny object
detection, our method showed superiority in all scenarios, especially in the AP50 metric
representing overall performance. Additionally, compared with the latest EdgeYOLO [39],
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which incorporates enhanced data augmentation strategies, our method showed noticeable
improvements in the APS and APM metrics, representing the effectiveness in tiny object
detection. Figure 7 shows some visual results for the Visdrone test set.

Figure 7. Some visualization results from our GALDET on Visdrone-2019 testset, different category
use bounding boxes with different color (The yellow box represents cars, the red box represents
pedestrians, the orange box represents non-motorized vehicles, and the blue box represents trucks).
The performance is good for the localization of tiny objects, dense objects and objects blurred
by motion.

Conducting a direct comparison between our method and commonly used baseline
approaches in remote sensing object detection holds significant value. Such a comparative
analysis serves to elucidate the importance and effectiveness of the proposed improvements.
To provide a comprehensive evaluation of our approach, we will now juxtapose it with
two prominent baseline methods that are frequently employed in the field of remote sens-
ing object detection.Incorporating the methodologies of CenterNet-Hourglass104 [43] and
EfficientDet±D0 [44] into our comparative assessment, Table 1 unmistakably reveals signifi-
cant advancements achieved by our approach in comparison to these benchmark methods.

Table 1. Comparison of different object detectors on VisDrone2019-DET-val. In the table, “TOOD+”
stands for “TOOD+SF+SAHI+FI+POTOOD+SF+SAHI+FI+PO”, and “FasterRCNN+” represents
“FasterRCNN+ResNeXtTOOD+SF+SAHI+FI+PO”.

Model Size APval AP50 AP75 APS APM APL

YOLO5-X [25] 640 × 640 22.60% 38.60% - - - -
TOOD+ [42] 640 × 640 - 43.50% - - - -

CascadeRCNN+ResNeXt [41] 640 × 640 24.40% 41.20% - - - -
FasterRCNN+ [42] 640 × 640 23.60% 37.40% - - - -

CenterNet-Hourglass104 [43] 640 × 640 25.60% 50.30% 22.22% - - -
EfficientDet±D0 [44] 640 × 640 20.80% 37.10% 20.60% - - -

M2S [45] 640 × 640 - 16.10% 29.70% - - -
YOLOX-X [46] 640 × 640 25.80% 43.20% 26.20% 15.90% 38.00% 52.40%

EdgeYOLO [39] 640 × 640 26.40% 44.80% 26.20% 16.40% 38.70% 53.10%
YOLOV8-X 640 × 640 27.90% 45.60% 17.50% 28.60% 48.80% 41.60%

Ours 640 × 640 32.00% 52.30% 33.00% 22.30% 44.70% 50.10%

In the DOTA-1.0 benchmark test, our reported experimental results are based on a
single-scale model and were fairly compared with previous research methods. Using the
YOLOV8-S mini version as a benchmark, we validated the effectiveness of our method
across different size models with a 2.81% mAP improvement. Even after scaling down
the algorithm, our method still maintained an advantage in precision metrics. Moreover,
compared with the latest Anchor-free architecture PPYOLOE-R-s [40], our method achieved
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significant improvements in recognizing and detecting medium- and small-sized targets.
Also, in comparison with other methods, our approach demonstrated strong competitive-
ness. Figure 8 shows some visual results on the DOTA test set.

Figure 8. Some visualization results of our GALDET on the DOTA-1.0 test set challenge, similar to
before, using different colored bounding boxes for different categories (The blue box represents an
airplane, the purple box represents a dock, the green box represents a car, and the light blue box
represents a ship). We demonstrated the ability of our model to locate small objects and dense objects
via remote sensing.

Table 2. Comparison with state-of-the-art methods on DOTA dataset. We have listed the AP values
of the six most representative object categories and the overall mAP value in the table.

Methods Backbone PL BD BR GTF SV LV mAP

PPYOLOE-R-s [40] CRN-s 88.80 79.24 45.92 66.88 80.41 82.95 73.82
DRN [47] H-104 89.71 82.34 47.22 64.10 76.22 74.43 73.23

O2-DNet [48] H-104 89.31 82.14 47.33 61.21 71.32 74.03 71.04
DAL [49] R-101-FPN 88.61 79.69 46.27 70.37 65.89 76.10 71.78

SCRDet [50] R-101-FPN 89.98 80.65 52.09 68.36 68.36 60.32 72.61
S2A-Net [38] R-50-FPN 89.11 82.84 48.37 71.11 78.11 78.39 74.12
YOLOV8-S CSP 69.91 85.12 50.75 81.34 88.11 79.81 72.31

Ours CSP 71.23 86.25 54.58 84.41 90.44 84.81 75.12

4.4. Ablation Study

To thoroughly validate the effectiveness of the key components designed in our
study, including the CGAL module, the four decoupled prediction head structure, and the
Ziou loss function, we conducted a series of ablation experiments. In these experiments,
we used the standard YOLOV8-X [24] as the baseline model and incrementally added
these different components to assess their impact. Considering that different comparative
methods utilized various hardware platforms for testing computational complexity and
time cost, we detailed the computational costs and timing information of our algorithm in
the ablation experiments. When calculating frames per second (FPS), we took into account
all time components, including pre-processing and post-processing. Specifically, we mainly
compared the performance of the following four models:

-Baseline model: The baseline model solely uses YOLOV8-X for remote sensing small
object detection.

-Baseline model +CGAL: Based on the baseline model, this configuration integrates
the CGAL module proposed in this paper without leveraging pre-trained weights.

-Baseline model +CGAL+ Four Decoupled Prediction Heads: Building on the previous
configuration, this one further incorporates the four decoupled prediction head structure,
aiming to enhance the model’s perception capabilities across various scales, shapes, and
object categories.
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-Complete Model: This refers to Baseline model +CGAL+Four Decoupled Predic-
tion Heads+Ziou. By comparing baseline model with Baseline model+ CGAL, we can
validate the effectiveness of the CGAL module. Comparing Baseline model+ CGAL with
Baseline model +CGAL+Four Decoupled Prediction Heads allows us to verify the con-
tribution of the four decoupled prediction head structure. Lastly, contrasting Baseline
model+CGAL+Four Decoupled Prediction Heads with the complete model further con-
firms the role of the Ziou loss in remote sensing small object detection. Table 3 presents
detailed performance metrics for each model configuration. The results clearly show that
each add-on helps improve the performance of the model. It is worth noting that the intro-
duction of the CGAL module and the four-head structure led to significant improvements
in multi-scale detection, as shown in Figure 9, which shows the detection results of different
models in the ablation study through bar charts. Figure 10 visually compares the detection
results of different model configurations in ablation experiments. Some salient observations
include: (1) Upon integrating the CGAL module, there’s a notable enhancement in the
detection capability for small objects; (2) With the incorporation of the four decoupled
prediction head structure, the recognition accuracy for small objects shows substantial
improvement compared to the ground truth; (3) After employing the Ziou loss during
training, the positioning of the detection boxes becomes more precise, yielding a visually
more coherent result.

Figure 9. Bar chart comparing the detection performance of different models in the ablation study.

Figure 10. Visual comparison of detection results obtained by different models in the ablation study.
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Table 3. Based on VisDrone2021-DET val and 640 × 640 resolution as input for ablation research.

Setting Apval Ap50 Ap75 Aps Apm Apl GFLOPs FPS

baseline 27.90% 45.60% 28.60% 17.5% 41.6% 48.8% 365.3 60.97
+CGAL 30.60% 50.20% 31.7% 21.5% 42.3% 49.3% 386.6 46.04

+Four headed structure 31.5% 51.5% 32.4% 22.1% 43.8% 49.8% 392.4 43.90
+Ziou 32.00% 52.30% 33.00% 22.3% 44.7% 50.1% 394.7 44.39

Analysis

The computational model proposed in this study is particularly applicable to the fields
of drone aerial surveillance and remote sensing satellite imagery. In these application
scenarios, the demands for real-time performance and computational complexity are
exceptionally stringent. Our model significantly improves accuracy (with a 6.7% increase
in the AP50 value) by sacrificing a minimal amount of real-time performance (a decrease of
16.58 frames per second). This improvement is crucial for the rapid and accurate processing
of voluminous aerial image data.

In the context of drone surveillance systems, the balance between real-time perfor-
mance and accuracy is vital for effective task execution. For instance, in search and rescue
operations or border surveillance, the ability to quickly and accurately identify ground
objects can be pivotal to the success of the mission. Our model, while maintaining high ac-
curacy, incurs an additional computational load of only 29.4 GFLOPs. This is a manageable
increase for drone systems, which often have limited computational resources.

Similarly, in remote sensing satellite applications, the enhanced accuracy is essential
for extracting valuable information from extensive aerial images captured at high altitudes.
Whether in environmental monitoring, agricultural planning, or urban development as-
sessment, the improved target detection capability significantly enhances the value and
effectiveness of the data. Despite the increased computational demand, this is within
acceptable limits considering the high computational capabilities of satellite platforms.

5. Limitation and Future Work

Our study, while yielding promising results, is not without its limitations. Firstly, the
current version of our GALDET system exhibits certain constraints in terms of detection
accuracy, which we acknowledge requires further refinement. Additionally, the real-time
processing speed, while adequate for many applications, may benefit from optimization
to enhance overall efficiency. Another limitation pertains to the dataset diversity, as our
research predominantly focused on a specific type of object detection challenge. Expanding
our dataset to encompass a broader array of scenarios and object types is a potential avenue
for future research.

Looking ahead, we envision several avenues for enhancing the capabilities of our
GALDET system. Firstly, we will dedicate our efforts to fine-tuning our detection al-
gorithms to achieve higher precision and robustness, thus addressing the limitations in
detection accuracy. Additionally, optimizing the system’s real-time performance will re-
main a priority, allowing for broader practical applications. We also anticipate diversifying
our dataset to encompass a wider range of image detection challenges, fostering a more
comprehensive understanding of GALDET’s potential. Moreover, exploring novel machine
learning techniques and integrating cutting-edge algorithms, such as advanced image
dehazing [51] and atmospheric correction mechanisms [52], will be integral to our fu-
ture research endeavors. Through these concerted efforts, we aspire to further solidify
GALDET’s position as a state-of-the-art solution for diminutive object detection in the field
of remote sensing.

6. Conclusions

In this research paper, we introduce GALDET, a novel method for target detection
in remote sensing images. Distinctively, GALDET harnesses GAL to extract salient im-
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age features. The methodology is built upon three main pillars: a feature fusion module,
conceptualized from GAL; a multi-decoupled prediction header grounded in CNN prin-
ciples; and the Ziou loss function, meticulously crafted to bolster the model’s proficiency
in pinpointing smaller targets. Empirical outcomes underscore the indispensable nature
of our architectural components. Notably, when juxtaposed with conventional strategies,
GALDET shines, evidencing exceptional prowess in discerning minuscule targets on both
the Visdrone2019 and DOTA datasets.
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