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Abstract: With the development of artificial intelligence, the ability to capture the background
characteristics of hyperspectral imagery (HSI) has improved, showing promising performance in
hyperspectral anomaly detection (HAD) tasks. However, existing methods proposed in recent years
still suffer from certain limitations: (1) Constraints are lacking in the deep feature learning process in
terms of the issue of the absence of prior background and anomaly information. (2) Hyperspectral
anomaly detectors with traditional self-supervised deep learning methods fail to ensure prioritized
reconstruction of the background. (3) The architecture of fully connected deep networks in hyper-
spectral anomaly detectors leads to low utilization of spatial information and the destruction of the
original spatial relationship in hyperspectral imagery and disregards the spectral correlation between
adjacent pixels. (4) Hypotheses or assumptions for background and anomaly distributions restrict the
performance of many hyperspectral anomaly detectors because the distributions of background land
covers are usually complex and not assumable in real-world hyperspectral imagery. In consideration
of the above problems, in this paper, we propose a novel fully convolutional auto-encoder based
on dual clustering and latent feature adversarial consistency (FCAE-DCAC) for HAD, which is
carried out with self-supervised learning-based processing. Firstly, density-based spatial clustering
of applications with a noise algorithm and connected component analysis are utilized for successive
spectral and spatial clustering to obtain more precise prior background and anomaly information,
which facilitates the separation between background and anomaly samples during the training of our
method. Subsequently, a novel fully convolutional auto-encoder (FCAE) integrated with a spatial–
spectral joint attention (SSJA) mechanism is proposed to enhance the utilization of spatial information
and augment feature expression. In addition, a latent feature adversarial consistency network with
the ability to learn actual background distribution in hyperspectral imagery is proposed to achieve
pure background reconstruction. Finally, a triplet loss is introduced to enhance the separability
between background and anomaly, and the reconstruction residual serves as the anomaly detection
result. We evaluate the proposed method based on seven groups of real-world hyperspectral datasets,
and the experimental results confirm the effectiveness and superior performance of the proposed
method versus nine state-of-the-art methods.

Keywords: hyperspectral imagery; anomaly detection; self-supervised learning; fully convolutional
auto-encoder; latent feature adversarial consistency; triplet loss

1. Introduction

Hyperspectral imagery (HSI) contains abundant spatial and spectral information [1–3].
Hyperspectral remote sensors collect hyperspectral images by accreting two spatial di-
mensions of the image with an additional spectral dimension that comprises hundreds or
thousands of approximately continuous spectral curves for land cover. This data collection
pattern forms a 3-D hyperspectral image cube. In hyperspectral imagery, the spectral
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information of each pixel corresponds to a distinct spectral curve [4]. The high spectral
resolution of the hyperspectral image makes it possible to distinguish different ground
objects by obtaining reliable spectral characteristics [5,6]. Extensive applications can be car-
ried out with hyperspectral imagery, such as target detection [7], classification [8], change
detection [9], etc. For hyperspectral anomaly detection (HAD), pixels that have distinct
spectral curves and take up a very small spatial proportion in the hyperspectral imagery
are recognized as anomaly targets. The abundant spatial and spectral information in hyper-
spectral imagery is a benefit to the detection of anomaly targets in hyperspectral imagery,
even without any prior information about their spectral characteristics [10,11]. The practical
application of HAD does not require prior spectral information, which alleviates the need
for the extensive allocation of labor and material resources to acquire the background and
anomaly spectral information in advance [12]. Consequently, the inherent advantage of
HAD lies in its independence from prior spectral information, making it highly suitable
for real-world scenarios. HAD is currently extensively utilized in military reconnaissance,
environmental monitoring, and search and rescue missions [13–15].

In the past two decades, there has been a continuous emergence of models and
methods in the research field of anomaly detection for hyperspectral remote sensing
imagery [1]. There are two main categories of hyperspectral detection methods: classical
methods and deep learning-based methods.

The earliest classical method is Reed–Xiaoli (RX) [16], which assumes a multivariate
Gaussian distribution to model the background and quantifies anomaly targets by calcu-
lating the Mahalanobis distance between the measured pixel and estimated background,
and it can serve as a benchmark for HAD. Subsequently, various extended versions of RX
algorithms, such as the local RX (LRX) [17] algorithm, which uses the strategy of inner and
outer double windows to model the local background, and subspace RX [18] (SSRX), which
reduces the impact of anomaly contamination on background estimation by projecting into
the subspace emerged. To estimate the background model more accurately, weighted RX
(WRX) and linear filter-based RX (LF-RX) [19] have been proposed. The aforementioned
methods, however, are only suitable for simple application scenarios and often perform
poorly in complex scenarios. This implies that not all backgrounds conform to the assump-
tion of a multivariate Gaussian distribution [20]. Kernel RX (KRX) [21] was proposed to
try to address this issue by employing high-dimensional feature space mapping for each
pixel to accurately estimate the background, which presents a nonlinear variant of the RX
algorithm. The subsequent emergence of a series of advanced related methods, such as
the clustering KRX (CKRX) [22] and Robust Nonlinear Anomaly Detection (RNAD) [23]
methods, has significantly enriched this field. Additionally, FRFE [24] maps all pixels
in the original spectral domain to the Fourier domain (FRFE) in order to enhance the
distinction between background and anomaly to improve detection accuracy. In order to
further address the issue of unreasonable assumptions regarding the statistical distribution
of backgrounds and enhance the suitability of models for complex application scenarios,
representation-based methods have been developed. Representation-based methods are
categorized into sparse representation (SR), collaborative representation (CR), and low-rank
representation (LRR) depending on the type of regularization constraints [1]. The typical
methods include the CR-based detector (CRD) [25], the LRaSMD-based Mahalanobis dis-
tance method for anomaly detection (LSMAD) [26], the abundance- and dictionary-based
low-rank decomposition (ADLR) method [27], and the anomaly detection method based
on low-rank sparse representation (LRASR) [28]. The aforementioned methods address
the issue of unfounded assumptions regarding background distribution. However, the
establishment of dictionary optimization necessitates the inclusion of regularization pa-
rameters. Unfortunately, due to the lack of prior information, determining specific values
for these regularization parameters becomes rather difficult [29]. The aforementioned
methods primarily employ spectral discrimination for hyperspectral anomaly detection
and neglect the utilization of spatial information. Consequently, another branch is using
spatial discrimination to detect anomalies. The recently proposed the attribute and edge-
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preserving filtering (AED) method [30] and structure tensor- and guided filtering-based
HAD (STGD) algorithm [31], which exhibit excellent detection performance in detecting
anomalies through local filtering operations. However, these methods tend to overlook the
significance of spectral information.

In recent years, research has proved the remarkable power of deep neural networks
in modeling complex datasets and mining high-dimensional information, which enables
them to extract more representative features compared with conventional methods while
exhibiting exceptional feature expression capabilities [32–35]. The utilization of deep
learning techniques has progressively gained prominence for HAD [36]. A mass of HAD
methodologies rooted in deep learning has emerged, which can be broadly categorized into
two distinct groups: supervised learning (SL) and unsupervised learning (UL) methods.
The most common supervised HAD method is CNND [37], which requires the utilization
of a reference image scene containing labeled samples (captured using the same sensor)
to generate training pairs and train a CNN network capable of outputting the similarity
between the center pixel and its surrounding pixels. A new Siamese network is proposed
in [38] as the backbone of the CNND network, and it computes the similarity score be-
tween the pixel to be measured and the surrounding pixels in the hidden layer level. Song
et al. [39] combined CNN with low-rank representation (LRR) for HAD. They employed
CNN to generate robust abundance maps and then input these maps into the LRR model
to construct a dictionary. The supervised learning method is constrained by the avail-
ability of annotated labels and training samples, which does not meet the premise of the
lack of spectral prior knowledge and compromises its flexibility and generalization in
practical applications. The unsupervised learning methods for HAD, in contrast, offer
a significant advantage by eliminating the need for labeling training samples and solely
relying on inputting the original HSI as training data. These methods typically employ
the auto-encoder (AE) model [40] and a generative adversarial network (GAN) to extract
the deep intrinsic spectral characteristics of HSI. Bati et al. [41] and Arisoy et al. [42] are
the pioneers who introduced the AE model and GAN to HAD, respectively. They as-
sume that the anomaly pixels are sparsely distributed compared with the background
pixels. Consequently, reconstructing the background pixels is easier than reconstructing
the anomaly pixels during reconstruction processing, which brings significantly smaller
reconstruction errors for background pixels. Therefore, these reconstruction errors can
effectively indicate the number of anomaly targets in each pixel. Additionally, there are
also some methods that reconstruct the HSI with stronger discrimination between the
background and anomaly or apply traditional methods such as RX to detect anomalies in
enhanced residual image. However, due to the robust reconstruction capability of the AE
model and GANs, it becomes impossible to ensure whether an anomaly is reconstructed
during the actual reconstruction processing. In other words, determining the learning
direction of the deep network during training remains indeterminate [43]. To alleviate this
problem, HADGAN was proposed [44], which employs a GAN to enable the latent feature
layer to acquire knowledge from the multivariate normal background distribution. This
enables the deep network to focus on generating the background. A guided auto-encoder
(GAED) is proposed [45] to incorporate a guided module based on guided images into the
deep network. Hence, it leverages feedback information to effectively reduce the feature
representation of anomaly targets. However, the aforementioned methods solely focus
on pixel-level reconstruction in the spectral domain, which leads to the loss of spatial
structure in HSI and hinders the ability of deep networks to capture spatial context infor-
mation. In order to enhance the utilization of spatial information [46], incorporates graph
regularization into the hidden layer (RGAE) of the auto-encoder. Moreover, a residual
self-attention-based auto-encoder for HAD (RSAAE) is proposed in [47], which employs
residual attention to concentrate on the spatial characteristics of HSI. Wang et al. [48] are
the pioneers who proposed a fully convolutional auto-encoder for HAD (Auto-AD) that
employs adaptive learning to suppress the reconstruction of anomaly targets. However,
it is still constrained by the underlying assumption of background distribution due to its
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use of multivariate normal distribution noise as an input for training. Additionally, Wang
et al. [49,50] propose a blind spot reconstruction network that utilizes the surrounding
pixel features to reconstruct the blind spot pixels, and which exploits a novel paradigm for
HSI reconstruction.

As mentioned above, deep learning-based hyperspectral anomaly detection approaches
meet the following limitations and challenges:

(1) The deep network for hyperspectral anomaly detection lacks a clear learning direction
and merely relies on the assumption of high reconstruction errors to identify anoma-
lies that fail to meet the requirements of diverse hyperspectral anomaly detection
scenarios. It is urgent for us to develop a method that provides a learning approach
for a hyperspectral anomaly-detection deep network that includes guidance for its
training phase.

(2) The current state-of-the-art methods of hyperspectral anomaly detection primarily
rely on pixel-level spectral reconstruction for deep learning-based methods, which
inappropriately comes to terms with the spatial structure of HSI and interferes with
the deep network’s ability to learn any spatial features. In reality, spatial information
plays a crucial role in hyperspectral anomaly detection. The lack of spatial structure
analysis brings limitations to the detection performance of certain existing approaches.

(3) The background of HSI is inherently multivariate and complex. However, most
traditional and deep learning-based methods still assume a multivariate normal
distribution for the hyperspectral background. This assumption does not always hold
true for the real-world complex background of HSI, in which existing algorithms are
inadequate for adapting to such scenes. As a result, applications of these hyperspectral
anomaly detection methods are mostly limited to simple scenarios.

In this study, we consider the aforementioned three challenges to be our original inspi-
ration. In regard to the first challenge, it is necessary to interpret the learning methodology
of a deep network and provide a preliminary understanding to distinguish anomalies
from background elements. To address the first challenge, we introduce a dual clustering
module for prior knowledge extraction to establish a clear learning direction for the net-
work and provide a rough understanding of the anomaly and background. For the second
challenge, we propose a fully convolutional encoder that integrates a spatial and spectral
joint attention mechanism to enhance the cooperation between spatial and spectral features,
which improves the utilization of spatial information. Simultaneously, we employ a fully
convolutional architecture that reconstructs the central pixel by leveraging surrounding
pixel features instead of isolating the pixel-by-pixel reconstruction. The third challenge lies
in the difficulty of explaining the complex background through a simple distribution which
may be fuzzy in real-world distribution. To address this issue, we directly employ the
extracted real prior distribution that encompasses most characteristics of the background
instead of the assumed distribution. GANs do well at effectively fitting two distributions
to achieve maximum similarity, which is a technique widely employed in style transfer.
Consequently, a latent feature adversarial consensus network is designed based on this
approach to learn real distribution for background.

The final objective of the proposed method is to reconstruct the proper background
and identify anomalies by generating reconstruction errors. Therefore, we propose a novel
fully convolutional auto-encoder based on dual clustering and latent feature adversarial
consistency for hyperspectral anomaly detection (FCAE-DCAC). The proposed FCAE-
DCAC method makes contributions in the following aspects:

(1) A novel fully convolutional auto-encoder is proposed to make full use of spatial
information to assist hyperspectral anomaly detection tasks to achieve a joint anomaly
detection process with a spatial structure.

(2) A novel module for extracting prior knowledge that combines the DBSCAN and
connected component analysis clustering is designed to guide deep network learning
by extracting background and anomaly samples. This ensures that the proposed deep
network has a clear learning direction. Additionally, the induction of triplet loss helps
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separate the distance between the background and anomaly. Hence, it enhances the
separability between the background and anomaly.

(3) To overcome the limitations of assuming a specific distribution for the background
and achieve a more accurate reconstruction for the pure background, we propose
a latent feature adversarial consistency network. This network aims to learn the
true distribution of the real background and employs an adversarial consistency
enhancement loss to strengthen the constraints for reconstructing a purer background.

The rest of this article is organized as follows. In Section 2, we present a comprehensive
overview of the implementation details for the proposed FCAE-DCAC method. In Section 3,
the extensive experimental results of the proposed method are presented and compared
with state-of-the-art approaches to evaluate the performance of the FCAE-DCAC. Finally,
our conclusions are drawn in Section 4.

2. Proposed Method
2.1. Overview

Here, we present the flowchart of the proposed unsupervised fully convolutional
auto-encoder (FCAE), as illustrated in Figure 1. Our proposed approach consists of three
distinct stages:
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(1) Extracting Prior Knowledge with Dual Clustering: The purpose of dual clustering
is to obtain coarse labels for supervised network learning and provide the network
with a clear learning direction to enhance its performance. Dual clustering (i.e., un-
supervised DBSCAN and connected domain analysis clustering) techniques can be
employed to cluster the HSI from the spectral domain to the spatial domain, which
yields preliminary separation results between the background and anomaly regions.
Subsequently, prior samples representing the background and anomaly regions are ob-
tained through this processing, which effectively purifies the supervision information
provided to the deep network by conveying more background-related information
as well as anomaly related information. These anomaly features are then utilized
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to suppress anomaly generation while the background features contribute toward
reconstructing most of the background.

(2) Training for the Fully Convolutional Auto-Encoder: The prior background and
anomaly samples extracted in the first stage are used as training data for the training
of a fully convolutional auto-encoder model. During the training phase, the original
hyperspectral information is input into a fully convolutional deep network using a
mask strategy while an adversarial consistency network is employed to learn the true
background distribution and suppress anomaly generation. Finally, by leveraging
self-supervision learning as a foundation, the whole deep network is guided to learn
by incorporating triplet loss and adversarial consistency loss. Additionally, a spatial
and spectral joint attention mechanism is utilized in both the encoder and decoder
stages to enable adaptive learning for spatial and spectral focus.

(3) Testing with the Original Hyperspectral Imagery: The parameters of the proposed
deep network are fixed, and the original hyperspectral imagery is fed into the trained
network for reconstructing the expected background for hyperspectral imagery. At
this stage, the deep network only consists of an encoder and a decoder. The reconstruc-
tion error serves as the final detection result of the proposed hyperspectral anomaly
detection method.

2.2. Extracting Prior Knowledge with Dual Clustering

Dual clustering is mainly divided into DBSCAN on the spectral domain and CCC on
the spatial domain. Firstly, the DBSCAN algorithm is employed to cluster the HSI based on
its spectral information; the DBSCAN algorithm possesses the capability of clustering with
arbitrary shapes and yielding clustering results with specific spatial attributes. This builds
the foundation for subsequent CCC spatial clustering. The components of Figure 2 have the
same meanings as those in Figure 1. Figure 2 shows an input HSI of X ∈ RH×W×B, where
H, W, and B are the row number, column number, and spectral dimension (the number of
spectral channels) of the HSI, respectively. Under the condition of (Eps, MinPts), DBSCAN
randomly selects a pixel as the starting point. It then searches for all pixels within a spectral
Euclidean distance radius of the Eps around the starting point. If the number of pixels in
this range is not less than MinPts, the starting point is marked as a core point, and a new
cluster is created. All the core points and their density-reachable data points are added
to this cluster. By iterating through all the core pixels, it obtains the category label graph
M1 =

{
m1

i
}i=H×W

I=1 ∈ RH×W . Since the probability of picking a background pixel greatly
exceeds that of the anomaly pixels, Our experiment also revealed that the clustering results
can yield up to 312 categories. However, class 1 typically accounts for over 94% of the
proportion of these results, which led us to roughly divide them into two categories. The
majority of class 1 were considered to be part of the background (marked as 1), while the
remaining minority classes were identified as anomalies (marked as 0). Finally, the binary
classification map P1 =

{
p1

i
}i=H×W

I=1 ∈ RH×W was obtained using the following equation:

P1 =

{
p1

i = 1, m1
i ∈ “1”

p1
i = 0, m1

i /∈ “1”
(1)

Through Equation (1), a binary classification map P1 which possessed certain spatial
attributes can be obtained. However, due to the complexity and diversity of the back-
ground, not all of the background exhibits the same spectral characteristics. Consequently,
in the binary classification map, isolated noise pixels and large background ground objects
that differ significantly from other backgrounds might be mistakenly identified as anomaly
targets. To address this issue, we propose a method involving spatial clustering using
connected component analysis. By labeling the eight connected components on the binary
classification graph with specific spatial attributes, a connected components labeling map
M2 =

{
m2

i
}i=H×W

I=1 ∈ RH×W which represents the spatial relationship between background
and anomaly can be obtained. In addition, by analyzing this spatial relationship through
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clustering techniques, it filters out isolated noise pixels and misclassified large background
ground objects. The large background ground objects are defined as connected components
with more than D pixels, where D is set to 50 in this article, and then it categorizes the
connected components into three groups based on their pixel count as follows: category L1
represents connected components with less than 5 pixels, category L2 represents connected
components with more than 5, but fewer than D pixels, and category L3 represents con-
nected components with more than D pixels. We perform the following actions to obtain
coarse labels P2 =

{
p2

i }
i=H×W
i=1 ∈ RH×W :

P2 =


p2

i = 0, m2
i ∈ “L2”

p2
i = 1, m2

i ∈ “L1” and L1
L < 0.8

p2
i = 0 m2

i ∈ “L1” and L1
L > 0.8

p2
i = 1, m2

i ∈ “L3”

(2)

where L1, L2, and L3 are the number of connected components of the three classes, respec-
tively, and L = L1 + L2 + L3. These three types of connected components are analyzed,
and the connected components with more than 50 pixels are considered to be part of the
background and marked as 1. This process filters out the large background objects that
are misjudged by the DBSCAN algorithm. The pixel values of the connected components
greater than 5 but less than 50 are considered anomalies and marked as 0. If the number
of connected components is less than 5 pixels, it is less than 80% of the total number of
all connected components and is considered as isolated noise (i.e., background), which is
marked as 1. Otherwise, it is considered an anomaly, which is marked as 0. In fact, due
to the small proportion of connected components L1 in the entire HSI dataset, there is a
significant reconstruction error during the reconstruction processing, whether or not it is
labeled as background. In a word, the filter of connected components L1 provides better
detection performance and the filters have little impact.

In order to better supervise the training of the deep network, combined with the
coarse label P2, the original HSI is partitioned into coarse-classified background samples
and coarse-classified anomaly samples, which are represented as follows:

XB = P2 ⊗ X
XA = (1 − P2)⊗ X

(3)

where XA ∪ XB = X, XA ∩ XB = ∅. Although it cannot be guaranteed that the coarse-
classified background samples totally represent the background, it is certain that the
coarse-classified background samples predominantly contain the majority of characteristics
of the background.

2.3. Training for Fully Convolutional Auto-Encoder

With prior knowledge extraction carried out via dual clustering, the FCAE-DCAC
employs the random mask strategy to augment the training samples. A novel fully convo-
lutional auto-encoder is proposed with an adversarial consistency network for obtaining
robust background features, and this method proposes adversarial consistency enhance-
ment constraints and triplet loss to enhance the distinguishability between background
and anomalies. The entire training phase is demonstrated in the following sections in three
parts: (1) Data Augmentation, (2) Network Architecture, and (3) Learning Procedure.

2.3.1. Data Augmentation

The deep learning-based method for hyperspectral anomaly detection has always been
troubled by the issue of insufficient training samples, which results in the phenomenon
of overfitting within the trained deep network. To address this issue, we employed the
mask-learning strategy, a widely adopted tool in the CV community [51], which can also be
found in extensive applications for hyperspectral anomaly detection tasks [52]. The training
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samples can be expanded by randomly masking the HSI with each input batch, which then
generates multiple batches of diverse training samples. The random masking method can
be implemented in two ways: (a) utilizing a binary mask consisting of 0 and 1, where the
pixel values within the masked region are directly set to 0, and (b) employing Gaussian
noise to fill the masked area. However, adopting method (a) results in significant coverage
of the background, which leads to a reduction in background features for the purpose of
learning. Hence, this article adopts the second approach, which employs Gaussian noise
to simulate the statistical characteristics for most of the background, thus prompting the
extraction of more informative features.
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Specifically, the original hyperspectral imagery adapts to the sizes of the image (W, H)
by itself, and then we can randomly select the patch size from 2 to 10. For instance, for an
input HSI of X ∈ RH×W×B, we selected a value between 3 and 7 to confirm whether both W
and H are divisible by this selected value. Both W and H should be divisible. We randomly
chose one of them as the patch size and partitioned the original hyperspectral image into
K distinct patches with respective patch sizes. Then, we randomly selected N patches
from the K patches, where N < K and 0.3 < N/K < 1. The locations of these N patches
are then obtained and mapped onto the corresponding mask map S using binary values
(0 or 1), with 0 representing the masked area and 1 representing the other pixel, where
S =

{
si}i=H×W

i=1 ∈ RH×W . The employment of a cube I ∈ RH×W×B, which is generated
with Gaussian noise, is employed to fill the generated mask, taking the predominant
multivariate Gaussian distribution observed in the background into consideration. The
final deep network for the input training sample XM ∈ RH×W×B can be mathematically
expressed as follows:

XM = X ⊗ S + I ⊗ S (4)
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2.3.2. Network Architecture

The architecture of the FCAE-DCAC, as illustrated in Figure 1, comprises a fully
convolutional encoder, a fully convolutional decoder, and a latent feature adversarial
consistency network.

(1) Fully Convolutional Auto-Encoder (FCAE): Previous deep learning-based hyperspec-
tral anomaly detection methods, such as GAED [45], employ fully connected layers for
pixel-wise self-supervised learning of HSI on the spectral dimension. However, these
methods result in the degradation of the spatial structure within HSI, which leads to a
significant loss of spatial information and underutilization of the spatial character-
istics of the original HSI. Additionally, dealing with input hyperspectral images in
pixel-by-pixel mode prevents the deep network from capturing spectral correlations
between adjacent pixels, which results in isolated features and limited information
acquisition. A straightforward improvement can be observed in Auto-AD [48], in
which a convolutional auto-encoder (CAE) is utilized for the self-supervised learning
of the HSI cube. By incorporating convolution operations, pooling operations, and
sampling operations into AE architecture, the CAE not only extracts spatial features
effectively but also enhances spectral feature correlation.

The distinction between our proposed FCAE and a simple CAE, as illustrated in
Figure 3a, lies in employing a spectral and spatial joint attention mechanism within both the
encoder and decoder. Moreover, we utilize a combination of residual and skip connections
in the proposed deep network architecture to enhance the diversity of learned features.
Specifically, the FCAE incorporates a spectral and spatial joint attention mechanism at the
initial stage of the network to acquire crucial spatial and spectral features. These features
are then fused to obtain key features that have both spatial and spectral features, which
are subsequently fed into a fully convolutional encoder for feature encoding. The fully
convolutional encoder consists of four EResConvBlocks, which transform the input cube
XM ∈ RH×W×B from size H × W to H

16 × W
16 . Each EResConvBlock reduces the size in half.

To preserve sufficient spectral information, we maintain a channel count of 128 and obtain
the latent feature Z ∈ R H

16×
W
16×128 after passing through all the four EResConvBlocks. The

encoding process can be expressed as follows:

F1 = SSAJ
(
Conv1

(
XM))

F2 = ErwsConvBlock((F1))
F3 = ErwsConvBlock((F2))
F4 = ErwsConvBlock((F3))
Z = ErwsConvBlock((F4))

(5)

where F1 ∈ RH×W×128, F2 ∈ R H
2 ×W

2 ×128, F3 ∈ R H
4 ×W

4 ×128, and F4 ∈ R H
8 ×W

8 ×128 denote
different levels of features in the encoder, respectively. SSAJ denotes the spectral–spatial
joint attention mechanism, and Conv1 denotes 1 × 1 convolution with a stride size of 1, and
it can turn the channel from B to 128.

The latent feature Z undergoes the spectral–spatial joint attention process in the first
place to further enhance its spatial and spectral features, which prepares it for the next
decoding step. The fully convolutional decoder consists of four DEResConvBlocks that
fuse the encoder features from different levels through skip connections, which gradually
restores the latent feature Z of size H

16 × W
16 to H × W via stepwise upsampling. In the final
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encoder layer, the channel numbers are restored from 128 to B, and the decoding processing
can be expressed as follows:

F5 = SSAJ(Z)
F6 = DEresConvBlock(Concat(Upsampling(F5), Conv1(F4)))
F7 = DEresConvBlock(Concat(Upsampling(F6), Conv1(F3)))
F8 = DEresConvBlock(Concat(Upsampling(F7), Conv1(F2)))

∼
X = Conv1(DEresConvBlock(Concat(Upsampling(F8), Conv1(F1))))

(6)

where F5 ∈ R H
16×

W
16×128, F6 ∈ R H

8 ×W
8 ×128, F7 ∈ R H

4 ×W
4 ×128, and F8 ∈ R H

2 ×W
2 ×128 denote dif-

ferent levels of features in the decoder, respectively, and Concat is the concatenation for dif-
ferent levels of features between the encoder and decoder. Conv1 denotes 1 × 1 convolution
with a stride size of 1 and it can maintain a channel count of 128 to smooth the feature, but
the last Conv1 can turn the channel from 128 to B.
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The most important property of the FCAE lies in the incorporation of a spectral–spatial
joint attention mechanism at the beginning of both the encoding and decoding stages, which
enhances feature expression and optimizes spatial and spectral utilization to extract better
spatial and spectral features. Additionally, the introduction of skip connections and residual
connections facilitates the cross-layer feature interaction while preserving intricate details
and semantic information to reconstruct a purer background.

Spectral–Spatial Joint Attention: As shown in Figure 3d,e the spectral–spatial joint
attention mechanism learns spatial and spectral important features through global max-
pooling and global average-pooling on both the spatial and spectral dimensions of the input
feature map of the hyperspectral image cube, respectively. Then, the important features
learned by the two pooling methods are decision-fused. Finally, the spatial and spectral
important weight coefficients are obtained via the activation function of the sigmoid. The
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weighting coefficients are weighted to the input hyperspectral image cube features to obtain
the key spatial features and key spectral features. Ultimately, the fusion of these two key
features results in the joint key feature.

EResConvBlock: The EResConvBlock is composed of three convolutional layers: one
3 × 3 convolution with a stride of 2, one 3 × 3 convolution with a stride of 1, and one
1 × 1 convolution with a stride of 1. The number of convolution kernels in each layer is
fixed at 128 and is connected with the residual connection paradigm. This entire process is
illustrated in Figure 3b. Firstly, instead of using a pooling operation, a 3 × 3 convolution
with a stride size of 2 is employed to reduce the input feature map size in half. Then,
features are extracted through 3× 3 convolutions with a stride size of 1. Finally, the residual
connection is utilized to incorporate the features from the other branch (i.e., those extracted
via 1 × 1 convolution with a stride of 2), which enables the fusion interaction between pre-
and post-features and accelerates the deep network fitting speed. Each convolutional layer
is followed by batch normalization and the LeakyReLU activation function.

DEResConvBlock: The entire DEResConvBlock is composed of three 1 × 1 convolutions
with a stride of 1 and one 3 × 3 convolution with a stride of 1. The number of channels
remains fixed at 128, except for the initial 1 × 1 convolution, which reduces the input
feature map from 256 to 128 dimensions. The entire process is illustrated in Figure 3c.
Firstly, the input 256-dimension features to 128-dimension features is reduced through a
1 × 1 convolution with a stride of 1. Subsequently, the feature is decoded using a 3 × 3 con-
volution with a stride of 1 and smoothed via a 1 × 1 convolution with a stride of 1. Finally,
the residual connection is utilized to incorporate the features from the other branch (i.e.,
those extracted via 1 × 1 convolution with a stride of 2) to enrich and enhance the decoded
feature representation. Each convolutional layer is followed by batch normalization and
the LeakyReLU activation function.

Skip Connection: By establishing skip connections, the features corresponding to
different layers in both the encoding and decoding processes are interconnected, which
facilitates cross-layer feature interaction and preserves intricate details as well as semantic
information. This approach enhances the capacity of the proposed deep network for
learning robust features and improves its fitting ability.

(2) Latent Feature Adversarial Consistency Network (LFACN): The latent feature ad-
versarial consistency network, as illustrated in Figure 4a, comprises an encoder and
a discriminator for the latent features. The input samples XM ∈ RH×W×B and the
prior background samples XB ∈ RH×W×B are mapped to latent features Z1 and Z2,
respectively, through an encoder E with shared weights. In order to ensure that the
latent features of the background exhibit similar distributions, we employ a latent
feature discriminator DZ to oppose the encoder, which makes the latent feature Z1 of
the input resemble the hyperspectral image as closely as possible to the latent feature
Z2 in adversarial situations. This approach directly results in the true distribution of
the background. All the inputs can then be effectively mapped to similar background
latent features. Thereby, this approach enables accurate decoding of the corresponding
pure background. Moreover, the latent feature Z3, which is obtained by mapping the

reconstructed background
∼
X ∈ RH×W×B through the encoder E, could also exhibit

more similarity to the latent feature Z2 of the prior background samples XB. However,
due to the deep network’s inability to guarantee this point, a latent feature consistency
loss L1 is employed in order to strengthen the constraint.
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Latent Discriminator, DZ: The latent discriminator, DZ, as illustrated in Figure 4b,
comprises three 1 × 1 convolutions with a stride of 1, followed by a fully connected
layer and a sigmoid layer. The sequences of these three 1 × 1 convolutions progressively
reduce the dimensions of the input latent feature from 128 to 64, then to 32, and finally
to 1 dimension. Subsequently, the latent discriminator is transformed into a single value
through the fully connected layer and ultimately mapped to a confidence score for the
latent feature using sigmoid activation.

2.3.3. Learning Procedure

The proposed deep network architecture primarily consists of an encoder, E, a decoder,
DE, and a latent feature discriminator, DZ. Therefore, the loss function encompasses four
components: the adversarial loss, LDZ, between encoder E and the latent feature discrimi-
nator, DZ; the triplet loss, LT ; the adversarial consistency loss, LZ; and the reconstruction
loss LR. Throughout the learning processing of the proposed deep network model, gradient
backpropagation is utilized to iteratively optimize its parameters based on these four losses.

The original purpose of the reconstruction loss in AE is to minimize the discrepancy
between the reconstructed image and the original HSI. However, in the proposed deep
network, the reconstruction loss aims to prevent priorly extracted anomaly samples from
including too few background samples, which results in the extreme situation of these
parts of the background not being reconstructed. The following mean squared error (MSE)
is employed to calculate the reconstruction loss:

LR =

∥∥∥∥X −
∼
X
∥∥∥∥

2
(7)

where ∥∗∥2 represents the MSE loss. The objective of triplet loss is to enhance the discrimi-
nation between background and anomaly targets by minimizing the distance between the
reconstructed image and the background samples while maximizing the distance between
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the reconstructed image and the anomaly samples. Consequently, triplet loss employs two
mean squared errors, as can be seen in the following equation:

LT =

∥∥∥∥XB −
∼
X ⊗ P2

∥∥∥∥
2
−

∥∥∥∥XA −
∼
X ⊗ (1 − P2)

∥∥∥∥
2

(8)

The latent feature adversarial consistency network effectively matches the latent
feature Z1 extracted by the encoder E from the input with the latent feature Z2 obtained
from the prior background samples while reinforcing the constraint on the latent feature
Z3 of the reconstructed image through adversarial consistency loss. Consequently, we can
express both the adversarial loss and adversarial consistency loss of the encoder E and the
latent feature discriminator DZ as follows:

LDZ = E(log(DZ(Z2))) +E(log(1 − DZ(Z1))) (9)

LZ = ∥Z3 − Z2∥2 (10)

where Z1 = E
(
XM)

, Z2 = E
(
XB), and Z3 = E

(∼
X
)

are the latent features extracted by

the encoder E from the input and the prior anomaly samples and the reconstructed HSI,
respectively. By minimizing LDZ and LZ, the deep network can learn a more realistic
background distribution.

Finally, the total loss of the whole network can be expressed as follows:

Lall = ∂LT + βLZ + µLR (11)

where ∂, β, and µ are set to 0.9, 0.1, and 0.1, respectively, according to the needs of the
task. The network was optimized by minimizing the loss function, with a learning rate of
lr = 0.001. After training, the parameters of the deep network were fixed and utilized to
reconstruct the original HSI.

2.4. Testing with the Original HSI

After optimizing and fixing the parameters of the deep network θ̂, we eliminated the
discriminator DZ and solely retained the encoder E and decoder DE for reconstructing
the HSI. We used the original HSI X for detection instead of using a training mask image
XM, which comes closer to real-world scenarios. In practical applications, obtaining an
image to undergo detection is effortless as it can be directly input into the deep network.

The trained model then reconstructs the background image
∼
X with the end-to-end mode,

as represented by the following equation:

∼
X = FCAE_DCAC

(
X, θ̂

)
(12)

After undergoing the guided learning of dual clustering and triple loss, and the
learning of the real background by the adversarial consistency network, our proposed
FCAE-DCAC deep network emerged as a robust background reconstruction network. It
effectively maps anomaly pixels from the original HSI to potential features according to the
proper background. Then, it reconstructs pixels that are similar to the surrounding back-
ground pixels. The anomaly exhibits a significantly higher reconstruction error compared
with the background. Finally, based on the reconstruction error of the proposed model, we
utilized Equation (13) to obtain the results of hyperspectral anomaly detection:

Gi,j =
∥∥∥xi,j −

∼
x i,j

∥∥∥
2

(13)

where xi,j ∈ RB×1 and
∼
x i,j ∈ RB×1 represent the pixels of the original HSI X ∈ RH×W×C

and reconstructed HSI
∼
X ∈ RH×W×C, respectively. At the corresponding position (i, j),
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Gi,j denotes the anomaly degree score of the pixels at this position (i, j), which ultimately

forms the final detection map G =
{

Gi,j
}i=H,j=W

i=1,j=1 ∈ RH×W . Algorithm 1 provides a detailed
description of the main steps involved in our proposed method.

Algorithm 1 Algorithm Flow Diagram of the FCAE-DCAC

Input: The original HSI X ∈ RH×W×B

Parameters: Epoch, learning rate lr, (eps, mints), D, ∂, β and µ

Output: Final detection result: G =
{

Gi,j

}i=H,j=W

i=1,j=1
∈ RH×W

Stage 1: Extracting Prior Knowledge with Dual Clustering
Obtain the prior anomaly samples XA ∈ RH×W×B, the prior background sample
XB ∈ RH×W×B, and the coarse label P2 by (Equations (1)–(3))

Stage 2: Training for Fully Convolutional Auto-Encoder
Acquire training samples XM ∈ RH×W×B by (Equation (4))
Initialize the network with random weights
for each epoch perform the following:

FCAE update:E, DE by Lall = ∂LT + βLZ + µLR
Latent Feature Adversarial Consistency Network update:E, DZ by LDZ
back-propagate Lall and LDZ
to change E, DE, DZ

end
Stage 3: Testing with the Original HSI

Obtain the reconstructed HSI using the Original HSI as input by (Equation (12))
Calculate the degree of anomaly Gi,j for each pixel in X by (Equation (13))

3. Experiments and Analysis

For experimental validation and analysis, plenty of experiments were conducted on
seven experimental hyperspectral datasets captured using various hyperspectral remote
sensors to assess and validate the effectiveness and superiority of the proposed FCAE-
DCAC method. Qualitative and quantitative comparisons were conducted with nine
state-of-the-art hyperspectral anomaly detection methods. All experiments were executed
on a computer equipped with an Intel Core i7-12700H CPU, 16 GB RAM, and GeForce
RTX 3090. Eight compared methods were carried out with MATLAB 2018a. The proposed
method and Auto-AD were implemented with Python 3.8.18, Pytorch 1.7.1, and CUDA
11.0. For fairness, we ensured that all compared methods were implemented based on
open-source codes.

3.1. Data Description

We employed three distinct hyperspectral sensors to capture seven hyperspectral
datasets in diverse scenarios for the anomaly detection task. These datasets contain both
sparsely and densely distributed anomaly targets constituted with individual pixels or
specific spatial structures. Moreover, these anomaly targets have different spatial scales.

(1) San Diego Dataset: This dataset was acquired by the Airborne Visible/Infrared
Imaging Spectrometer (AVIRIS) hyperspectral sensor over the San Diego airport
area, CA, USA. The spatial resolution is 3.5 m. Its original size was 400 × 400 as
depicted in Figure 5a. The image consists of a total of 224 spectral bands within the
range of 370–2510 nm with 189 remaining after excluding bands that were affected
by water absorption and low signal-to-noise ratio. Within this dataset, three regions
named San Diego-1, San Diego-2, and San Diego-3 were selected. Figure 5b–d display
the pseudocolor images and the ground-truth maps of these datasets. The image
size of San Diego-1 is 100 × 100 and it contains three aircraft with different sizes
that are considered anomaly targets. These anomaly targets comprise a total of
58 pixels, which account for 0.58% of the entire image. The image size of San Diego-2
is 60 × 60. Tarp, building, and shadow are the background land covers. Within this
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image, there are 22 densely distributed targets identified as anomalies. These anomaly
targets comprise a total of 214 pixels, which account for 5.94% of the entire image.
Similarly, the image size of San Diego-3 is 40 × 90 with a tarp, building, and shadow
as background. In this image, there are 21 densely distributed targets identified as
anomaly targets. These anomaly targets comprise a total of 423 pixels, which account
for 11.75% of the entire image. It should be noted that the spectral curves of the
building in the upper right corner significantly differ from other background features
in the San Diego-2 image. Furthermore, the proportion occupied by this building
is not as substantial as the other two types of background. Consequently, there are
some challenges and difficulties in modeling and analyzing the background features
in these datasets.
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(2) Hyperspectral Digital Imagery Collection Experiment (HYDICE) Dataset: This dataset
was acquired by the HYDICE sensor over a suburban residential area in Michigan,
USA. The spatial resolution is 3 m, and the image size is 80 × 100. There are 210 spec-
tral bands within the range of 400–2500 nm, with 175 remaining after eliminating noise
and water vapor absorption bands. This hyperspectral dataset includes background
land covers such as parking lots, soil, water bodies, and roads. Figure 5e displays
the pseudocolor image and the ground-truth map of this dataset. Ten vehicles are
considered anomaly targets and they comprise 17 pixels, which account for 0.21% of
the entire image.

(3) Pavia Dataset: This dataset was acquired by the Reflective Optics System Imaging
Spectrometer (ROSIS) in the center of Pavia, northern Italy. The spatial resolution
is 1.3 m and the image size is 150 × 150. This dataset consists of 102 spectral bands
within the range of 430–860 nm. Figure 5f displays the pseudocolor image and the
ground-truth map of this dataset. The background land covers captured in this dataset
include bridges, water bodies, and bare soil, while the anomaly targets are vehicles
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on the bridge. These anomaly targets comprise a total of 63 pixels, which account for
0.28% of the entire image.

(4) Los Angeles-1 (LA-1) Dataset: This dataset was acquired by the AVIRIS sensor over
the Los Angeles area. The spatial resolution is 7.5 m and the image size is 100 × 100.
It encompasses a total of 205 spectral bands within the range of 430–860 nm. Figure 5g
displays the pseudocolor image and the ground-truth map of this dataset. Notably,
there are a few houses that are considered anomaly targets in these images, which
comprise a total of 232 pixels, accounting for 2.32% of the entire image.

(5) Gulfport Dataset: This dataset was acquired by the AVIRIS sensor over Gulfport,
Southern, MS, USA, in 2010. The spatial resolution is 3.4 m and the image size is
100 × 100. After eliminating bands with a low signal-to-noise ratio (SNR), a total of
191 bands remained. The spectral coverage spans from 400 to 2500 nm. Figure 5h
displays the pseudocolor image and the ground-truth map of this dataset. Three air-
planes of various sizes are identified as anomaly targets comprising a total of 60 pixels
and accounting for 0.60% of the entire image.

3.2. Evaluation Metrics

We quantitatively investigated the detection performance of the proposed method and
the comparative approaches using three widely adopted evaluation metrics for anomaly
detection in hyperspectral remote sensing imagery: background–anomaly separation anal-
ysis (boxplot) [53], receiver operating characteristic (ROC) [54], and area under the ROC
curve (AUC) [55]. If the ROC curve of the anomaly detector exhibits a higher true positive
(TPR, Pd) at a lower false alarm rate (FAR, Pf ), which indicates that the ROC curve is
closer to the top left corner, it suggests superior detection performance of the anomaly
detector. However, if the ROC curves of two detectors demonstrate interleaved TPRs under
different FARs, it becomes rather difficult to judge their performance solely based on visual
results from the ROC curves. In such a case, an alternative quantitative evaluation criterion
named AUC for anomaly detectors should be employed. If the AUC score is closer to 1,
the detection performance is better. The boxplot can be utilized to assess the degree of
separation between the background for different anomaly detectors. An anomaly detector
with a higher degree of separation between background and anomalies exhibits superior
detection performance.

3.3. Detection Performance

Subsequently, we conducted a comprehensive evaluation of the detection performance
of various detectors based on four key aspects: heat map analysis, ROC curve assessment,
AUC calculation, and separability boxplot examination. The heat maps in Figures 6–12
illustrate the hyperspectral anomaly detection results of ten different detectors on seven real
HSI datasets. The pixels with higher anomaly degree scores are closer to yellow and, on the
contrary, the background pixels are closer to blue. This visualization allows us to intuitively
assess the anomaly highlighting and background suppression capabilities of the detectors.
The ROC curves for all the methods are presented in Figure 13. The curve is closer to
the top right corner, the detectors indicate a lower false alarm rate, and the probability of
misjudgment is smaller. However, the AUC scores of (Pd,Pf ) presented in Table 1 serve
as a further evaluation of the detection performance; a higher value of AUC of (Pd,Pf )
indicates that the anomaly detection capability of the detector is superior. The separability
boxplot in Figure 14 illustrates the separability of anomaly targets and background in the
detection results, which represents the statistical distribution distance between anomalies
and background. A larger gap between the background and anomaly boxes indicates
a stronger ability to highlight anomalies and suppress background, resulting in greater
separability between anomalies and background.
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Table 1. The AUC values of the 10 considered detectors on different datasets.

Dataset
The AUC

(
Pd,Pf

)
of Different Methods

GRX LRX FRFE CRD AED LRASR GAED RGAE Auto-AD Ours

Sandiego-1 0.8736 0.8570 0.9787 0.9768 0.9900 2 0.9824 0.9861 0.9854 0.9895 0.9994 1

Sandiego-2 0.7499 0.7211 0.7821 0.9290 0.9399 0.8065 0.8905 0.8819 0.9466 2 0.9773 1

Sandiego-3 0.7125 0.7540 0.7694 0.9485
2 0.9659 0.7214 0.7811 0.8341 0.9163 0.9815 1

HYDICE 0.9857 0.9911 0.9933 0.9976 0.9951 2 0.9744 0.9843 0.9646 0.9951 2 0.9980 1

Pavia 0.9538 0.9525 0.9457 0.9510 0.9793 0.9380 0.9398 0.9688 0.9914 2 0.9979 1

LA-1 0.9692 0.9492 0.9655 0.9229 0.9780 2 0.9440 0.9424 0.9569 0.9406 0.9808 1

Gulfport 0.9526 0.9532 0.9722 0.9342 0.9953 0.9120 0.9705 0.9842 0.9968 2 0.9975 1

Average 0.8853 0.8826 0.9153 0.9514 0.9777 2 0.8970 0.9278 0.9394 0.9680 0.9903 1

1 The AUC values with bold font and red color in this table represent the optimal performance for each
dataset. 2 The AUC values with bold font and blue color in this table represent the suboptimal performance for
each dataset.
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Figure 8. Heat maps obtained by using different algorithms on the San Diego-3 image: (a) ground 
truth; (b) GRX; (c) LRX; (d) FRFE; (e) CRD; (f) AED; (g) LRASR; (h) GAED; (i) RGAE; (j) Auto-AD; 
and (k) ours. 
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truth; (b) GRX; (c) LRX; (d) FRFE; (e) CRD; (f) AED; (g) LRASR; (h) GAED; (i) RGAE; (j) Auto-AD;
and (k) ours.
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Figure 9. Heat maps obtained by using different algorithms on the HYDICE dataset image: (a) 
ground truth; (b) GRX; (c) LRX; (d) FRFE; (e) CRD; (f) AED; (g) LRASR; (h) GAED; (i) RGAE; (j) 
Auto-AD; and (k) ours. 
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Figure 9. Heat maps obtained by using different algorithms on the HYDICE dataset image: (a) ground
truth; (b) GRX; (c) LRX; (d) FRFE; (e) CRD; (f) AED; (g) LRASR; (h) GAED; (i) RGAE; (j) Auto-AD;
and (k) ours.
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Figure 10. Heat maps obtained by using different algorithms on the Pavia dataset image: (a) ground 
truth; (b) GRX; (c) LRX; (d) FRFE; (e) CRD; (f) AED; (g) LRASR; (h) GAED; (i) RGAE; (j) Auto-AD; 
and (k) ours. 

Figure 10. Heat maps obtained by using different algorithms on the Pavia dataset image: (a) ground
truth; (b) GRX; (c) LRX; (d) FRFE; (e) CRD; (f) AED; (g) LRASR; (h) GAED; (i) RGAE; (j) Auto-AD;
and (k) ours.
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Figure 11. Heat maps obtained by using different algorithms on the LA-1 dataset image: (a) ground 
truth; (b) GRX; (c) LRX; (d) FRFE; (e) CRD; (f) AED; (g) LRASR; (h) GAED; (i) RGAE; (j) Auto-AD; 
and (k) ours. 

 

 

(a) 

  
(b) (c) 

Figure 11. Heat maps obtained by using different algorithms on the LA-1 dataset image: (a) ground
truth; (b) GRX; (c) LRX; (d) FRFE; (e) CRD; (f) AED; (g) LRASR; (h) GAED; (i) RGAE; (j) Auto-AD;
and (k) ours.
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Figure 12. Heat maps obtained by using different algorithms on the Gulfport dataset image: (a) 
ground truth; (b) GRX; (c) LRX; (d) FRFE; (e) CRD; (f) AED; (g) LRASR; (h) GAED; (i) RGAE; (j) 
Auto-AD; and (k) ours. 

As depicted in Figures 6 and 12, the GRX, LRX, and FRFR hardly detected anomalous 
aircraft for the San Diego-1 and Gulfport datasets, but on the contrary, the scattered 

Figure 12. Heat maps obtained by using different algorithms on the Gulfport dataset image:
(a) ground truth; (b) GRX; (c) LRX; (d) FRFE; (e) CRD; (f) AED; (g) LRASR; (h) GAED; (i) RGAE;
(j) Auto-AD; and (k) ours.
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As depicted in Figures 6 and 12, the GRX, LRX, and FRFR hardly detected anoma-
lous aircraft for the San Diego-1 and Gulfport datasets, but on the contrary, the scattered
background displays a notable degree score of anomalies. Although the CRD, LRASR,
GAED, and RGAE can detect most anomalies, the salience of these anomalies is not read-
ily apparent. Additionally, certain types of background exhibit a higher degree score of
anomalies than the degree of anomalous aircraft. AED and Auto-AD effectively high-
lighted anomalies, yet they still retain a significant amount of background information,
such as background contour, which results in a persistently high false alarm rate. However,
the detection results of our proposed method more effectively highlight the anomalies,
while it effectively suppresses background interference. It is evident that the proposed
FCAE-DCAC model achieves an exceptionally low false alarm rate and has strong back-
ground suppression capabilities on the San Diego-1 dataset. Especially for the datasets
San Diego-2 and San Diego-3, which contain dense anomaly targets, the FCAE-DCAC
demonstrated superior detection performance. It can accurately identify dense anomaly
targets while ensuring a minimal miss rate and robust background suppression ability.
Due to its effective utilization of spatial information for detection, the FCAE-DCAC excels
in detecting anomalous structures and contours. The results depicted in Figures 7 and 8
demonstrate that alternative approaches either fail to effectively suppress the prominent
building background located in the upper right corner of San Diego-2, which is prone to
misdetection, or exhibit a mixture of excessive noise and background, resulting in frequent
missed detection occurrences. Notably, representation-based methods such as the CRD and
the LRASR are particularly vulnerable to noise interference due to their linear or nonlinear
representations. While the Auto-AD and the AED successfully mitigate the background
interference, they suffer from a high miss rate and lack preservation of spatial structure
details pertaining to anomaly targets and only provide approximate identification. The
Pavia dataset also includes a bare soil background that is highly susceptible to misdetection.
As depicted in Figure 10, the GRX, LRX, and FRFR almost fail to detect anomaly vehicles,
but retain the soil background in the lower-left region of the Pavia image. The CRD, LRASR,
GAED, and AED can effectively identify the anomalies; however, they cannot completely
suppress the soil background in the lower-left region of the Pavia image, and the RGAE
and Auto-AD exhibit strong background suppression abilities but suffer from significant
missed detection issues. The proposed FCAE-DCAC method effectively suppresses the
soil background at the bottom left of the Pavia image and yields a detection result that
closely resembles the ground truth with very few cases of missed detection and false
detection distinguishing anomalies. The proposed method obtains superior performance
in extracting dense small anomaly targets for the LA-1 dataset, and extraction of dense
small anomaly targets is most complete, as illustrated in Figure 11. In contrast, the GRX,
LRX, FRFE, CRD, and AED failed to detect all anomaly targets. Moreover, LRASR, GAED,
RGAE, and Auto-AD yielded detection results with excessive background information and
noise. Particularly for LRASR, the suppression of background is almost negligible. The
experiment conducted on the HDICE dataset further validates the efficacy of our proposed
method in accurately reconstructing pure background. From Figure 9, it is evident that our
method yields the purest detection results. However, given that anomalies in HYDICE are
limited to a few pixels and exhibit simple regular shape structures, they obtain relatively
satisfactory performance across all methods.

Additionally, we also evaluated the performance of different algorithms qualitatively
and quantitatively from the ROC curves and AUC scores of (Pd,Pf ) for the detection results
of different methods on the experimental datasets. Figure 13 shows the ROC results of these
seven experimental datasets. In most cases, the ROC curve of the FCAE-DCAC is at the
top and is closest to the top left corner, which exhibits the best detection performance. The
results demonstrate that our method achieves high detection accuracy while maintaining a
low false alarm rate. As expected, the FCAE-DCAC consistently outperforms the other nine
methods, even when it deals with datasets containing dense anomalies like San Diego-2,
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San Diego-3, and LA-1. It is evident that the proposed FCAE-DCAC method exhibits
remarkable competitiveness.

To validate the capability of our proposed method for distinguishing between back-
ground and anomalies, we conducted an analysis of the separability boxplot. As depicted
in Figure 14, the green background box of the FCAE-DCAC exhibits a narrow range that
indicates its effective suppression of background and reconstruction of a relatively pure
background. Additionally, there is a significant distance between the red anomaly box and
the green background box of the FCAE-DCAC method, with almost no overlapping region.
The separability of the AED is only better than the proposed method on the HYDICE,
LA-1, and Gulfport datasets. This could be attributed to the presence of extremely small
anomalies (i.e., anomalies less than 5 pixels) in these datasets, which are filtered out as
noise in the dual clustering process. However, our method exhibits a higher anomaly box,
indicating that it can detect more anomalies compared with the other methods. The other
methods either had significant overlap between background and anomaly boxes or detect
fewer anomalies. For the remaining four datasets, the proposed FCAE-DCAC method
effectively separated the background from anomalies by increasing their separability.

The evaluation results demonstrate that the proposed FCAE-DCAC method exhibits
superior detection performance in that it effectively detects anomalies with various sizes
and diverse structural information while preserving their fundamental shape structure. It
also achieves a lower false alarm rate, lower miss rate, and higher detection rate, which
ensures a balance between background suppression and anomaly detection. These experi-
mental performances indicate that the detection results of the proposed method illustrated
in Table 1 are satisfactory, particularly in dense anomaly target identification. The average
AUC scores of (Pd,Pf ) of the FCAE-DCAC on the seven experimental datasets are the
highest, reaching 0.9903, which is 0.0127 higher than the second-place AED method. In
general, the FCAE-DCAC is extremely competitive.
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3.4. Parametric Analysis

In this section, we examine the impact of four parameters for the proposed method,
namely the clustering radius Eps of dual clustering, the minimum number of neighborhood
points in the domain MinPts, the filtering threshold D, and the weight parameters (α, β) of
the triplet loss function and the adversarial consistent row loss function.

In order to assess the impact of Eps on the performance of the proposed method, we
set MinPts at 1 and kept D fixed at 50. The weight of the loss function remains constant (α =
0.9, β = 0.1), while the reconstruction penalty coefficient µ is set as 0.1. Within the range of
0.01 to 0.25, Figure 15a illustrates the optimal values for Eps across different datasets, and
the optimal Eps for San Diego-1, San Diego-2, and San Diego-3 datasets are 0.20, 0.11, and
0.12, respectively. For the HYDICE dataset, the variation in Eps has minimal impact on the
AUC score of (Pd, Pf ), and the value of Eps = 0.12 is selected due to its relatively superior
detection performance in subsequent experiments. The AUC score of (Pd, Pf ) on the Pavia
dataset reaches its optimum when Eps is set as 0.14. For the LA-1 and Gulfport datasets,
the Eps values of 0.09 and 0.14, respectively, yield the highest AUC scores for (Pd, Pf ).

Since the connected domain clustering takes an eight-neighborhood approach, only
the influence of changing MinPts from 1 to 8 for the detection performance of the proposed
methods was analyzed, as depicted in Figure 15b. It is important to note that Figure 15a
determines the optimal Eps value for assisting MinPts analysis while it keeps other param-
eters consistent with analysis experiments on Eps. The experimental results reveal that,
except for the LA-1 dataset, all the other datasets achieve their best AUC scores of (Pd, Pf )
when MinPts = 1. However, for the LA-1 dataset, varying MinPts from 1 to 4 has minimal
effect on the AUC score of (Pd, Pf ), with a maximum fluctuation of 0.001921. Therefore, to
simplify and minimize the human intervention in subsequent experiments, MinPts is set as
1 for all datasets.

Initially, the value of the filtering threshold D was determined through expert visual
inspection to identify the potential large background sizes and filter out misjudged large
background targets from the initial clustering results. In this experiment, the sensitivity of
different datasets to parameter D was tested in the range of 30 to 140, and the results are
presented in Figure 15c. After conducting the experiments, it was observed that for the San
Diego-1, San Diego-3, and Gulfport datasets, there is a significant improvement in the AUC
scores of (Pd, Pf ) when the parameter D is changed from 40 to 50, which indicates that,
when D is less than 50, it filters a lot of anomaly targets into background targets. However,
the detection performances of the HYDICE and LA-1 datasets are not sensitive to the change
in D, and the detection performances are consistently stable, which indicates that there is
no misjudgment of large background land covers in their clustering results. Conversely, the
San Diego-2 and Pavia datasets exhibit a notable decline in detection performance when
D exceeds a certain threshold, which indicates an inability to filter out misclassified large
background land covers under high values of D. Ultimately, after elaborative analysis,
a value of 50 was chosen for D to ensure stable and satisfactory performance across all
the datasets.
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In order to verify the influence of different loss function weights on the deep network
performance, the other parameters are fixed as the best values. The performances of the
proposed method on different datasets were analyzed in the range of weight allocation from
(0.1, 0.9) to (0.9, 0.1) as shown in Figure 16. Changing parameters (α, β) has almost no effect
on the AUC scores of (Pd, Pf ) on the San Diego-1 and Gulfport datasets. This is because dual
clustering works particularly well on these two datasets so that adversarial consistency
loss can guide the proposed method to fully learn the features of the real background.
However, with the increase in the adversarial consistency constraint, the performance of
other datasets is reduced. This is because the prior background samples produced by
double clustering are not all background but only contain most of the characteristics of the
background, and the use of strong constraints only leads to a significant decline in detection
performance. Finally, through the experiment, we selected the weight allocation of (0.9,
0.1), under the precondition of fully separating the distance between the background and
anomaly. The weak constraint of the background adversarial consistency was imposed to
direct the proposed method to pay more attention to learning background features.

Finally, after parameter analysis, we selected Eps values of 0.20, 0.11, 0.12, 0.12, 0.14,
0.09, and 0.14 for the San Diego-1, San Diego-2, San Diego-3, HYDICE, Pavia, LA-1, and
Gulfport datasets, respectively. For all the datasets, we set D as 50 and the (α, β) as (0.9, 0.1),
and the weight of the reconstruction penalty term (µ) was fixed as 0.1.
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3.5. Ablation Study

The effectiveness of our proposed novel fully convolutional auto-encoder (FCAE), the
latent feature adversarial consistent network (LFACN), dual clustering (DC), triple loss LT ,
and the other components are primarily analyzed in this section. Ablation experiments
were conducted to specifically investigate four cases: the first case involves using an FCAE
without SSJA; the second case involves using a fully convolutional network with SSJA;
the third case includes an additional triplet loss, LT ; and the fourth case incorporates
an additional LFACN. Since the results of the DC mainly impact the triplet loss LT and
the LFACN, their effectiveness is proved, which indirectly validates the efficacy of dual
clustering. Meanwhile, the effectiveness of triplet loss were proved in the ablation study.
The experimental results are presented in Table 2.

Table 2. The AUC values of the ablation study on different datasets.

Component
The AUC

(
Pd,Pf

)
of Different Cases

Sandiego-1 Sandiego-2 Sandiego-3 HYDICE Pavia LA-1 Gulfport

FCAE without SSJA 0.9732 0.8785 0.8567 0.9887 0.9600 0.9168 0.9679
FCAE 0.9786 0.8864 0.8630 0.9920 0.9686 0.9229 0.9763

FCAE + LT 0.9975 2 0.9221 2 0.9336 2 0.9961 2 0.9881 2 0.9669 2 0.9822 2

FCAE + LT +
LFACN 0.9996 1 0.9763 1 0.9722 1 0.9979 1 0.9932 1 0.9791 1 0.9957 1

1 The AUC values with bold font and red color in this table represent the optimal performance for each
dataset. 2 The AUC values with bold font and blue color in this table represent the suboptimal performance for
each dataset.

It is evident that with an increase in the number of components, our detection per-
formance exhibits a steady improvement. With the exception of a less pronounced en-
hancement on the HYDICE dataset, a significant improvement is observed on the other
datasets, particularly San Diego-2, San Diego-3, and LA-1. The AUC values are increased
by 0.00788, 0.0063, and 0.0061, respectively, from the first case to the second case, which
proves that SSJA effectively improves spatial information utilization and enables the deep
network to achieve better detection results in the same learning time. It further increased
by 0.03568, 0.0706, and 0.04405, respectively, from the second case to the third case. Finally,
it increased by 0.0542, 0.03853, and 0.01211, respectively, from the third case to the fourth
case. The overall improvement from the first case to the fourth case on the three datasets is
approximately 11–12%.
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The ablation experiments demonstrate that the integration of LT and the LFACN
significantly enhances the detection performance of the deep network. It substantiates
the effectiveness of triplet loss in effectively discerning the anomaly–background distance
and proves that the LFACN can comprehensively learn the real background distribution.
Moreover, it further enhances the purity of the reconstructed background. All the other
datasets also experienced various degrees of improvement, which clearly demonstrates
that incorporating each component in the reconstruction process contributes positively
toward enhancing HAD effectiveness.

3.6. Comparison of Inference Times

The inference time of different detectors is shown in Table 3. Because we introduced
the prior knowledge extraction method of dual clustering, coupled with the training of
deep learning, the time of the whole process may take about 5 min. In Table 3, we only
compare the inference time of HAD after training in seconds. It can be seen from Table 3
that the FCAE-DCAC method does not provide the fastest inference time, but it is much
faster than the other methods except for the Auto-AD method. It can be seen that, as
long as the deep network is trained, the practicability is very strong, and the background
reconstruction ability of the corresponding dataset is also very strong. The deep network
becomes more complex compared with the Auto-AD method, and the prior knowledge
extraction is also time-consuming; therefore, we improved the detection accuracy at the
expense of the preparation time. In the future, the lightweight HAD algorithm will be the
focus of our research.

Table 3. The inference time of different detectors.

Dataset
Inference Time of Different Detectors

GRX LRX FRFE CRD AED LRASR GAED RGAE Auto-AD Ours

Sandiego-1 0.2146 9.1735 9.8865 3.9145 0.2107 46.3339 0.0305 2 0.0335 0.0210 1 0.0390
Sandiego-2 0.3168 25.6535 14.9289 5.0192 0.2456 57.3001 0.0394 0.0570 0.0275 2 0.0185 1

Sandiego-3 0.0998 18.2074 5.4494 2.1902 0.1884 19.2353 0.0150 1 0.0157 2 0.0160 0.0210
HYDICE 0.2146 9.1735 9.8865 3.9145 0.2107 46.3339 0.0305 0.0335 0.0210 1 0.0235 2

Pavia 0.9823 16.8106 33.5833 5.3146 0.3625 61.1938 0.1072 0.0476 0.0305 1 0.0355 2

LA-1 0.3173 14.2751 21.3859 5.3762 0.2242 72.0277 0.0345 0.0459 0.0240 1 0.0330 2

Gulfport 0.5988 13.7447 13.6096 5.0287 0.2652 63.4349 0.0620 0.0373 0.0220 1 0.0275 2

Average 0.3771 14.6755 14.9511 4.1165 0.2563 48.4835 0.0436 0.0366 0.0229 1 0.0283 2

1 The AUC values with bold font and red color in this table represent the optimal performance for each
dataset. 2 The AUC values with bold font and blue color in this table represent the suboptimal performance for
each dataset.

4. Conclusions

In this article, we proposed a novel fully convolutional auto-encoder for hyperspectral
anomaly detection based on dual clustering and the latent feature adversarial consis-
tency network (FCAE-DCAC). Specifically, we proposed a spatial–spectral joint attention
mechanism to enhance the utilization of spatial information in our design for the fully
convolutional auto-encoder. We incorporated a dual clustering prior extraction module
that accurately extracts prior knowledge to guide the deep network learning process. We
also proposed a triple loss to increase the separation between background and anomaly.
Furthermore, we equipped our model with a latent adversarial consistency network to
learn the true distribution of background samples and enhance the consistency constraint
for improved learning guidance, which enabled our deep network to reconstruct pure
backgrounds effectively. The incomplete reconstruction of anomalies in the HSI ultimately
resulted in a significant increase in reconstruction error. The experiments conducted on
seven datasets demonstrate that our FCAE-DCAC method exhibits superior and com-
prehensive detection performance across various scenarios. The proposed FCAE-DCAC
method particularly excels in scenes with dense anomaly targets and prominent back-
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ground land covers, which are prone to misjudgment. The detection performances prove
that the proposed FCAE-DCAC method outperforms the compared state-of-the-art hyper-
spectral anomaly detection methods. The experiments for effectiveness further validate the
reliability and feasibility of the proposed FCAE-DCAC method.
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Nomenclature

X ∈ RH×W×B The original HSI.
∼
X ∈ RH×W×B The reconstructed HSI.

XA ∈ RH×W×B The coarse classified anomaly sample (i.e., the prior
anomaly samples).

XB ∈ RH×W×B The coarse classified background sample (i.e., the prior
background sample).

XM ∈ RH×W×B The input training samples.
⊗ The multiplication of corresponding elements.

P1 =
{

p1
i
}i=H×W

I=1 ∈ RH×W The binary classification map.

P2 =
{

p2
i }

i=H×W
i=1 ∈ RH×W The coarse labels.

M2 =
{

m2
i
}i=H×W

I=1 ∈ RH×W The connected components labeling map.

M1 =
{

m1
i
}i=H×W

I=1 ∈ RH×W The category label graph.

S =
{

si}i=H×W
i=1 ∈ RH×W The mask map.

S =
{

si}i=H×W
i=1 ∈ RH×W The inverse mask map of S.

G =
{

Gi,j

}i=H,j=W

i=1,j=1
∈ RH×W The final detection map.
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