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Abstract: The use of Synthetic Aperture Sonar (SAS) in autonomous underwater vehicle (AUV)
surveys has found applications in archaeological searches, underwater mine detection and wildlife
monitoring. However, the easy confusability of natural objects with the target object leads to high
false positive rates. To improve detection, the combination of SAS and optical images has recently
attracted attention. While SAS data provides a large-scale survey, optical information can help
contextualize it. This combination creates the need to match multimodal, optical–acoustic image
pairs. The two images are not aligned, and are taken from different angles of view and at different
times. As a result, challenges such as the different resolution, scaling and posture of the two sensors
need to be overcome. In this research, motivated by the information gain when using both modalities,
we turn to statistical exploration for feature analysis to investigate the relationship between the two
modalities. In particular, we propose an entropic method for recognizing matching multimodal
images of the same object and investigate the probabilistic dependency between the images of the two
modalities based on their conditional probabilities. The results on a real dataset of SAS and optical
images of the same and different objects on the seafloor confirm our assumption that the conditional
probability of SAS images is different from the marginal probability given an optical image, and show
a favorable trade-off between detection and false alarm rate that is higher than current benchmarks.
For reproducibility, we share our database.

Keywords: SAS object detection; SAS–optical multimodal; feature descriptors; entropy metrics; image
matching

1. Introduction
1.1. Overview

Autonomous underwater vehicles (AUVs) are efficient tools for surveying the seabed
for target detection, e.g., for identifying mines, exploring shipwrecks and monitoring
marine fauna. In the past, sonar was the preferred sensor for these investigations. How-
ever, due to their higher resolution, optical cameras provide better information for target
classification. The combination of the two modalities can therefore offer an advantage.
For example, multimodal sonar and optical sensors have proven effective in underwa-
ter navigation [1], object classification [2] and coastal characterization [3]. However, this
combination poses a challenge for the comparison of sonar and optical images.

The matching of objects between sonar and optical data can be seen as a kind of multi-
modal sensing, where the main challenge is to overcome the different physical properties
of the two modalities when viewing the same object. Sonar images are generated by the
reflection of acoustic signals from the object and its surroundings and contain highlights
and shadow regions [4] for the direct reflections from the object and the area blocked by
the object, respectively. The sonar image also contains reflections from the area around the
object (the background) and has a relatively low pixel resolution. The sonar image provides
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details about the height of the object (by shadow measurement), its material composition
(by spectral analysis) and the general shape and size of the object. However, due to the
low resolution (around 2 cm per pixel for high-precision Synthetic Aperture Sonar (SAS)
systems [2]), no fine details of the object are captured. The optical image, on the other
hand, provides millimeter resolution at short distances of a few meters, as well as texture
and color data, but requires the observer to be close to the object and its quality is affected
by the turbidity of the water. Differences between SAS and optical information can also
be observed in the distribution of pixel intensity. For example, sonar reflections can be
modeled as Beta- or K-distribution [5], while the pixels in optical images are considered
as a Gaussian or Rayleigh distribution [6,7]. This is because the SAS image is created by
beamforming and matched filtering of the received reflections, while optical images convert
the light reflections into RGB values. Given this challenge, the combination of optical and
SAS images is associated with object matching.

Object matching refers to the characterization of a complete mapping process between
images acquired by different sensors or at different times. The available methods can be
divided into two main approaches: area-based or feature-based. In the area-based approach,
a template is matched to the different images using a similarity metric, such as cumulative
cross entropy or residual entropy [8]. In feature-based approaches, relevant features are
extracted from both images and matched, such as the Scale-Invariant Feature Transform
(SIFT) algorithm [9] and its inheritors. In this method, the image is transformed into a
collection of features that are fully scale-invariant, as well as translationally and rotationally
invariant. In this transformation, a scale space is constructed and Gaussian differences
are computed to form common feature descriptors for both images. Both the area-based
and feature-based methods have found applications in areas such as optical and Synthetic
Aperture Radar (SAR) registration [10] and matching between different optical, SAR and
Light Detection and Ranging (LiDAR) images [11], with the primary goal of object detection
and classification. However, recent works [2] showed that the above approaches fail when
matching optical and sonar images due to the different pixel distribution and structure.
Therefore, feature extraction is still an essential part of most object matching methods.

1.2. State of the Art

In the case considered in this paper, full registration is not required to align SAS and
optical images. Instead, we focus on image matching: the aim is to check whether the
same object is represented in both the SAS and the optical modality. In image matching,
the features extracted from the object help to recognize the object, since it is assumed that
the basic shape of the object is preserved in both modalities. One of the most influential
feature descriptors for optical images is the Scale Invariant Feature Transform (SIFT) [9].
However, matching optical and SAS images using SIFT is more challenging than matching
images of the same modality or even specifically the multimodal case of matching optical
and SAR images, since the appearance of the objects is different in the two modalities. An
example of this can be found in Figure 1, where the structural similarities between optical
and SAR images are more apparent than in a pair of optical and SAS images of an object on
the seafloor.

To overcome the challenges of matching between optical and SAS images, ref. [12]
proposes the use of Convolutional Neural Networks (CNNs) to extract content and style
features from sonar and optical images, respectively, and attempts to build a conversion
scheme from sonar and optical images of a submerged panel of numbers and letters in an
experimental pool. However, this approach is limited to a specific use case of character
conversion between the two modalities, and requires a large amount of data. In an oceanic
environment, it is more difficult to obtain optical and especially SAS images of different
objects, especially image pairs, so training CNNs to match such images is more challenging.
Recently, geometric features have been proven to be efficient to describe both SAS and
optical images [2]. Notable geometric features for both optical and SAS modalities include
contour-based features, such as the solidity of an object, eccentricity and normalized
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central moments, and region-based features, such as roughness and compactness [13].
With the absence of a large database, feature-based matching is a common approach for
multimodal combination.

Figure 1. Optical and SAR images of the same structure, from [11] (top panels), and, for comparison,
optical and SAS images of an underwater object (bottom panels). Similarities can be observed
between the land images, whereas the marine-based images appear very different.

Recent work has focused on improving navigation methods by fusing visual and
acoustic information. A fusion of acoustic DVL measurements and stereo imaging is
offered in [14] for Simultaneous Localization And Mapping (SLAM) by formulating a
joint utility function that also incorporates observations from a gyroscope and a depth
sensor. In [15], a visual odometry system is proposes for underwater unmanned vehicles.
The method filters out unreliable points from the 3D reconstruction of a scene provided
by stereo cameras augmented by depth information from a single-beam sonar. Another
multimodal SLAM is considered in [16], where monocular images are merged with images
from a forward-looking sonar. The features from both modalities are extracted separately
and matched in a maximum likelihood estimation model. However, this requires that
the images from both sensors are acquired simultaneously and from the same vehicle,
otherwise the matching will fail.

The aim of this work is to quantify the likelihood that an object identified in an SAS
image is the same object identified in an optical image. We investigate the use of state-of-the-
art feature descriptors, compute their distribution, and evaluate the statistical relationship
between the descriptors of the two modalities in terms of a concept we call mutual entropy,
which provides insights into the potential benefits of combining SAS and optical images.
In other words, mutual entropy quantifies whether the information embedded in the
optical image can be used to characterize the object in the SAS image and vice versa. This
study provides metrics for the comparison of optical and SAS images, as well as statistical
evidence that the multimodal combination of SAS and optical images is beneficial.

In the following, we refer to matched SAS–optical image pairs, i.e., pairs of images of
the same object, as positive samples, and unmatched image pairs as negative samples. To test
the performance of our entropy-based combination metric, we use a dataset of 1217 pairs
of SAS and optical images we have collected in several sea experiments with our A18 ECA-
robotics AUV, which contains a two-sided Kraken-based SAS and high-resolution optical
cameras. To create a dataset of SAS–optical pairs, we compared the objects recognized in
SAS images and optical images. The SAS images and the optical images were not acquired



Remote Sens. 2024, 16, 689 4 of 19

at the same time, position and orientation. The reason for this is the different observation
range of SAS and optical: SAS requires a distance of tens of meters above the seafloor, while
optical images require a small distance of the camera to the object (about 5 m). Therefore,
we matched our SAS and optical observations by: (1) location of the object and (2) manual
recognition of the object. The dataset contains 185 positive samples and 1032 negative
samples. Our results show that entropy metrics, which quantify the information embedded
in SAS and optical images by some feature descriptors, are effective in detecting SAS–optical
similarities and that there is indeed a statistical relationship between the two modalities.
In particular, the results show a favorable trade-off between the detection and false alarm
rates, which is much better than the chance level and represents an improvement compared
to benchmark methods. To ensure reproducibility, we present our database of matched
and unmatched SAS and optical files in: https://drive.google.com/file/d/1ggz8BA0W6
CtRXH-48XTfy9eO23-Ag1Qt/view?usp=sharing, accessed on 14 February 2024.

Although we have made considerable efforts to collect the above database with several
sea experiments involving AUV and scuba divers, its size is still small. For this reason, we
refrain from offering a deep learning approach and focus on statistical analysis instead.
Statistics-based approaches also benefit from more data, but are more intuitively under-
standable despite the size of the dataset and therefore help in this initial exploration of the
relationship between optical and acoustic images. The main contributions of this work are:

1. A first demonstration of the statistical relationship between underwater optical and
acoustic images.

2. A statistics-based method for validating optical and SAS image pairs as matching
or not.

3. A shared database of manually reviewed and labeled underwater optical and SAS
images in which objects have already been recognized and segmented.

The rest of the paper is structured as follows: In Section 2, we provide our system
model with our main assumptions and preliminaries for feature descriptors and entropy
measures. Section 3 presents the methodologies of our solution to quantify the similarities
between SAS–optical pairs, and Section 4 describes the exploration of the statistical relations
between SAS and optical images. Results are discussed in Section 5, and conclusions are
drawn in Section 6.

2. System Model

Referring to the illustration in Figure 2, the scenario under consideration is an AUV
searching an area for a target object with its SAS. As soon as a target of interest is detected,
e.g., a wreck, gas sip or a submerged mine, the AUV approaches the detected target to
obtain optical images for target verification. This process can involve (1) matching an
object found in the optical image with the object in the SAS image for target verification, or
(2) matching an object found in the optical image with an object found in the SAS image as
a navigation aid. The two scenarios considered are illustrated in Figure 2, and the latter
scenario is also explained in detail in [17]. As a central tool for both objectives, we focus in
this paper on the comparison of an object from an optical image with an object from an SAS
image. We clarify that our solution is not specifically tailored for, e.g., navigation or target
tracking, but rather focus on the backbone of the task of determining if an object found in
an SAS image and an object found in an optical image are the same.

https://drive.google.com/file/d/1ggz8BA0W6CtRXH-48XTfy9eO23-Ag1Qt/view?usp=sharing
https://drive.google.com/file/d/1ggz8BA0W6CtRXH-48XTfy9eO23-Ag1Qt/view?usp=sharing
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Figure 2. Demonstration of the considered scenario. Triangles represent location of targets.

2.1. Main Assumptions

We assume that several objects are found in the SAS image and that the SAS image
acquisition takes place at a different time and at a different distance than the optical image
acquisition. This means that the process of matching between the objects in the SAS image
and an object found in an optical image should be insensitive to the viewing angle, size and
shape of the object. Examples for the contour of such rotated images are given in Figure 3.
Instead, such a matching procedure requires a statistical relationship between the objects in
the images generated by the two modalities. Here, we assume that the relationship between
SAS and optical images can be explored through the statistical distribution of the features
of the objects. The preprocessing steps required for our solution are listed below.

We assume an underlying process that identifies a single object in both the SAS and
optical images. This detection leads to regions of interest (ROIs), which are assumed to
contain a signal object. These can be obtained by segmentation, which separates potential
targets from their surrounding background. While several detectors are offered for SAS
and for optical images, we choose the segmentation scheme presented in [4] for SAS and
the algorithms in [18] for optical images. The former performs fuzzy clustering, the latter
involves the use of Markov Random Fields (MRFs). We believe that these methods are well
suited for our multimodal matching problem, as they provide robust results at a relatively
low computational cost. See Section 3 below for more details. Another set of tools we
use are feature descriptors and entropy matrices. Some preliminary remarks on these
tools follow.
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(a) (b) (c)
Figure 3. Augmentations performed in optical, SAS highlight and SAS shadow contour, in order to
obtain the feature distributions. The contour in each figure belongs to the same object, a cylinder. Each
figure above is a square grid with the original contour, and three rotations: 90, 180 and 270 degrees.
(a) Contour of rotated optical images. (b) Contour of SAS-highlight images. (c) Contour of SAS-
shadow images.

2.2. Preliminaries
2.2.1. Feature Descriptors

Our SAS–optical matching scheme relies on comparing features of the two objects.
Given the two very different modalities physics, we avoid shape-based feature descriptors
such as SIFT. Instead, we rely on geometry-based features of local curves to describe the
objects within the images from the two modalities. A local curve refers to adjacent points
on the contour, and is represented by a polynomial function of the range and angle of the
curve, relative to the centroid of the contour. However, considering that the SAS- and
optical-based objects are acquired at different times, distances and orientations, we use only
angle-independent features; ones that avoid matching the two objects by the angle-of-view.
In addition, region- and contour-based features are extracted, including the perimeter
of the contour (Pc), its solidity, eccentricity, compactness and circularity, the FFT-based
low-frequency density and the skewness of the discrete Fourier transform (DFT), as well as
the central moments and the newly proposed entropy-angle feature [2]. Table 1 summarizes
the definitions of the individual extracted features. The relationship between the features
can be quantified using entropy metrics.

Table 1. Summary of features extracted.

Name Definition Observations

Ecc Eccentricity =
lmajor

lminor
lmajor and lminor are equal to the
two eigenvalues of the co-variance
matrix [13]

Perimeter Perimeter of the object’s contour

Comp Compactness =
Pc

A
A is the area of the contour and Pc
is the perimeter

cir Circularity =
A
Ac

Ac is the area of the circle hav-
ing the same length as the object’s
perimeter

Solidity Solidity =
A

Aconvex hull
Aconvex hull is the area of the con-
vex hull [13]
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Table 1. Cont.

Name Definition Observations

roughness Roughness =
Pc

Pconvex hull
Pconvex hull is the perimeter of the
convex hull [13]

sigmaij
and lk

ζ̄ij =
ζij

ζ l
00

, l = 1 +
i + j

2
,

ζij = ∑
u

∑
v
(u− ū)i(v− v̄)j I(u, v)

Normalized central moment is
ζ̄ij, for every pixel (u, v), center
mass (ū, v̄), I(u, v) ∈ [0, 1] is 1 if
(u, v) is within the object’s region,
and each sigmaij refers to a cen-
tral moment ζij and l to the nor-
malized version of lth calculated
central moment [2]

Low
Freq
Den

LowFrequencyDensity =

1
NLF

NLF

∑
nDFT=1

Dcen(nDFT)

Dcen is the magnitude of the
Fourier coefficients of the centroid
distance function and the DFT is
implemented with NDFT points

DFT-
skewness

1
NDFT

∑NDFT
nDFT=1(Dcen(nDFT)− µcen)3

( 1
NDFT

∑NDFT
nDFT=1(Dcen(nDFT)− µcen)2)1.5

µcen =
1

NDFT
·

NDFT

∑
nDFT=1

Dcen(nDFT)

localCuri Local curve, polynomial coefficient i [2]

Hist-
BAS

Entropy-Angle Feature (EAF) [2]

2.2.2. Entropy Measures

The Shannon entropy (H) for a dataset X is defined as:

H(X) = − ∑
x∈X

p(x) log p(x) (1)

A direct calculation of this metric may be too computationally expensive and difficult
to derive in its exact form. Instead, several alternatives are explored.

The Mutual Information provides knowledge about the reduction of uncertainty in
one variable, given observations from another. For two datasets x, y, it is computed by:

I(X; Y) = − ∑
x∈X,y∈Y

log(
p(x, y)

p(y) p(x)
) p(x, y) . (2)

The Differential Entropy provides insight on the expected uncertainty in one variable,
given the values of another. It is calculated by:

h(X; Y) = − ∑
x∈X,y∈Y

log(
p(x, y)
p(y)

) p(x, y) . (3)

The Transfer Entropy and the Normalized Transfer Entropy are, respectively, defined by:

TX→Y = H(Yt | Yt−1:t−L)− H(Yt | Yt−1:t−L, Xt−1:t−L) (4)

TX→Y
H(Yt | Yt−1:t−L)

. (5)

and are calculated by the compressed transfer entropy (cTE) [19]. The two measures are
useful to determine dependencies between time series, as a form of mutual information
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that also takes into account the transition probabilities between the ordered elements of
the data sets. Vector entropy is used to describe the complexity of a signal and takes into
account non-linear behavior. Formally define a constant γ and denote Γ as the Gamma
function. The method for calculating the vector entropy is presented in Algorithm 1.

Algorithm 1 Vector Entropy KL
Input: feature vectors from the SAS and optical images, X and Y

z← X concatenated with Y
n←number of rows in z ▷ the size of both X and Y
p←number of columns in z
D ←distances between the K = 4 nearest neighbors between X and Y based on a KNN
search
n← size of D

Output←
p∗mean(log D)+log( π

p
2

Γ( p
2 +1)

)+γ+log(n−1)

log 2

3. Methodology
3.1. Key Idea

The input to our scheme are two regions of interest (ROIs) containing possibly the
same object; one acquired by SAS and the other by an optical camera. The scheme augment
the two ROIs by rotation and scaling to calculate the statistics of extracted features of the
two ROIs. Comparison of this statistics via entropy measures then determines if the two
objects are indeed the same. A block diagram illustrating our process is shown in Figure 4.
We distinguish between the path of detection (red) and the path of information exploration
(blue). In the first step, we perform ROI detection and ROI segmentation. Next, in the
detection route, each segmented image is expanded to l ROIs by rotating and rescaling the
image. We then extract key features for each of the augmented ROIs to form a dataset with
M descriptors for each extracted feature. This dataset is used to evaluate the distribution
of the feature for each ROI. This step eliminates the need to learn the general statistics of
each feature and contributes to the robustness of the method. The feature distributions of
the SAS and optical ROIs are then compared using an entropy metric. The result is then
thresholded to obtain a binary detection decision for a positive match for ROIs containing the
same object and vice versa for negative. To determine which feature entropy metric is most
effective for our similarity comparison, we quantify the overlap between the distributions
of positive and negative matches using K-Means Clustering [20] accuracy.

Our goal is to divide the original ROIs from SAS and optical images into positive (matched)
and negative (mismatched). Formally, given an ROI from an SAS image S, and an ROI from
an optical image O, we determine whether P(S|O) = P(S, O)/P(O) ̸= P(S), or whether
P(O|S) = P(S, O)/P(S) ̸= P(O). The former states that O provides valuable information
about S, while the latter states that S is related to O. In both cases, the conclusion is that
S and O contain the same object. This is explored via the information exploration route (blue
lines), where we define feature vectors in terms of matching and non-matching optical and
SAS data points, which we directly compare via an entropy measure and their conditional and
marginal probabilities.
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Figure 4. Diagram summarizing the steps of our proposed SAS–optical comparison approach.
The detection process involves the steps on the top side of the diagram (red lines), logic steps (yellow
lines) and the bottom side gives an overview of the steps taken to explore the statistical connection
between the images (blue lines).

3.2. Entropy Matching Decision

Joint entropy measures can express the information exchange between two feature
vectors. In this paper, we investigate the use of differential entropy, mutual information,
transfer entropy and normalized transfer entropy, and vector entropy over the concatena-
tion of two feature vectors. We chose these metrics because of their efficiency in identifying
the exchange of information between statistical populations. The above entropy measures
take as input pairs of features derived from the ROIs of the SAS and the optical images.
The entropy is then calculated after the distribution of each feature set is computed. Note
that since the entropy measures are not symmetric, we perform the analysis both from the
SAS to the optical side and from the optical to the SAS direction. In addition, the analysis is
performed separately for the shadow and highlight regions in the SAS ROI. We leave the
investigation of a possible merging of the two regions to future work.

The entropy-based matching method is based on the distribution function of the
features extracted from the SAS ROI and the optical ROI. Depending on the direction of
exploration, from SAS to optical or vice versa, the two distributions are computed and
labeled as p(x) and p(y). These are then fed into one of the entropy measures listed in
Section 2.2.2, the result of which is called a soft decision. Crossing a threshold for this value
would result in a positive or negative decision for each pair of SAS and optical ROIs. This
process is applied separately for the shadow and highlights segments of the SAS ROIs
and separately for the SAS to optical and optical to SAS directions. A positive match is
determined if one of these tests leads to a positive decision. In the following sections, we
provide details on how to obtain the distribution of the individual features.
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3.3. Feature Extraction

The feature extraction process begins with a segmentation of the ROI to determine
the position of the object’s pixels within the ROI. For SAS segmentation, we choose the
method in [4], which relies on kernel-based fuzzy clustering for segmentation. The process
includes a denoising step that contributes to the segmentation process. The result is a
three-grade segmentation, where the pixels of the ROI are divided into contiguous regions
of background, highlights and shadows. For optical segmentation, we chose the method
in [18], as it is a low complexity approach that incorporates spatial information to segment
images via a Markov Random Fields (MRF)-based mixture model. From each segmented
image, we extract a set of feature descriptors from the list described in Section 2.2 to express
geometric information from both optical and SAS images.

The entropy detection process described above requires the calculation of the distribu-
tion of the feature. Since there is no probabilistic model for the feature descriptors, we turn
to a numerical evaluation of the distribution. This is obtained by augmenting each ROI by
rotation and scaling operations. Formally, for images defined as a two-dimensional matrix,
these two operations are obtained by multiplying the image by an affine transformation
matrix. For each pixel (x, y), we perform Rotation and Scaling.

3.3.1. Rotation

Considering that the SAS- and optical-based matched objects are most probably ob-
tained at different (any) orientations, the angle-of-view does not contain valuable infor-
mation that may affect performance. We thus use rotation to augment our dataset. This is
performed by x′

y′

1

 =

 cos α sin α 0
− sin α cos α 0

0 0 1

x
y
1

 , (6)

where α as the specific angle of rotation.

3.3.2. Scaling x′

y′

1

 =

sx 0 0
0 sy 0
0 0 1

x
y
1

 , (7)

where sx, sy are the scaling factors in the x, y dimensions, respectively. Note that in this
case, we use the same scale factor in both dimensions, that is sx = sy.

The augmentation process leads to a series of 89 augmentations per ROI. A single
descriptor is drawn from each augmented ROI to obtain a set of 89 features for each ROI.
This process is performed separately for both the SAS and optical ROIs. To demonstrate the
effectiveness of this augmentation step, we show in Figure 5 an example feature set drawn
from the ROI of an SAS and an optical image of a cylinder, as shown in Figures 6 and 7.
We observe a variability in the feature values that reflects a change in the ROI due to the
augmentation procedure. However, as the differences between the values show, a direct
comparison between the feature distribution of the SAS and the optical ROIs is not possible
for the task of matching the two, and a deeper statistical investigation through the concept
of information exchange using joint entropy is required.
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Figure 5. Distribution (histogram) of central moment with i = 0, j = 2 of SAS image of cylinder vs.
optical image of cylinder.

Figure 6. Original ROI of the SAS image of the cylinder segmented into highlight in green and
shadow in blue.

Figure 7. Original ROI of the optical image of the cylinder and its segmentation.

4. Exploration of Statistical Relations between SAS and Optical Images

We now turn to investigate whether there is indeed a relationship between optical
and SAS images that can be used for matching, comparing or, even better, classifying a
detected object. To this end, we are looking for a statistical relationship in the sense of
an exchange of information between the optical and sonar images. The exploration of
statistical relationships between data sets can be performed by calculating correlation and
covariance measures, such as the Pearson correlation coefficient, under certain conditions,



Remote Sens. 2024, 16, 689 12 of 19

such as linearity [21]. In this paper, we turn again to testing the relationship between SAS
and optical images by using joint entropy measures to infer the statistical relationship
between a set of features from an SAS ROI and a set of features from an optical ROI.
To complete this analysis, we explore the direct calculation of the conditional probabilities
P(S|O) and P(O|S).

Exploring the statistical relationships involves extracting the same feature from a set
of ROIs derived from SAS and optical images. Some of these image pairs contain the same
object and some different objects. We denote the positive (i.e., matched objects) dataset
for each feature as S1 = [s1, ..., sm], H1 = [h1, ..., hm] and O1 = [o1, ..., om], and the negative
dataset as S0 = [s1, ..., sn], H0 = [h1, ..., hn] and O0 = [o1, ..., on], where S, H and O represent
the SAS-based ROI with the segmented shadow, the SAS-based ROI with the segmented
highlight and the segmented ROI of the optical images, respectively. Each member in the
S, H and O groups reflects the result of the selected feature over a particular ROI.

5. Results

Our goal is to compare a pair of optical and SAS images to determine whether they
depict the same object. For this reason, we compare the performance of our approach
with that of recent work [17], we refer to as Abu-2023. This benchmark scheme quantifies
the likelihood that an SAS and an optical image contain the same object using a generic
Gaussian radial basis function, which is known to improve robustness to image noise [22].

5.1. Dataset

Our dataset contains sonar images collected with our ECA robotics A18D AUV.
The AUV is equipped with a Kraken-manufactured SAS sensor and a pair of optical
cameras. The data were collected during four sea trials off the coasts of Caesarea and
Haifa, Israel. The optical images of the objects found were obtained either from the AUV’s
cameras or from handheld optical cameras operated by divers. The ROIs were determined
according to the scheme in [2] and checked manually.

The dataset contains images of a cylinder, a manta mine, a box and a variety of
unclassified natural objects (rocks, corals, etc.). The natural objects are not labeled in either
the SAS images or the optical images, and are therefore not matched. In addition, there were
only optical images of the box. Therefore, the positive (matched) sonar-optical pairs were
only formed with combinations of images of the cylinder and the manta objects, and the rest
were only used to generate more negative (unmatched) samples. Figure 8 shows examples
of optical and SAS images of the objects. With a total of 1217 samples—185 positive samples
formed by pairing multiple images of the same objects (cylinder and manta mine) and 1032
negative samples—Table 2 quantifies the set of images in each modality per object type.

Table 2. Overview of images in the dataset.

Object Type SAS Optical

Cylinder 9 9
Manta Mine 8 13
Box 0 6
Natural 25 14
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(a) (b) (c) (d)

(e) (f) (g)
Figure 8. Examples of images from each type of object in the dataset. (a) Optical image of cylinder.
(b) Optical image of manta mine. (c) Optical image of natural object. (d) Optical image of box. (e) SAS
image of cylinder. (f) SAS image of manta mine. (g) SAS image of natural object.

5.2. Feature Analysis

To quantify how well each feature’s entropy measure separates between a positive and
a negative match, we use the K-Means Clustering algorithm. It aims to divide a number
of observations into K clusters. In our case, K = 2, and we assume that the feature whose
entropy measures are most correctly clustered should be used for identifying matches.
This choice of K = 2 is due to the fact that here we cluster the entropy values comparing
optical–SAS image pairs into either “matching” or “non-matching”, which is a binary
task. For the SAS optical matching case, the accuracy of the K-Means clustering is used to
indicate for each direction (from SAS to optical and from optical to SAS), for each entropy
measure, and for each selected feature descriptor whether the positive and negative cases
are well observed and distinguished from each other.

To determine the best feature for the similarity test, we show the accuracies of the
K-Means clusterings over all tested features and entropy measures for both positive and
negative matches in Figure 9. To account for the known distribution of positive and
negative samples in the dataset, we set a threshold, λ, on the ratio between the sizes of
the two clusters. The threshold takes into account the extreme case where, for example,
all observations would be clustered in the negative cluster and we would obtain a high
clustering accuracy. Nevertheless, the detection rate of matches would be low due to the
imbalance between the number of positive and negative samples. This threshold was
empirically set to 0.2, and if the criterion was not met, an accuracy of 0 was assigned for
better visual discrimination. Table 3 summarizes which feature had the best accuracy, and
was therefore selected for the matching procedure, for each entropy measure and direction,
i.e., optical to SAS and SAS to optical, for SAS highlights (HL) and shadows (SH).

Table 3. Highest K-Means accuracy feature per entropy and direction of comparison. See the feature
preliminaries in Section 2.2 for each feature’s definition.

Entropy

Direction
Optical to SAS HL SAS HL to Optical Optical to SAS SH SAS SH to Optical

Differential Entropy sigma20 localCur6 l2 l4

Mutual Information l4 l4 sigma20 sigma11

Transfer Entropy localCur1 localCur4 l2 localCur4

Normalized Transfer Entropy sigma02 Solidity l2 Solidity

Vector Entropy DFT skewness DFT skewness roughness roughness
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(a)

(b)
Figure 9. Stacked K-Means clustering accuracies of each entropy type, in different colors (X-axis),
as tested with each each of the 27 features (Y-axis). The accuracy here refers to the accuracy of
the resulting clusters at splitting the positive and negative image pairs (their entropy comparison
values). (a) K-Means accuracies for entropy measures by feature with SAS highlight only. (b) K-Means
accuracies for entropy measures by feature with SAS shadow only.

5.3. Entropy Matching

For each selected feature, we now examine the results of the entropy matching proce-
dure. The results are measured using the receiver operating characteristics (ROC) curve
to observe the trade-off between the detection rate and the false alarm rate. Detection is
defined here as the correct assignment of a positive match, while a false alarm refers to the
case of a positive decision on a non-similar object pair. The results are shown in Figure 10,
and are compared to the work of [17] as a benchmark. We report that the highest clustering
accuracy was achieved with differential entropy. We compute the ROC for this entropy
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measure in all possible directions, i.e., from optical to SAS HL and to SAS SH and from SAS
HL and SAS SH to optical.

As can be seen from Figure 10, the detection was not successful when the entropy
measures were examined from SAS to optical, while in the other direction, the differential
entropy provided a match far above the chance level. This was the case for both the
highlights and the shadow regions, indicating that both the highlights and the shadows
in SAS may provide relevant shape information that is statistically related to the shape
information extracted from the optical images.

Figure 10. ROC for match detection between all directions with Differential Entropy, as well as
benchmark, with SAS highlight (HL) and with SAS shadow (SH) segmentation. We note that there
was little variation across over 10,000 threshold values tested, which may lead the resulting curves to
contain points concentrated in specific parts of the curve only.

5.4. Information Exchange

Our final analysis examines the statistical relationship between the SAS and the optical
images. In Table 4, we report the differential entropy values for the set of positive and
negative matches. We conclude that the information from optical and SAS images is indeed
statistically related, with values of approximately 3 and 5 for positive and negative series,
respectively, compared to roughly 3 and 4 from the SAS to optical direction. As for the
highlight and shadow effects, respectively, we find that there is little difference when
comparing the two with the optical features.
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Table 4. Values of differential entropy between optical–SAS (HL: highlight only, SH: shadow only)
pairs, for the most appropriate features (see Table 3).

Optical to SAS

Positive (HL) Negative (HL) Positive (SH) Negative (SH)

3.0744 5.1850 3.3481 5.2553

SAS to Optical

Positive (HL) Negative (HL) Positive (SH) Negative (SH)

3.4682 4.4457 3.4682 4.4457

To calculate the joint entropy and conditional probabilities, we estimate the probability
density function of each data set using a numerical histogram. We find that the entropy
between matched optical and SAS datasets is consistently lower than the entropy between
unmatched optical and SAS datasets, for all features. This means that there is indeed more
information flowing between optical and SAS images of the same object than in images of
different objects.

Finally, we examine the conditional probability of the feature vectors to determine
whether P(O|S) = P(S, O)/P(S) ̸= P(O). To do this, we calculate the conditional prob-
abilities P(O1|S1), P(O0|S0) and the marginal probabilities P(O1), P(O0), and determine
their distance using the Kullback–Leibler divergence (KLD) [23]. Formally, the KLD for
two distributions P and Q over one variable X, the KLD is derived as follows:

DKL(P ∥ Q) = ∑
x∈X

P(x) log
(

P(x)
Q(x)

)
. (8)

In Figure 11, we show the resulting KLDs, both when the SAS feature vector comes
from the highlight and when it comes from the shadow segmentation. We find that, for
all features, the divergence between the conditional and marginal probabilities of the
matched sonar-optical feature vectors in the optical-to-SAS direction is significantly higher
than for unmatched feature vectors. While only small differences can be seen between
SAS highlight and shadow, the differences between the later features, including those
selected for the similarity test, sigma20 and l2, are larger. Regarding the SAS to the optical
direction, smaller deviations and a smaller difference between matched and mismatched
deviations are observed. This is to be expected, as was also seen in the matching test,
where this direction did not provide much relevant information flow. An exception is
the localCur features from the SAS shadow, which showed a much higher divergence
than all other features in the SAS-to-optical direction. This seems consistent with the fact
that these features also had the highest K-Means accuracy for some entropy measures
in this direction, such as differential entropy and transfer entropy, although no entropy
measure was successful in detecting positives above chance level, likely due to the lack of
information that can flow from SAS to optical compared to the reverse direction.
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(a)

(b)
Figure 11. KLD for each feature, between optical and SAS feature vectors, matching (blue) and
non-matching (red). (a) KLD between conditional and marginal with SAS highlight only. (b) KLD
between conditional and marginal with SAS shadow only.

5.5. Discussion

An interesting result is that the detection performance depends on the direction of the
comparison, i.e., from optical to SAS or from SAS to optical. In particular, better perfor-
mance is obtained in the optical to SAS direction. This is to be expected since the optical
images contain more information due to their much higher resolution and color coding.
The results of the statistical relation exploration support this observation by showing a
higher differential entropy for the optical to SAS direction than vice versa. Another obser-
vation in this context concerns the performance when considering the highlight vs. the
shadow ROI. The results suggest that, at least for our dataset, there is generally little differ-
ence when only one or the other is considered. This means that both can correctly express
the geometric information from the SAS image relative to the geometric information from
the optical image, at least when considered separately. Further work can be derived from
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our results to explore the significance of this information gain. In other words: which areas
of the object contribute most to the similarities between optical and SAS images?

Another consideration for our system is the resolution of the SAS image. The higher
the resolution of the SAS image, the better the object matching performance is likely to
be. This is because a higher resolution is directly reflected in a better representation of the
object features. Possible methods for high-resolution SAS can be found in [24,25]. In our
system, we used a two-sided SAS system manufactured by Kraken on an AUV with a
resolution of 2 cm per pixel and a one-sided aperture of 100 m.

We recognize that the statistical nature of our approach is compromised by the few
pairs of optical and SAS images. However, since, to our knowledge, there is no analytical
model for directly converting or comparing these two modalities, this statistical approach
provides a simple and intuitive way to detect matched multimodal optical and SAS data.
Furthermore, this method does not require the images of both modalities to be transformed
or filtered, which could lead to a loss of relevant information, but instead examines the
information from the image of each modality as it is. It should also be noted that the
acoustic and optical images in our database were recorded from different angles. This
might affect the results when comparing them directly, but to obtain a robust method, we
indeed wish to have different representations of the same object. We apply a number of
enhancements (rotations and scaling) to the images to obtain different representations and
assume that these cover as many different angles as possible in order to be able to compare
the images as statistical distributions.

6. Conclusions

In this work, we have used statistical measures and tests to evaluate and identify the
relationship between optical and SAS images of different objects. In particular, we examined
the performance of an entropy-based matching test and investigated the differential entropy
and the divergence between the conditional and marginal probabilities of optical and SAS
feature vectors. Despite the limited data available for this study, the results suggest a
statistical relationship between matching optical and SAS image pairs. These results could
serve as a basis and stimulus for further research on combining these two modalities.
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