
Citation: Xiao, X.; Liu, Y.; Zhang, Y.

Iterative Low-Poly Building Model

Reconstruction from Mesh Soups

Based on Contour. Remote Sens. 2024,

16, 695. https://doi.org/10.3390/

rs16040695

Academic Editors: Dong Chen,

Jiaming Na, Jiju Poovvancheri and

Norbert Pfeifer

Received: 3 January 2024

Revised: 2 February 2024

Accepted: 14 February 2024

Published: 16 February 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing

Article

Iterative Low-Poly Building Model Reconstruction from Mesh
Soups Based on Contour
Xiao Xiao 1, Yuhang Liu 2 and Yanci Zhang 1,*

1 College of Computer Science, Sichuan University, Chengdu 610065, China; xiaoxiao1@stu.scu.edu.cn
2 National Key Laboratory of Fundamental Science on Synthetic Vision, Sichuan University,

Chengdu 610065, China; liuyuhang2@stu.scu.edu.cn
* Correspondence: yczhang@scu.edu.cn

Abstract: Existing contour-based building-reconstruction methods face the challenge of producing
low-poly results. In this study, we introduce a novel iterative contour-based method to reconstruct
low-poly meshes with only essential details from mesh soups. Our method focuses on two pri-
mary targets that determine the quality of the results: reduce the total number of contours, and
generate compact surfaces between contours. Specifically, we implemented an iterative pipeline to
gradually extract vital contours by loss and topological variance, and potential redundant contours
will be removed in a post-processing procedure. Based on these vital contours, we extracted the
planar primitives of buildings as references for contour refinement to obtain compact contours. The
connection relationships between these contours are recovered for surface generation by a contour
graph, which is constructed using multiple bipartite graphs. Then, a low-poly mesh can be generated
from the contour graph using our contour-interpolation algorithm based on polyline splitting. The
experiments demonstrated that our method produced satisfactory results and outperformed the
previous methods.

Keywords: building reconstruction; mesh simplification; mesh polygonization; contour graph

1. Introduction

Due to the development of remote sensing technology, realistic building data can be
efficiently collected through various techniques. For example, point clouds of realistic
buildings can be directly obtained using the LiDAR technique [1] or generated from
photographic images by methods such as multi-view stereo (MVS) and structure from
motion (SfM). Based on these point clouds, mesh soups (triangle meshes that contain
enormous faces) can be generated using general surface reconstruction methods (e.g.,
Delaunay triangulation [2], Poisson surface reconstruction, ball-pivoting, and voxelizing
with ray marching).

Nevertheless, these point clouds and mesh soups usually contain massive details and
consume a significant amount of storage space [3]. This poses a challenge for their direct
utilization in real-time rendering [4] or large-scale applications of visualization, simulation,
navigation, and entertainment [5,6]. Consequently, the interest in generating corresponding
low-poly meshes has been rising in recent years. The low-poly meshes only preserve
essential details within noticeably fewer faces, which is beneficial to improve the overall
efficiency of these applications [7].

The characteristics of building structures are usually utilized to reconstruct low-
poly meshes. For instance, most buildings are primarily composed of planar surfaces.
The corresponding planar primitives can be extracted using common primitive-extraction
algorithms and, then, used to directly construct the building [8–11], guide the mesh sim-
plification [5], or reconstruct the building with intermediate representations such as a
structure graph [3,12] and a topology graph [13]. Similarly, the contours of buildings have

Remote Sens. 2024, 16, 695. https://doi.org/10.3390/rs16040695 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs16040695
https://doi.org/10.3390/rs16040695
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://doi.org/10.3390/rs16040695
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs16040695?type=check_update&version=1

Remote Sens. 2024, 16, 695 2 of 27

been proven to contain the shape information of the building and have explicit topological
relationships between them [14]. The contours, thus, can be utilized to reconstruct build-
ing meshes [14–17], and redundancy in these contours should be removed for compact
results [17].

Existing contour-based methods still face the challenge of producing low-poly results.
The work in [16] provides a surface generation method based on bipartite graph matching,
but it produces dense meshes with enormous faces. Another approach [17] introduces
minimum circumscribed cuboids to reconstruct the surfaces. This method produces low-
poly surfaces on axis-aligned structures, but suffers from artifacts and additional faces on
non-axis-aligned structures.

In this study, we introduce a novel iterative contour-based method to generate low-
poly building meshes with only essential details from mesh soups. Our method focuses on
two primary targets for low-poly results:

1. Reduce the total number of contours. We implemented an iterative pipeline to extract
vital contours with less redundancy. Moreover, the potential redundant contours will
be identified and, then, removed in a post-processing procedure. Fewer contours are
used compared to the previous evenly spaced contour-generation strategy [16,17] and
redundant removal strategy used in [17].

2. Generate compact surfaces between contours. We utilized the planar primitives of
the buildings for contour refinement. These planar primitives serve as references
and help obtain compact contours while preserving essential details. Connection
relationships between these contours are recovered by constructing a contour graph
based on multiple bipartite graphs. Based on the contour graph, compact surfaces
between adjacent contour nodes will be generated using our contour interpolation
method based on polyline splitting, which restricts the total number of generated
faces. Our method generates more-compact surfaces without artifacts compared to
the existing surface-generation methods, such as bipartite graph matching [16] and
minimum circumscribed cuboids [17].

2. Related Work

The early research on urban building reconstruction usually takes airborne laser
scanning (ALS) data or satellite images as the input, which mainly contain information
about the roofs of buildings, but lack information from walls. To reconstruct complete
buildings, walls are often assumed to be located at the boundary of roofs and can be
generated by extruding these boundaries to the ground. Methods based on this strategy
are generally divided into two types: data-based and model-based.

In data-based methods, separate roofs are extracted by variants of common primitive-
extraction-algorithms like region growing [8] and random sample consensus (RANSAC) [9].
However, these methods are only able to due so with buildings with flat roofs. To handle
pitched roofs, the intersections between primitives are utilized in the reconstruction [10,11].

Model-based methods produce stable results on complex or broken structures by
predefining templates with prior knowledge. These templates usually take into account
the roof shapes and substructures such as windows and chimneys [18]. The predefined
templates are recognized from the input data, and then, suitable parameters are determined
by solving an optimization problem [18–20]. Deep learning is also utilized in recent studies.
For example, Ref. [21] takes aerial images as the input and employs a GAN-based network
to generate a structured geometry model with predefined roof templates. While model-
based methods consistently produce acceptable results, details may be lost if this is not
explicitly covered by the predefined templates. Moreover, these methods are often limited
to specific types of buildings by the prior knowledge.

Due to the development of imagery and LiDAR technology, techniques like oblique
photogrammetry can now capture data from various angles and collect more vertical
information from buildings. Recent methods took advantage of this information and are
able to reconstruct buildings with more vertical details. Besides data-based and model-

Remote Sens. 2024, 16, 695 3 of 27

based strategies, a hybrid strategy based on space splitting is commonly used. Such
methods usually generate 2D or 3D primitives as candidates by space partition and, then,
select suitable primitives from these candidates to form the resulting mesh. For instance,
Ref. [22] splits a bounded space into axis-aligned boxes by planes, and then, suitable boxes
are selected by solving an optimization problem. Ref. [23] further uses faces as candidates,
where the faces are generated from the intersections among planes. Some works extend this
idea to enhance the quality of the results in specific situations, like for ALS data with only
roofs [6] or concentrate on recovery of a broken topology [24]. Similarly, Ref. [25] proposes
a two-stage topological recovery process to create candidate faces under three constraints
and, then, remove the redundant faces by optimization. There are also deep-learning-based
methods under this hybrid strategy. For example, Ref. [26] generates candidate convex
hulls by binary space partition, then a deep implicit field is learned from the input point
cloud and used as guidance for candidate selection.

Besides the point clouds, the corresponding mesh soups are also commonly used in
building reconstruction, as they contain topological information, which can be utilized
to assist the reconstruction. Traditional mesh decimation methods based on vertex clus-
tering or edge collapsing (e.g., quadric error metric (QEM) [27]) can simplify the meshes
efficiently. But, these methods face the challenge of balancing between compactness and
detail preservation. Moreover, they also have difficulty preserving the sharp features at
corners, which influences the accuracy of the results.

To simplify the building mesh while preserving essential details and sharp features,
the characteristics of building structures are commonly utilized to guide the reconstruction
of buildings. For example, Ref. [3] focuses on the structure and reconstructs buildings
by structure graphs based on planar primitives and their adjacencies, whereas Ref. [12]
further uses one-ring patches in place of the original processing unit to improve efficiency.
Similarly, Ref. [13] uses a topology graph created from planar primitives, which will be
decoupled and optimized to generate meshes. Ref. [5] designs a special filtering and edge-
collapsing process to denoise while preserving features. Refs. [14,15] demonstrate that
contours of buildings contain much information. The point cloud is converted to a digital
surface model (DSM), which contains the elevation information of the building within a 2D
image and provides convenience for contour extraction. A contour tree can be constructed
to effectively capture the structure of a building. Following this idea, Ref. [16] introduces a
surface-generation method by bipartite graph matching to generate building meshes from
the contour tree. Ref. [17] extends this idea to photogrammetric mesh models and proposes
minimum circumscribed cuboids to generate compact surfaces for buildings formed by
cuboids. Additionally, different targets may be present in various applications, and some
methods are specifically designed for the corresponding requirements. For example, Ref. [4]
aims at generating level of details (LoDs) evaluated by the visual quality, and Ref. [28] can
handle weakly observed facades by taking advantage of the semantic information in the
input data.

3. Methods
3.1. Overview

In this study, we introduce a novel iterative contour-based method to generate low-
poly building meshes from mesh soups. An iterative pipeline is used to gradually extract
vital contours for low-poly mesh reconstruction. In each iteration, the optimal new contours
are determined by the difference between the current result and the input. The overall
pipeline of our method is illustrated in Figure 1.

Remote Sens. 2024, 16, 695 4 of 27

Iteration
Reconstruction

Define
Initial Elevations

Extract
Contour Layers Refine Contours

Construct
Contour Graph

Generate Mesh

Find Optimal
New Elevation

No

Yes Is Loss
Satisfied?

End

Remove
Redundant Contours

Generate Mesh

Start

Figure 1. The pipeline of our method.

To produce a low-poly mesh based on contour, two primary targets are considered in
our pipeline:

1. Reduce the total number of contours.
As mesh surfaces are generated from the contours, the compactness of the recon-
structed meshes is bound to the total number of contours. Wu et al. [16] extract
contours on evenly spaced elevations, while most of the contours are redundant as
they have similar shapes to their neighbors. Zhang et al. [17] merge consecutive
contours if they are identical to avoid duplicated contours. But, this method only
handles contours with the same shapes and, thus, is not effective for the redundant
contours on gradual slopes such as non-vertical walls and pitched roofs.
To reduce redundant contours, our method only extracts vital contour layers (each
contour layer contains all the contours on a specific elevation) near crucial eleva-
tions identified during the iteration. Moreover, as contours are extracted by layers,
part of the contours in the contour layers may be redundant. A post-processing
procedure is applied to remove this kind of redundant contour based on our contour
interpolation algorithm.

2. Generate compact surfaces between contours.

• Raw contours extracted from the mesh soups usually contain a massive number
of vertices with noise, while the sharp features (especially corners) are missing.
Compact contours that contain only primary vertices with only essential details
help obtain low-poly meshes. Traditional polygon simplification methods [29]
(e.g., Ramer–Douglas–Peucker (RDP)) can effectively reduce noise and the num-
ber of vertices, but they lack the consideration of the sharp features and, thus,
usually create undesirable bevels at corners. They also have trouble balancing
between simplicity and detail preservation. Zhang et al. [17] provide a method
to simplify axis-aligned structures while recovering right-angled corners by min-
imum circumscribed cuboids. But, this method produces zigzag artifacts on
non-axis-aligned structures and fails to recover non-right-angled corners.
To simplify contours while preserving essential details and sharp features, we uti-
lized the planar primitives of the buildings. These primitives serve as references
in our contour refinement, which produces compact contours with recovered
sharp corners.

• The connection relationships between contours should be recovered for the sur-
face generation, and the contour graphs are utilized in the previous methods.
Each node in the contour graph corresponds to a contour, and the edges indicate
the connection between contours. For contours from the DSM, the contour graph

Remote Sens. 2024, 16, 695 5 of 27

falls back to a contour tree and can be constructed straightforwardly [30,31] as
these contours follow the restriction that the higher contours must be contained
by the lower contours. However, as mesh soups are not under this restriction,
the construction of contour graphs is more difficult as the containment relation-
ship between contours can be complicated due to noise or complex topology.
For example, the lower contours can be reversely contained by higher contours
or they can be only partially overlapped.
To construct contour graphs for contours from mesh soups, we decompose the
construction of contour graph into that of multiple bipartite graphs. Our method
imposes no restriction and is capable of complex containment relationships
between contours.

• To generate surfaces between adjacent contour nodes, additional vertices may
be inserted, which lead to extra faces and influence the compactness of the
result. This challenge becomes more pronounced when the adjacent contours
have significantly different shapes. Vertical extrusion and cuboid fitting [17]
generate compact surfaces for identically shaped contours found on vertical
walls and flat roofs. But, they can hardly generate non-vertical surfaces and, thus,
produce staircase-like artifacts on slopes. Wu et al. [16] introduce a method to
generate non-vertical surfaces for any pair of adjacent contour nodes by solving
a bipartite-graph-matching problem, which successfully recovers the surface of
slopes. But, this method resamples contours into dense vertices, which leads
to enormous faces in the results. Moreover, an ambiguous topology caused by
unsatisfactory matches may appear at sharp corners and complex sections of the
contours, which makes it difficult to define the actual surface.
We propose a method to generate compact surfaces between adjacent contour
nodes by recursive polyline splitting. Our method has no restriction on the shape
of the contours and produces surfaces with a restricted number of faces related
to the compactness of the input contours.

Figure 2 shows a visual example of the primary stages in our pipeline. The details of
the procedures and algorithms in our pipeline are outlined in the following sections.

(a) (b) (c) (d) (e) (f)

Figure 2. Examples of the primary stages in our pipeline: (a) Mesh soup. (b) Vital contour layers with
raw contours. (c) Contour layers after the refinement of contours. (d) Contour graph. (e) Contour
graph after removing two redundant contours in the post-processing. (f) Final reconstructed mesh.

3.2. Iterative Crucial Elevation Identification

As generating contours on evenly spaced elevations produces a significant number
of redundant contours, our iterative pipeline only extracts vital contours near crucial
elevations. We assumed that the elevations with larger losses and topological variations
are more-crucial, and these elevations were identified in an orderly manner during the
iteration based on the current reconstructed result.

Initially, the iteration starts with several basic crucial elevations: the lowest and highest
elevations of the building are used as they define the domain of elevation; the elevations of
all horizontal planes in the building are also crucial as they indicate dramatic topological
variations such as the ends of structure, changes of contour count, etc. The horizontal
planes come from the planar primitives extracted from the building by common methods

Remote Sens. 2024, 16, 695 6 of 27

such as region-growing or RANSAC. Figure 3 shows an example of the extracted planes
and initial crucial elevations.

(a) (b) (c) (d)

Figure 3. An example of the extracted planes and initial crucial elevations: (a) Mesh soup.
(b) Horizontal planes of buildings. (c) Non-horizontal planes of buildings. (d) Initial crucial elevations.

Since there could be more-crucial elevations not included in the initial elevations,
the remaining crucial elevations are identified during the iteration. In each iteration,
the building is vertically divided into multiple segments by the current identified crucial
elevations. Subsequently, the segment with the largest loss is chosen, and the optimal new
elevation will be determined inside this segment. The loss of a segment is calculated by a
loss defined as:

loss(S, Ŝ) =
1
n

n

∑
i=1

min
t

∥pi − q(t)∥ (1)

where S refers to the ground truth surface, {p1, p2, · · · , pn} ∈ S refers to an evenly sampled
point cloud from S, Ŝ = q(t) refers to the reconstructed surface, and ∥pi − q(t)∥ is the length
of vector pi − q(t), which represents the Euclidean distance between these two points.

A new crucial elevation will be determined inside the chosen segment and added to the
current result for the next iteration. As we assumed that the elevations with larger loss and
topological variation are more crucial, several helper functions about loss and topological
variation were constructed to find the optimal elevation. Specifically, the optimal elevation
was chosen among a set of increasing, evenly spaced elevations {e1, e2, · · · , en} with interval
dsample(= 0.01–0.05 m) inside the segment. To measure the importance of each elevation,
a priority function P(ek)(1 ≤ k ≤ n) is defined. The function P(ek) is based on two
other functions D(ek) and V(ek), where D(ek) indicates the loss and V(ek) indicates the
topological variation at elevation ek.

The loss function D(ek) is defined by the distance of the contours. At each elevation
ek(1 ≤ k ≤ n), the corresponding set of contours from the ground truth mesh (denoted as
Ck) and that from the reconstructed mesh (denoted as Ĉk) are extracted. Subsequently, their
distance is measured by a Chamfer-distance-like function defined as:

distance(C, Ĉ) =
1

2|C|

∫
s

min
t

∥p(s)− q(t)∥ds +
1

2|Ĉ|

∫
t
min

s
∥q(t)− p(s)∥dt

where C = p(s), Ĉ = q(t), and |C|, |Ĉ| denote the total perimeter of each contour set.
Considering the performance issue, the actual distances are calculated using the discrete
form of this function by evenly sampling n (n = 1000) points from each set of the contours
along the edges, which is:

distance(C, Ĉ) =
1

2n
(

n

∑
i=1

n
min
j=1

∥pi − qj∥+
n

∑
j=1

n
min
i=1

∥qj − pi∥) (2)

Remote Sens. 2024, 16, 695 7 of 27

where {p1, p2, · · · , pn} ∈ C, {q1, q2, · · · , qn} ∈ Ĉ refer to the sampled points of the two con-
tour sets. The distances of contours at each elevation form a function D(ek) = distance(Ck, Ĉk),
which signifies the distribution of the loss at different elevations.

To identify the changing of a building topology, a topological variation function V(ek)
is defined based on the variation of the loss with the following steps. For each point
(ek, D(ek)) in D(ek), its preceding m points (m = 5–20, depends on the sample interval
dsample) are gathered and form a set of points {(ei, D(ei)) | k − m ≤ i ≤ k}. Principal
component analysis (PCA) is performed on the point set to calculate the main direction
v−(ek), which indicates the variation trend of the building topology below elevation ek.
Similarly, the variation trend v+(ek) above elevation ek is also calculated. If the above and
below variation trends point to significantly different direction, this implies a sharp corner
in the loss function, and there is likely to be a dramatic topological variation at elevation
ek. Therefore, the topological variation function is defined as V(ek) = 1 − v−(ek) · v+(ek),
which signifies the variation of the building topology at elevation ek.

As we assume that the elevations with larger loss and topological variation are more
crucial, a priority function P(ek) = D(ek)V(ek) is defined to measure the importance of
elevations. The maximum point of P(ek) is determined, and the corresponding elevation is
used as the new elevation.

Crucial elevations are identified during the iteration with the above procedures. The it-
eration stops when the loss of the reconstructed mesh is satisfied (<80–150 mm, measured
by Equation (1)) or there are no more valid new elevations. An example of the iteration is
presented in Figure 4.

el
ev

at
io

n
el

ev
at

io
n

el
ev

at
io

n

Mesh Soup Iteration 1

Iteration 2Iteration 3

Result

(without elevations at
horizontal planes)

𝐷(𝑒𝑘) 𝑉(𝑒𝑘) 𝑃(𝑒𝑘)

𝐷(𝑒𝑘) 𝑉(𝑒𝑘) 𝑃(𝑒𝑘)𝐷(𝑒𝑘) 𝑉(𝑒𝑘) 𝑃(𝑒𝑘)

Figure 4. An example of the iterative crucial elevation identification with three iterations (without
elevations at the horizontal planes here for better explanation). In each iteration, the segment with
the largest loss is determined (their boundaries are marked by dashed black lines), and then, D(ek),
V(ek), and P(ek) are calculated. The maximum points of P(ek) are marked by red circles, and the new
elevations are marked by dashed red lines.

3.3. Contour Layer Extraction

For each crucial elevation e, directly extracting contours at e may result in poor con-
tours with too much noise and fail to capture nearby information if there is a dramatic
topological variation. We, thus, used different strategies to extract contours for different cir-
cumstances.

To check if dramatic topological variation exists at e, a bias β (=0.2–0.6 m, depends
on the density and noise of input data) is defined, and two contour layers at elevations

Remote Sens. 2024, 16, 695 8 of 27

e − β and e + β are extracted. Subsequently, a bipartite graph is constructed for the two
contour layers (the construction of the bipartite graph is explained in Section 3.4.2). If nodes
in the graph are doubly linked in pairs, which indicates that every contour has exactly
one identical contour in the other layer, we assumed that there is no dramatic topological
variation. Otherwise, a dramatic topological variation is present at this elevation.

For elevation e without dramatic topological variation, extracting contours at elevation
e is deemed safe. The contour layer at elevation e is directly extracted and, then, added to
the current result. Otherwise, to completely capture the nearby information while avoiding
poor contours, the two contour layers at e − β and e + β are both added to the current result,
and no further contour layer is allowed to be extracted between them thereafter. Examples
of these two circumstances are given in Figure 5.

(a) (c)(b)

Figure 5. Contour layer extraction in different circumstances. The green planes and dashed green
lines refer to the current elevations, and the solid green lines indicate the elevations of the added
contour layers. (a,b) have dramatic topological variations, and two contour layers are added. (c) has
a smooth variation, and thus, only one contour layer is added.

3.4. Low-Poly Mesh Reconstruction

A low-poly mesh can be reconstructed from the extracted vital contours with three
steps: contour refinement, contour graph construction, and low-poly surface generation.

3.4.1. Contour Refinement

The raw contours contain a massive number of vertices with noise, while corners are
missing and replaced by undesirable bevels. Moreover, our method extracts contours near
crucial elevations, which are frequently located at structures with dramatic topological
variations. The contours, thus, have more noise and larger deformation.

To obtain compact contours with only essential details for compact surface generation,
we utilized the planar primitives of buildings and refined the contours with three steps:
vertex attaching, corner recovery, and simplification.

Initially, a vertex-attaching procedure was performed to reduce the noise, where
the vertices will be projected to the optimal reference line generated from the planar
primitives. Specifically, for each contour, its corresponding co-planar horizontal plane
is created and, then, intersects with the extracted non-horizontal planes (as shown in
Figure 3c) of the buildings. The intersection lines are used as reference lines for vertex
attaching. For each vertex on the contour, all near reference lines that are closer than a
tolerance tattach (=0.2–0.5 m) are collected as candidates. To find the optimal candidate line,
the weight of each line is defined by the included angle and distance, which is:

Weightattach(l, p, np) =
|nl · np|
∥p − p⊥∥

where l refers to the candidate reference line, nl refers to the normal of the line, p refers to
the vertex, np refers to the normal of vertex, which is defined as the average normal of its
connected edges, and finally, p⊥ refers to the nearest point to p on line l. The line with the
largest weight is chosen, and vertex p will be attached to it by shifting its coordinate to the
corresponding p⊥.

After the vertex attaching, missing corners are recovered in our corner-recovery
procedure by the intersections of the lines. For each pair of adjacent vertices (p1, p2) in
contours that are attached to two different lines, the intersection point pcorner of the two

Remote Sens. 2024, 16, 695 9 of 27

lines represents a corner point. If the Euclidean distance between pcorner and p1+p2
2 is

smaller than a tolerance tcorner (=2tattach), pcorner is added to the contour as a new vertex
between p1 and p2, and hence, a missing corner is recovered. After recovering these corners,
all co-linear adjacent edges are merged to remove redundant vertices.

Additionally, the vertex attaching may not be helpful when there are no reference
lines, which could happen on non-planar surfaces. A traditional polygon-simplification
algorithm is performed after the above steps to handle this situation. As the mesh soups
are usually generated from the scanning data, the noise of the meshes mainly comes
from the vertices. We, thus, chose the RDP algorithm with tolerance trdp (=0.8tattach) for
simplification, as it uses metrics based on the vertex distance.

After performing the procedures described above, the contour obtains fewer vertices
and less noise, while the sharp corners are recovered. Figure 6 shows an example of the
contour refinement at all stages.

(a) (c)

(d)(e)(f)

attach

add corner

mergeRDP

(b)

Figure 6. An example of contour refinement: (a) Mesh soup, target contour, and three non-horizontal
planes with intersected reference lines. (b) Reference lines (solid) and corresponding attach ranges
(dashed). (c) Result of vertex attaching. (d) Added corners (orange vertices in red circles). (e) After
merging co-linear adjacent edges. (f) Simplified by RDP.

3.4.2. Contour Graph Construction And Post-Processing

To restore the connection relationship between contours for surface generation, a con-
tour graph will be constructed using our method. Our contour graph construction method
imposes no restriction and is capable of complex containment relationships between con-
tours. Moreover, a post-processing procedure will be applied after the completion of
iterations to remove potential redundant contours based on our contour interpolation
algorithm.

Our method decomposes the construction of the whole contour graph into that of
multiple bipartite graphs. For each pair of adjacent contour layers, a directed bipartite
graph is constructed, and then, these graphs are merged into a complete contour graph.
In the directed bipartite graph, nodes and contours are in one-to-one correspondence.
A directed edge between nodes signifies that the contour of the start node is contained by
the contour of the end node (or the start node is contained by the end node for short). Due
to the topological restriction on buildings, the directed bipartite graph must satisfy the
following restrictions:

• Each node has at most one outgoing edge, as a contour can only be contained by at
most one contour in the other layer.

• A node should not have both an incoming edge and outgoing edge at the same
time, except when these two edges are reverse edges of each other. For the latter
circumstance, the two contours contain each other, which is allowed as this indicates

Remote Sens. 2024, 16, 695 10 of 27

that they have an identical shape. Otherwise, a sequence of containment exists, further
deriving that one contour is contained by another contour in the same layer, which is
impossible.

A verification is defined for the restriction to check if two contours (C1, C2) are iden-
tical. The distance between the two contours is calculated by Equation (2), and they are
considered identical if the distance is smaller than a tolerance tidentical = 0.05 min(AC1 , AC2),
where AC1 and AC2 are the area of the two contours.

Based on these restrictions, we propose a greedy edge-selection algorithm to construct
the directed bipartite graph under the restrictions for each pair of adjacent contour layers.

Initially, candidate edges are generated by creating every possible edge for the di-
rected bipartite graph. These candidate edges connect every pair of nodes in different
contour layers.

Subsequently, suitable edges are selected from these candidates with the following
steps. The candidate edges are sorted by weight in descending order. The weight of an
edge (nodes, nodee) is defined by the degree of containment between them, which is:

Weightedge(nodes, nodee) = 1 − 2
A(Ce−Cs)

ACe

∈ [−1, 1]

where Cs, Ce refers to the contours of nodes, nodee, A refers to the area of a geometry,
and subtraction between geometry refers to the Boolean difference of them. All candidate
edges with negative weights are removed due to the weak containment relationships.

Starting with a graph with only nodes and no edges, edges will be added step by step
by traversing and selecting from the sorted candidate edges. For each candidate edge, it
will be added to the graph if the restriction is still satisfied after adding this edge; otherwise,
the edge will be discarded. A directed bipartite graph is constructed after traversing these
candidate edges.

For each constructed directed bipartite graph, the nodes of the graph will be grouped
for later surface generation. The constructed directed bipartite graphs will be converted into
undirected bipartite graphs, which can, then, be separated into one or multiple connected
components. Each connected component represents a group of nodes. With the restriction
above, only three types of node groups are present in the graph:

• 1-0 group: consists of only one node with no edge.
• 1-1 group: consists of two nodes with one or two edges. One of the nodes contains the

other node, or the two contours of nodes are identical.
• 1-n group (n > 1): consists of 1 node in one layer, n nodes in the other layer, and n

edges. The independent 1 node contains all the n nodes in the other layer.

Note that the n-m (n > 1, m > 1) group will not appear in the graph as it breaks
the restrictions.

After constructing all the bipartite graphs, the complete contour graph is created by
merging all these bipartite graphs. Two examples of the contour graph construction are
shown in Figure 7a–c.

Since there may still be potential redundant contours in the graph after the completion
of the iterations, a post-processing procedure is applied to the graph to remove these
contours based on our contour interpolation algorithm.

Initially, nodes in the contour graph at the same branches are clustered, where each
cluster contains a continuous sequence of nodes. To be specific, all edges in the 1-n node
groups are temporarily removed, and each connected component in the remaining graph
forms a node cluster.

Subsequently, redundant contours are removed by verifying if they can be restored
from their neighbors within each cluster. For the k-th node with elevation ek and contour
Ck (denoted as (ek, Ck)) in a node cluster with n nodes (1 < k < n), an interpolated contour
Ck is generated from its adjacent nodes (ek−1, Ck−1) and (ek+1, Ck+1) using our contour-
interpolation algorithm (see the details in Section 3.4.3). If Ck and Ck are identical (judged

Remote Sens. 2024, 16, 695 11 of 27

by the verification defined before), Ck is considered redundant and will be marked as a
removal candidate. The removal candidate with the smallest contour distance will be
removed, while its connected edges will be fused, and the node groups will be updated.
This removal procedure repeats on the updated cluster until there are no more redundant
contours. Figure 7d shows two examples of the post-processing.

(a1) (b1) (c1) (d1)

(b2)(a2) (c2) (d2)

Figure 7. Two examples of contour graph construction and post-processing. Higher contours
are contained by the lower contours in the first example, while the second example has contours
that are reversely contained by higher contours or partially overlap with the adjacent contours:
(a1,a2) Contour layers. (b1,b2) Directed bipartite graphs for each pair of adjacent contour layers
(colored by node group). (c1,c2) Complete contour graph. (d1,d2) Contour graph after removing
redundant contours (with one redundant contour removed in (d1), and six redundant contours
removed in (d2)).

3.4.3. Low-Poly Surface Generation

As the contours in the graph are compact after the previous refinement procedure, we
aimed to generate compact surfaces from these contours while preserving their compact-
ness. The generation of mesh surfaces consists of two parts: interior faces and boundary
faces. The interior faces form the surfaces between contours such as wall and pitch roofs
(Figure 8b), while the boundary faces form the horizontal surfaces such as flat roofs, which
usually occur at terminal nodes (Figure 8c).

Remote Sens. 2024, 16, 695 12 of 27

(a1) (b1) (c1) (d1)

(a2) (b2) (c2) (d2)

Figure 8. Two examples of surface generation: (a1,a2) Refined contour graph (colored by cluster).
(b1,b2) Interior faces (colored by node group). (c1,c2) Boundary faces (red for faces from terminal
nodes, and blue for faces from 1-n node groups). (d1,d2) generated mesh.

Interior faces are generated at each node group with different strategies depending on
the type of group:

• 1-0 group: no interior face.
• 1-1 group: interior faces are generated using our contour-interpolation algorithm.
• 1-n group (n > 1): contours of the n nodes are vertically extruded (without caps) to

fill the in-between space.
The interior faces of 1-1 group are generated using our contour-interpolation algorithm.

Initially, given a 1-1 group with two adjacent contour nodes (C1, C2), the nearest pair of
vertices between the two contours is determined and, then, connected by a new edge. This
edge connects the two contours and creates a closed polyline denoted as (p1

s , p1
e , p2

s , p2
e) (as

shown in Figure 9b), where p1
s , p1

e , p2
s , p2

e refer to its start and end points on both contours.
Subsequently, the polyline will be split into two new polylines by an optimal split position
determined by the distance. The same splitting procedure repeats on new polylines until the
polylines are unsplittable, which means no valid split can be found anymore. An unsplit-
table polyline has exact n and m vertices on the two contours, where n + m = 3(n, m ≥ 1)
(triangle) or n = m = 2 (quadrilateral).

…

(e)(f)(g)

(a) (b) (c) (d)
𝑝𝑠
1 𝑝𝑒

1

𝑝𝑒
2 𝑝𝑠

2

Figure 9. An example of contour interpolation and triangulation: (a) Pair of contours. (b) Initial
closed polyline. The arrows and gradient color show the formation of the polyline. Note that the
start and end points on each contour overlap in the initial polyline. (c) Distances of vertices from
close (blue, small spheres) to far (red, large spheres). (d) Two new polylines after the first split.
(e) Result after splitting the two polylines in (d). (f) Final unsplittable polylines. (g) Generated interior
faces after triangulation.

To balance the two new polylines for better results, the optimal split position is
determined from the vertices by distance. For a polyline (p1

s , p1
e , p2

s , p2
e), the distance of the

vertex is defined as the sum of the minimum distances from the vertex to two edges (p1
s , p1

e)
and (p2

s , p2
e). The vertices are sorted by this distance in descending order, and the first valid

split will be applied.

Remote Sens. 2024, 16, 695 13 of 27

To split the polyline with a vertex p on one contour of the polyline, its closest point
pnew on the other contour is determined, while the corresponding edge (p−new, p+new) that
pnew falls within is also determined (an example is shown in Figure 10b). To avoid adding
redundant vertices, a merge tolerance tmerge (=2 m) is defined. If the distance from pnew
to p−new or p+new is closer than tmerge, pnew is shifted to the nearest vertex p−new or p+new.
A comparison of the results with and without merging is shown in Figure 10.

(a) current polyline

mergeable

mergeable

𝑝𝑛𝑒𝑤
𝑝𝑛𝑒𝑤
+

𝑝𝑛𝑒𝑤
−

(b) split without merging (c) split with merging

Figure 10. An example of polyline splitting with and without vertex merging.

Subsequently, a split edge (p, pnew) is created, and if the edge splits the polyline into
two new valid closed polylines (number of vertices ≥ 3), the split is considered valid.

After the optimal split, two new polylines are created in place of the original polyline,
and these new polylines will also be split if they are still splittable. Eventually, the initial
polyline will be split into multiple unsplittable polylines, which will be used for surface
generation and contour interpolation. To generate an interpolated contour between the
two contours, all split edges will be interpolated and, then, the interpolated points are
connected to form the target contour.

Based on these unsplittable polylines, the surfaces are generated with a triangulation
procedure. Two types of unsplittable polylines are present in the results: triangle polylines
and quadrilateral polylines. For a triangle polyline, a triangle face can be directly created
by its three vertices. For a quadrilateral polyline, there are two choices of triangulation
since the polyline may not be planar, and the convex one is chosen as shown in Figure 11.

(a) unsplittable polylines (b) concave triangulation (c) convex triangulation

Figure 11. Concave and convex triangulation of non-planar quadrilateral polylines. The red edge
indicates the other triangulation result of the middle polyline for comparison.

With the polyline splitting and triangulation, interior faces between two contours are
generated with only a small number of additional vertices, which keeps the compactness
of the contours. An example of polyline splitting and triangulation is shown in Figure 9.

As the interior faces form the main surfaces of the building, but leave holes in the
mesh, the boundary faces are generated to enclose these holes. The contours of all terminal
nodes (with degrees of 1) form faces to fill part of the holes (Figure 8c, red faces), while
the remaining holes appear at 1-n groups. Faces are generated to fill these holes by the
symmetric difference of two contour layers (Figure 8c, blue faces), which is defined as
C0∆

⋃n
i=1 Ci with the same elevation as C0, where C0 refers to contour of the independent

1 node, Ci(1 ≤ i ≤ n) refers to contour of the i-th node in the n nodes, and ∆ refers to the
Boolean symmetric difference of two geometries.

The interior faces and boundary faces are generated using the above methods, and
these faces form a watertight mesh. Examples of interior and boundary face generation are
shown in Figure 8.

Remote Sens. 2024, 16, 695 14 of 27

4. Results And Evaluation
4.1. Dataset

We used the Helsinki [32] dataset to evaluate the effectiveness of our method. The Helsinki
dataset consists of two parts: semantic city information models (denoted as semantic mod-
els) and visually high-quality reality mesh models (denoted as reality models). The semantic
models provide monomerized and low-poly building meshes, while the reality models
contain mesh soups of various items created from aerial photographs.

The low-poly building meshes in the semantic models were converted into noisy
mesh soups for the experiments. Specifically, these low-poly meshes were sampled into
point clouds (1 points/m2) with disturbing on the normal to simulate noise, where the
disturbance follows a Gaussian distribution N (0, σ2). Subsequently, Poisson reconstruction
was performed on the noisy point clouds to generate noisy mesh soups, and these mesh
soups were used as the inputs in the experiments. Meanwhile, the original low-poly meshes
were used as the ground truth in the experiments. Examples of the generated mesh soups
are shown in Figure 12.

Ground Truth σ = 0.05 σ = 0.1 σ = 0.15 σ = 0.2

Figure 12. Mesh soups at different noise levels.

Additionally, to demonstrate the effectiveness of our method on realistic data, four
buildings in the reality models were manually monomerized and used as the input in the
experiments. As there were no ground truth meshes for the reality models, these mesh
soups were directly regarded as the ground truth in the result evaluation.

4.2. Comparison with Previous Methods
4.2.1. Comparison of General Effectiveness

To evaluate the general effectiveness of our method, we compared our method with
three other methods. Two of them are also based on contours, and one, from Wu et al. [16],
uses bipartite graph matching for contour interpolation (denoted as BGM), while the other,
from Zhang et al. [17], uses the minimum circumscribed cuboids method for surface fitting
(denoted as MCC). The third method is QEM [27], which is a general mesh simplification
method based on edge-collapsing. The target of QEM is set as reaching the same number
of triangles as our result for comparison.

The experiments used one hundred buildings from the Helsinki semantic models,
which were converted into mesh soups with various intensities of disturbance (σ = 0.05,
0.1, 0.15, 0.2), and four buildings from the reality models. These building mesh soups were
reconstructed using each method, and the summary of the evaluations is shown in Table 1,
where the loss is calculated by Equation (1). Some examples of the results are shown in
Figure 13 (semantic models) and Figure 14 (reality models), where the statistics of these
results are listed in Table 2.

Table 1. Average losses, number of triangles, and number of contours at different noise levels for
each method.

Methods σ = 0.5 σ = 0.1 σ = 0.15 σ = 0.2

Average Loss
(mm)

BGM 94.1 98.6 104.8 111.5
MCC 117.6 116.8 117.0 117.2
QEM 121.1 176.4 180.5 217.2
Ours 91.0 94.0 102.6 114.6

Remote Sens. 2024, 16, 695 15 of 27

Table 1. Cont.

Methods σ = 0.5 σ = 0.1 σ = 0.15 σ = 0.2

Average
Number of
Triangles

BGM 40,690.2 44,838.2 48,453.5 54,032.4
MCC 1105.6 1266.7 1413.1 1614.2
QEM 163.8 208.0 232.9 305.9
Ours 163.8 208.0 232.9 305.9

Average
Number of
Contours

BGM 68.2 75.2 81.2 90.5
MCC 30.8 36.2 40.7 47.2
Ours 6.4 7.6 8.0 9.9

(a) (b) (c) (d)

Ground Truth

Mesh Soup
(Input)

BGM

MCC

QEM

Figure 13. Cont.

Remote Sens. 2024, 16, 695 16 of 27

(a) (b) (c) (d)

Our Contour
Graph

Our
Reconstructed

Mesh

Figure 13. (a)–(d) Four reconstruction examples from the semantic models.

(e) (f) (g) (h)

Mesh Soup
(Ground Truth

and Input)

BGM

MCC

QEM

Figure 14. Cont.

Remote Sens. 2024, 16, 695 17 of 27

(e) (f) (g) (h)

Our Contour
Graph

Our
Reconstructed

Mesh

Figure 14. (e)–(h) Four reconstruction examples from the reality models.

Table 2. Statistics of the reconstruction results in Figures 13 and 14.

Data Building Methods Loss (mm) Number of
Contours

Number of
Triangles

se
m

an
ti

c
m

od
el

s

(a)
σ = 0.05

BGM 64.9 95 56,760
MCC 124.5 10 476
QEM 89.1 — 40
Ours 54.4 4 40

(b)
σ = 0.1

BGM 98.9 65 38,840
MCC 125.3 22 1368
QEM 94.7 — 155
Ours 119.8 6 155

(c)
σ = 0.15

BGM 75.9 279 165,582
MCC 207.8 116 2425
QEM 522.0 — 50
Ours 57.5 5 50

(d)
σ = 0.2

BGM 111.0 75 44,848
MCC 124.4 46 2268
QEM 205.2 — 198
Ours 146.8 5 198

re
al

it
y

m
od

el
s

(e)

BGM 74.6 98 58,679
MCC 106.7 74 1084
QEM 75.1 — 317
Ours 224.2 16 317

(f)

BGM 37.6 55 32,690
MCC 172.1 48 2545
QEM 743.1 — 66
Ours 163.7 5 66

(g)

BGM 78.5 255 151,765
MCC 124.2 174 3104
QEM 214.7 — 157
Ours 168.8 4 157

(h)

BGM 50.1 121 72,467
MCC 135.8 106 1692
QEM 243.3 — 90
Ours 260.5 6 90

The analyses of results for each method are listed below:

• BGM generates contours on evenly spaced elevations, and each contour is resampled
into a fixed number of vertices for surface generation. The reconstructed meshes

Remote Sens. 2024, 16, 695 18 of 27

obtain small losses, but contain a significant number of faces. Moreover, it generates
incorrect connections at some dramatically changing elevations (e.g., (a) and (g)),
and an ambiguous topology may appear at sharp corners or complicated sections of
the contours (see the details in Section 4.2.3).

• MCC produces compact surfaces on axis-aligned structures with the sharp corners
recovered (e.g., (a)) under the assumption that the input buildings are comprised
of axis-aligned cuboids. However, since MCC lacks an additional strategy to han-
dle non-axis-aligned structures, they tend to be fit by multiple axis-aligned edges,
which generate zigzag artifacts and cost more vertices (e.g., (b) and (f)). Meanwhile,
the pitched roofs are reconstructed into dense cuboids, leading to staircase structures
in the results (e.g., (c), (d), (f), and (h)). Consequently, higher losses and denser faces
are present in the results compared to the axis-aligned structures. Additionally, the
results of BGM and MCC also suffer from poor contours found on dramatically chang-
ing elevations due to the evenly spaced contour-generation strategy (e.g., roofs of (e)
and (g)).

• QEM iteratively collapses edges based on the quadric error metric to simplify the
mesh soups and is able to reach an arbitrary target number of triangles. Nevertheless,
the QEM method is designed for general purposes and does not consider the structure
of buildings in its metric, which brings the challenge of balancing between simplicity
and detail preservation. The surfaces that are supposed to be planar usually become
bumpy, while the sharp corners are over-smoothed (e.g., (b) and (d)). Moreover,
the QEM has difficulty preserving the general structure of buildings under an excessive
strength of simplification, which significantly increases the loss (e.g., (c) and (f)).
Therefore, the QEM method obtains higher losses on average compared to other
methods, as shown in the experimental results.

• Our method only generates vital contours and removes redundant contours if they are
restorable, thus using much fewer contours compared to other contour-based meth-
ods. Our method also prevents directly extracting contours at dramatically changing
elevations to avoid poor contours compared to the evenly spaced contour-generation
strategy. Furthermore, accurate corners are recovered in our corner-recovery pro-
cedure with the guide of planar primitives, and thus, fewer unnecessary bevels at
corners are present in our results. Based on the refined contours, compact surfaces can
be generated using our contour-interpolation algorithm. Our method, thus, produces
low-poly results with small losses compared to other methods.

In conclusion, our method shows the ability to generate compact meshes compared to
the previous contour-based method and the QEM method.

4.2.2. Comparison of Contour Refinement

We propose a contour refinement method to obtain compact contours from the raw
noisy contours while recovering sharp corners. To evaluate the effectiveness of our method,
we compared our method with the RDP and MCC methods.

The experimental data were gathered from the semantic models. Pairs of contours
near crucial elevations were extracted. For each pair of contours, the original low-poly
mesh produces one simple, compact contour, serving as the ground truth, while the
corresponding mesh soup (σ = 0.2) produces the other noisy, complex contour, serving as
the input. After the refinement of these noisy contours, losses (measured by Equation (2))
and geometric complexities of the results are evaluated for each method.

Figure 15 illustrates the distribution of the losses, and Figure 16 shows the distribution
of the reduction ratio (defined as the ratio of the vertex count between the result and the
input) for each method. The summary of the losses and reduction ratios is listed in Table 3.
Some examples of the results are shown in Figure 17, while their corresponding statistics
are listed in Table 4.

Remote Sens. 2024, 16, 695 19 of 27

0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800

Loss (mm)

0%

5%

10%

15%

20%

25%

30%

35%

Re
la

tiv
e

Fr
eq

ue
nc

y

RDP MCC Ours

Figure 15. Distribution of the contour losses.

0% 1% 2% 3% 4% 5% 6% 7% 8% 9% 10%

Reduction Ratio

0%

10%

20%

30%

40%

50%

Re
la

tiv
e

Fr
eq

ue
nc

y

RDP MCC Ours

Figure 16. Distribution of the contour reduction ratios.

Ground Truth Noisy (Input) RDP MCC Ours

(a)

(b)

(c)

(d)

Figure 17. The contour refinement results. (a)–(d) show results of four contours with different
complexities.

Remote Sens. 2024, 16, 695 20 of 27

Table 3. Summary of contour refinement results.

Methods Average Loss
(mm) Average Reduction Ratio Average Number of Vertices

RDP 446.5 2.48% 12.2
MCC 398.8 3.47% 19.0
Ours 124.3 2.09% 10.4

Table 4. Statistics of the contour refinement results in Figure 17.

Contour Number of
Vertices Methods Loss (mm) Number of

Vertices

(a) 14
RDP 330.0 10
MCC 228.6 12
Ours 64.0 12

(b) 19
RDP 528.5 12
MCC 397.1 10
Ours 107.8 9

(c) 13
RDP 433.6 13
MCC 556.9 16
Ours 55.2 10

(d) 25
RDP 504.2 14
MCC 366.3 18
Ours 65.3 14

The analyses of results for each method are listed below:

• RDP can efficiently remove vertices, but preserves the undesirable bevels at corners
(e.g., (c)). Additionally, the tolerance of RDP is difficult to determine as a larger
tolerance improves effectiveness on denoising, but small details are more likely to be
erased (e.g., (a) and (d)).

• MCC assumes that buildings are formed with cuboids and generates compact results
on axis-aligned edges with the corners recovered (e.g., (a), (b), and (d)). On the other
hand, the non-axis-aligned edges are reconstructed into zigzag structures (e.g., (c) and
part of (d)), leading to increased loss and excessive vertices.

• Our method takes advantage of the planar primitives of buildings in the vertex
attaching for denoising, which produces more-accurate results compared to RDP.
Moreover, our strategy of corner recovery has superior effectiveness without the
axis-aligned limitation compared to MCC. Therefore, our method exhibits the ability
to simultaneously simplify the contours and recover accurate corners, as shown in
the results.

4.2.3. Comparison of Surface Generation

We propose a contour-interpolation algorithm to generate surfaces between adjacent
contour nodes while preserving compactness. To demonstrate its effectiveness, we com-
pared our method with the direct extrusion method (denoted as extrusion) and the bipartite
graph matching methods (denoted as BGM). Given two adjacent contour nodes, the direct
extrusion method vertically extrudes both contours towards each other by half of their
interval to generate the surfaces.

Similar to the contour-refinement experiments, the experiment data were gathered
from the semantic models. Pairs of high and low contours were extracted as the input.
For each pair of contours, meshes were clipped by the two contours, and the clipped
in-between surfaces were used as the ground truth. For each pair of contours, surfaces
were generated using each method, and then, the losses (measured by Equation (1)) and
numbers of faces were evaluated.

Remote Sens. 2024, 16, 695 21 of 27

The experiment data were divided into two parts for better comparison: the “same-
pair” part, where the paired contours are identical (with a distance of ≤5 mm measured by
Equation (2)), and the remaining data fell into the “different-pair” part, where the paired
contours are significantly different.

Table 5 shows the results for the “same-pair” part, and examples are shown in
Figure 18a,b, while the statistics of the two results are shown in Table 6. As there is
no significant difference between the pair of contours, the extrusion method is sufficient
to accurately recover the surface. For BGM, as the topology restriction is not considered
in the bipartite graph matching, an ambiguous topology may appear at sharp corners
and complicated sections of contours caused by an unsatisfactory match (marked by red
rectangles in Figure 18). This led to higher loss compared to extrusion. In our method,
the polylines were split based on the nearest points and vertex merging. Our method, thus,
produces the same accurate, compact results as the extrusion.

Table 5. Summary of “same-pair” surface-generation results.

Methods Average Loss (mm) Average Number of Triangles

Extrusion 0.00114 115.0
BGM 1.57457 600.0
Ours 0.00012 57.5

Ground Truth Extrusion BGM Ours

(a)

(b)

(c)

(d)

(e)

Figure 18. Examples of surface-generation results. (a)–(e) show results of five contour pairs from
similar to significantly different. The red rectangles show an ambiguous topology generated by
bipartite graph matching.

Remote Sens. 2024, 16, 695 22 of 27

Table 6. Statistics of the surface-generation results in Figure 18.

Contour Pair Distance
(mm)

Number of
Vertices Methods Loss (mm) Number of

Triangles

(a) 0.5 22
Extrusion 0.00064 44

BGM 1.1 600
Ours 0.00006 22

(b) 1.2 68
Extrusion 0.00012 136

BGM 2.1 600
Ours 0.00011 68

(c) 228.1 42
Extrusion 35.3 84

BGM 1.6 600
Ours 0.2 42

(d) 617.8 42
Extrusion 495.9 84

BGM 3.5 600
Ours 0.05 42

(e) 2796.6 20
Extrusion 699.0 40

BGM 24.1 600
Ours 3.5 22

For the “different-pair” part, as there are significantly more small-distance contour
pairs than large-distance pairs, results were grouped by distance and, then, summarized for
better clarity. The contour pairs were incrementally sorted by distance and evenly divided
into fifteen groups. Subsequently, the average contour distance and loss of each group were
calculated and, then, formed a line chart, as shown in Figure 19. Some examples of the
results are shown in Figure 18c–e, and the corresponding statistics are also listed in Table 7.

3 31 63 94 126 165 201 245277 317 361 424 500 587 736
1000

Contour Distance (mm)

0

20

40

60

80

100

120

140

160

Lo
ss

 (m
m

)

Extrude BGM Ours

3 31 63 94 126 165 201 245277 317 361 424 500 587 736
1000

Contour Distance (mm)

1

2

3

4

5

6

7

8

Lo
ss

 (m
m

)

BGM Ours

Figure 19. The average losses of surface-generation results at different ranges of contour distances
for data in the “different-pair” part. The left subfigure shows the results of extrusion, BGM, and our
method, while the right subfigure only shows the results of BGM and our method for better clarity.

The analyses of results in the “different-pair” part for each method are listed below:

• The extrusion method exhibits significantly worse effectiveness at large-distance pairs
of contours, as extrusion is not capable of generating non-vertical surfaces between
contours.

• BGM can generate gradual, smooth surfaces between contours, but requires enormous
faces while suffering from the same ambiguous topology problem as in the “same-pair”
parts. Additionally, the result shows that BGM has the best effectiveness when the
contour pairs are slightly different, but under-performs when the contour pairs are
identical. This arises from the fact that BGM is less likely to create an ambiguous
topology when the edges exhibit significantly different weights in the bipartite graph
matching.

Remote Sens. 2024, 16, 695 23 of 27

• Our method recursively splits polylines and produces stable results without an am-
biguous topology. The merging of new vertices helps avoid unnecessary vertices and
keep the compactness of the contours. As shown in the experimental results, our
method outperforms by using significantly fewer faces while achieving lower losses
compared to other methods.

Table 7. Summary of “different-pair” part surface-generation results.

Methods Average Loss (mm) Average Number of Triangles

Extrusion 86.0 155.5
BGM 6.3 600.0
Ours 3.7 79.1

4.3. Effectiveness of Iterative Pipeline

Our method iteratively identifies crucial elevations guided by loss and topological
variation to avoid redundant contours. To verify its effectiveness, we compared our
iterative method with the evenly spacing strategy. Initially, the building mesh soups used
in Section 4.2.1 were reconstructed with default parameters using our iterative method.
Subsequently, based on the iterative reconstruction result, two variable-controlled results
were generated by the evenly spaced contour-generation strategy for comparison:

• Result 1: Using n1 evenly spaced contour layers. n1 is equal to the number of contour
layers in the iterative reconstruction result.

• Result 2: Using n2 evenly spaced contour layers. n2 is the minimum number of contour
layers, where the result with n2 + 1 contour layers has a lower loss than the iterative
reconstruction result.

Result 1 has the same number of contour layers as the iterative result, while Result 2
has the same level of loss as the iterative result.

The loss and number of contour layers are summarized and illustrated in
Figures 20 and 21. The ∆loss in Figure 20 represents the subtraction of the loss between
Result 1 and the corresponding iterative result. Similarly, the ∆layer in Figure 21 rep-
resents the subtraction of contour layer count between Result 2 and the corresponding
iterative result.

0 100 200 300 400 500 600 700 800 900 1000
Loss (mm)

0%

5%

10%

15%

20%

25%

30%

35%

40%

Re
la

tiv
e

Fr
eq

ue
nc

y

Figure 20. Distribution of ∆loss with the same number of contour layers.

Remote Sens. 2024, 16, 695 24 of 27

0 6 12 18 24 30 36 42 48 54 60
Layer

0%

5%

10%

15%

20%

25%

30%

Re
la

tiv
e

Fr
eq

ue
nc

y

Figure 21. Distribution of ∆layers with the same level of loss.

The experimental result shows that our iterative method obtains less loss with the
same number of contour layers and, inversely, also uses fewer contour layers to reach
the same level of loss. Our iterative method is, thus, demonstrated to possess superior
effectiveness compared to the evenly spaced contour-generation strategy.

5. Discussion
5.1. Limitation

Our iterative contour generation method requires a large number of samples to identify
the optimal new crucial elevation, which is time-consuming. Another challenge comes
from the parameter selection: the target loss of iterative contour generation is difficult
to determine due to the variety of building structures. Moreover, reference planes are
required in the vertex attaching and corner recovery, but may be absent if the building
surface is not planar. In this circumstance, the contour refinement falls back to a traditional
polygon simplification method, and corners and details may be lost. Additionally, our
contour-interpolation algorithm may fail to generate complex surfaces and require more
in-between elevations for the correct surfaces, thus increasing the complexity of the results.
Another limitation comes from the limitation of the contours. The contour is difficult to
accurately capture topological variations at certain structures such as the top of a pitched
roof. For such a roof, a narrow flat roof will be generated with the current method, which
is inaccurate.

5.2. Future Work

In our future work, we would like to improve the efficiency of iteration contour
generation by strategies such as pre-calculating. To avoid the struggle of parameter se-
lection, auto-fitting parameters could be designed based on the variation trend of the
loss. Moreover, to complement the lost information at the top of the pitched roofs, more
prior knowledge could be introduced and post-processing could be applied to recover
accurate roofs.

6. Conclusions

In this study, we presented a novel iterative contour-based method designed to gener-
ate low-poly building meshes with only essential details from mesh soups. Our method is
based on an iterative pipeline to extract vital contours near crucial elevations. Low-poly
meshes are generated from the vital contours, and then, new vital contours can be extracted
by the loss and topological variation of the reconstructed mesh for the next iteration.

Our method focuses on two primary targets for high-quality results: reduce the num-
ber of contours and generate compact surfaces between contours. The total number of
contours is reduced using our iterative pipeline, as only vital contours are extracted. More-

Remote Sens. 2024, 16, 695 25 of 27

over, the potential redundant contours are identified and, then, removed based on our
contour-interpolation algorithm. With these raw vital contours, compact contours are
obtained using our contour refinement method with vertex attaching, corner recovery,
and simplification, which takes advantage of the planar primitives of buildings. Addition-
ally, connection relationships between contours are recovered for surface generation using
our contour-graph-construction method. Then, our contour-interpolation algorithm is also
utilized to generate compact surfaces between connected contours.

Our method imposes no limitation on the input building and exhibits the ability
to reconstruct low-poly meshes from mesh soups. The experiments demonstrated that
our method generates satisfactory results and has superior effectiveness than previous
methods on the quality of the general reconstruction results, contour refinement results,
and surface generation results. Additionally, our iterative contour-generation method was
demonstrated to outperform the previous evenly spaced contour-generation method in
the experiments.

Author Contributions: Conceptualization, X.X., Y.L. and Y.Z.; methodology, X.X.; software, X.X. and
Y.L.; validation, X.X.; formal analysis, X.X.; investigation, X.X.; writing—original draft preparation,
X.X.; writing—review and editing, X.X., Y.L. and Y.Z.; visualization, X.X. All authors have read and
agreed to the published version of the manuscript.

Funding: This work was supported by the National Key Project of China (Project Number GJXM92579)
and the Sichuan Science and Technology Program (Project Number 2023YFG0122).

Data Availability Statement: The data presented in this study are openly available at reference [32].

Acknowledgments: The authors are grateful to Yuanjun Liao, Haiyan Wang, Fangchuan Li, Anlan
Wang, Yizhou Xie, Haoran He, Qijun Zhao, and Chen Li for their help during the research.

Conflicts of Interest: The authors declare no conflicts of interest.

Abbreviations
The following abbreviations are used in this manuscript:

MVS multi-view stereo
SfM structure from motion
ALS airborne laser scanning
RANSAC random sample consensus
QEM quadric error metric
DSM digital surface model
LoDs level of details
RDP Ramer–Douglas–Peucker
PCA principal component analysis
BGM bipartite graph matching
MCC minimum circumscribed cuboids

References
1. Xu, Y.; Stilla, U. Toward building and civil infrastructure reconstruction from point clouds: A review on data and key techniques.

IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 2857–2885. [CrossRef]
2. Ali, T.; Mehrabian, A. A novel computational paradigm for creating a Triangular Irregular Network (TIN) from LiDAR data.

Nonlinear Anal. Theory, Methods Appl. 2009, 71, e624–e629. [CrossRef]
3. Bouzas, V.; Ledoux, H.; Nan, L. Structure-aware Building Mesh Polygonization. ISPRS J. Photogramm. Remote Sens. 2020,

167, 432–442. [CrossRef]
4. Gao, X.; Wu, K.; Pan, Z. Low-Poly Mesh Generation for Building Models. In Proceedings of the Special Interest Group on

Computer Graphics and Interactive Techniques Conference Proceedings, New York, NY, USA, 7–11 August 2022. [CrossRef]
5. Li, M.; Nan, L. Feature-preserving 3D mesh simplification for urban buildings. ISPRS J. Photogramm. Remote Sens. 2021,

173, 135–150. [CrossRef]
6. Huang, J.; Stoter, J.; Peters, R.; Nan, L. City3D: Large-Scale Building Reconstruction from Airborne LiDAR Point Clouds. Remote

Sens. 2022, 14, 2254. [CrossRef]

http://doi.org/10.1109/JSTARS.2021.3060568
http://dx.doi.org/10.1016/j.na.2008.11.081
http://dx.doi.org/10.1016/j.isprsjprs.2020.07.010
http://dx.doi.org/10.1145/3528233.3530716
http://dx.doi.org/10.1016/j.isprsjprs.2021.01.006
http://dx.doi.org/10.3390/rs14092254

Remote Sens. 2024, 16, 695 26 of 27

7. Kamra, V.; Kudeshia, P.; ArabiNaree, S.; Chen, D.; Akiyama, Y.; Peethambaran, J. Lightweight Reconstruction of Urban Buildings:
Data Structures, Algorithms, and Future Directions. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2023, 16, 902–917. [CrossRef]

8. Zhang, K.; Yan, J.; Chen, S.C. Automatic Construction of Building Footprints From Airborne LIDAR Data. IEEE Trans. Geosci.
Remote Sens. 2006, 44, 2523–2533. [CrossRef]

9. Zhou, Q.Y.; Neumann, U. Fast and Extensible Building Modeling from Airborne LiDAR Data. In Proceedings of the 16th ACM
SIGSPATIAL International Conference on Advances in Geographic Information Systems, New York, NY, USA, 5 November 2008.
[CrossRef]

10. Yan, J.; Zhang, K.; Zhang, C.; Chen, S.C.; Narasimhan, G. Automatic Construction of 3-D Building Model From Airborne LIDAR
Data Through 2-D Snake Algorithm. IEEE Trans. Geosci. Remote Sens. 2015, 53, 3–14. [CrossRef]

11. Wang, Y.; Xu, H.; Cheng, L.; Li, M.; Wang, Y.; Xia, N.; Chen, Y.; Tang, Y. Three-Dimensional Reconstruction of Building Roofs
from Airborne LiDAR Data Based on a Layer Connection and Smoothness Strategy. Remote Sens. 2016, 8, 415. [CrossRef]

12. Yan, L.; Li, Y.; Xie, H. Urban Building Mesh Polygonization Based on 1-Ring Patch and Topology Optimization. Remote Sens.
2021, 13, 4777. [CrossRef]

13. Yan, L.; Li, Y.; Dai, J.; Xie, H. UBMDP: Urban Building Mesh Decoupling and Polygonization. IEEE Trans. Geosci. Remote Sens.
2023, 61, 1–16. [CrossRef]

14. Zhang, J.; Li, L.; Lu, Q.; Jiang, W. Contour clustering analysis for building reconstruction from LiDAR data. In Proceedings of the
International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Beijing, China, 3–11 July 2008.

15. Li, L.; Zhang, J.; Jiang, W. Automatic complex building reconstruction from LIDAR based on hierarchical structure analysis.
In Proceedings of the MIPPR 2009: Pattern Recognition and Computer Vision, Yichang, China, 30 October–1 November 2009.
[CrossRef]

16. Wu, B.; Yu, B.; Wu, Q.; Yao, S.; Zhao, F.; Mao, W.; Wu, J. A Graph-Based Approach for 3D Building Model Reconstruction from
Airborne LiDAR Point Clouds. Remote Sens. 2017, 9, 92. [CrossRef]

17. Zhang, Y.; Zhang, C.; Chen, S.; Chen, X. Automatic Reconstruction of Building Façade Model from Photogrammetric Mesh Model.
Remote Sens. 2021, 13, 3801. [CrossRef]

18. Zhang, W.; Li, Z.; Shan, J. Optimal Model Fitting for Building Reconstruction From Point Clouds. IEEE J. Sel. Top. Appl. Earth Obs.
Remote Sens. 2021, 14, 9636–9650. [CrossRef]

19. Song, J.; Xia, S.; Wang, J.; Chen, D. Curved Buildings Reconstruction From Airborne LiDAR Data by Matching and Deforming
Geometric Primitives. IEEE Trans. Geosci. Remote Sens. 2021, 59, 1660–1674. [CrossRef]

20. Coiffier, G.; Basselin, J.; Ray, N.; Sokolov, D. Parametric Surface Fitting on Airborne Lidar Point Clouds for Building Reconstruction.
Comput. Aided Des. 2021, 140, 103090. [CrossRef]

21. Qian, Y.; Zhang, H.; Furukawa, Y. Roof-GAN: Learning To Generate Roof Geometry and Relations for Residential Houses.
In Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Nashville, TN, USA,
20–25 June 2021. [CrossRef]

22. Li, M.; Wonka, P.; Nan, L. Manhattan-world Urban Reconstruction from Point Clouds. In Proceedings of the European Conference
on Computer Vision, Amsterdam, The Netherlands, 11–14 October 2016. [CrossRef]

23. Nan, L.; Wonka, P. PolyFit: Polygonal Surface Reconstruction from Point Clouds. In Proceedings of the 2017 IEEE International
Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017. [CrossRef]

24. Liu, X.; Zhang, Y.; Ling, X.; Wan, Y.; Liu, L.; Li, Q. TopoLAP: Topology Recovery for Building Reconstruction by Deducing the
Relationships between Linear and Planar Primitives. Remote Sens. 2019, 11, 1372. [CrossRef]

25. Xie, L.; Hu, H.; Zhu, Q.; Li, X.; Tang, S.; Li, Y.; Guo, R.; Zhang, Y.; Wang, W. Combined Rule-Based and Hypothesis-Based Method
for Building Model Reconstruction from Photogrammetric Point Clouds. Remote Sens. 2021, 13, 1107. [CrossRef]

26. Chen, Z.; Ledoux, H.; Khademi, S.; Nan, L. Reconstructing compact building models from point clouds using deep implicit fields.
ISPRS J. Photogramm. Remote Sens. 2022, 194, 58–73. [CrossRef]

27. Garland, M.; Heckbert, P.S. Surface simplification using quadric error metrics. In Proceedings of the SIGGRAPH97: The 24th
International Conference on Computer Graphics and Interactive Techniques, New York, NY, USA, 3 August 1997. [CrossRef]

28. Wang, S.; Liu, X.; Zhang, Y.; Li, J.; Zou, S.; Wu, J.; Tao, C.; Liu, Q.; Cai, G. Semantic-guided 3D building reconstruction from
triangle meshes. Int. J. Appl. Earth Obs. Geoinf. 2023, 119, 103324. [CrossRef]

29. Heckbert, P.S.; Garland, M. Survey of Polygonal Surface Simplification Algorithms; Technical Report; School of Computer Science,
Carnegie Mellon University: Pittsburgh, PA, USA, 1997.

30. Wu, Q.; Liu, H.; Wang, S.; Yu, B.; Beck, R.; Hinkel, K. A Localized Contour Tree Method for Deriving Geometric and Topological
Properties of Complex Surface Depressions Based on High-Resolution Topographical Data. Int. J. Geogr. Inf. Sci. 2015,
29, 2041–2060. [CrossRef]

http://dx.doi.org/10.1109/JSTARS.2022.3232758
http://dx.doi.org/10.1109/TGRS.2006.874137
http://dx.doi.org/10.1145/1463434.1463444
http://dx.doi.org/10.1109/TGRS.2014.2312393
http://dx.doi.org/10.3390/rs8050415
http://dx.doi.org/10.3390/rs13234777
http://dx.doi.org/10.1109/TGRS.2023.3288590
http://dx.doi.org/10.1117/12.832626
http://dx.doi.org/10.3390/rs9010092
http://dx.doi.org/10.3390/rs13193801
http://dx.doi.org/10.1109/JSTARS.2021.3110429
http://dx.doi.org/10.1109/TGRS.2020.2995732
http://dx.doi.org/10.1016/j.cad.2021.103090
http://dx.doi.org/10.1109/CVPR46437.2021.00282
http://dx.doi.org/10.1007/978-3-319-46493-0_4
http://dx.doi.org/10.1109/ICCV.2017.258
http://dx.doi.org/10.3390/rs11111372
http://dx.doi.org/10.3390/rs13061107
http://dx.doi.org/10.1016/j.isprsjprs.2022.09.017
http://dx.doi.org/10.1145/258734.258849
http://dx.doi.org/10.1016/j.jag.2023.103324
http://dx.doi.org/10.1080/13658816.2015.1038719

Remote Sens. 2024, 16, 695 27 of 27

31. Wu, B.; Yu, B.; Wu, Q.; Huang, Y.; Chen, Z.; Wu, J. Individual Tree Crown Delineation Using Localized Contour Tree Method and
Airborne LiDAR Data in Coniferous Forests. Int. J. Appl. Earth Obs. Geoinf. 2016, 52, 82–94. [CrossRef]

32. Helsingin Kaupungin Kaupunginkanslia, t.j.v. 3D Models of Helsinki. Available online: https://hri.fi/data/en_GB/dataset/
helsingin-3d-kaupunkimalli (accessed on 7 December 2023).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1016/j.jag.2016.06.003
https://hri.fi/data/en_GB/dataset/helsingin-3d-kaupunkimalli
https://hri.fi/data/en_GB/dataset/helsingin-3d-kaupunkimalli

	Introduction
	Related Work
	Methods
	Overview
	Iterative Crucial Elevation Identification
	Contour Layer Extraction
	Low-Poly Mesh Reconstruction
	Contour Refinement
	Contour Graph Construction And Post-Processing
	Low-Poly Surface Generation

	Results And Evaluation
	Dataset
	Comparison with Previous Methods
	Comparison of General Effectiveness
	Comparison of Contour Refinement
	Comparison of Surface Generation

	Effectiveness of Iterative Pipeline

	Discussion
	Limitation
	Future Work

	Conclusions
	References

