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Abstract: Due to the high correlation between Effective Angular Momentum (EAM) and Length
of Day (LOD) data, and the wide application of LOD prediction, this study proposes to combine
EAM data with Global Navigation Satellite System (GNSS) LOD data to obtain a more accurate
LOD series and attempt to provide a reasonable formal error for the EAM dataset. Firstly, tidal
corrections are applied to the LOD data. A first-order difference method is proposed to identify
outliers in GNSS LODR (tidal corrected LOD) data, and the EAM data are converted into LODR
data using the Liouville equation. Then, the residual term and the fitted term are obtained by least
squares fitting. Finally, the fitted residual terms of GNSS LODR and EAM LODR are combined by
using the Kalman combination method. In this study, EAM data from the German Research Centre
for Geosciences (GFZ) (2019–2022), as well as LOD data from Wuhan University (WHU) and Jet
Propulsion Laboratory (JPL), are used for the Kalman combination algorithm experiment. In the
Kalman combination, we consider weighted combination based on formal error. However, none of
the computing centers provide an uncertainty estimation for the EAM dataset. Therefore, we simulate
the combination experiment of LOD and EAM with formal error ranging from 0 to 100 us. The
experiment shows that using reasonable formal error for the EAM dataset can improve the accuracy
of LOD. Finally, when the formal error of EAM is 2–5 times that of the GNSS LOD formal error, i.e.,
the EAM formal error is between 10 and 30 us, the accuracy of the combined LOD can be improved
by 10–20%.

Keywords: LOD; EAM; GNSS; LS; Kalman

1. Introduction

Due to various physical factors such as the Earth’s interior, surface, and space, the
Earth’s rotation rate varies at a time scale of several days to several years. These variations
are typically characterized by changes in the Length of Day (LOD), which reflects the
changes in the Earth’s rotation rate. LOD, along with polar motion, constitutes the Earth
Rotation Parameters (ERPs) [1–3]. High-precision ERPs play a crucial role in fields such
as deep space exploration, satellite navigation, and the establishment and maintenance of
reference frames [4–6].

Global Navigation Satellite System (GNSS) [7,8], Very Long Baseline Interferometry
(VLBI) [9,10], Satellite Laser Ranging (SLR) [11], Lunar Laser Ranging (LLR) [12], and
Doppler Orbitography and Radiopositioning Integrated by Satellite (DORIS) [13,14] can be
used to measure ERPs, such as LOD. Among these techniques, GNSS has a global network
of observation stations, enabling continuous monitoring and fast data processing [5,6]. The
International Earth Rotation and Reference Systems Service (IERS) is the most authoritative
organization that provides ERP data. Their final products integrate measurement results
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from various space geodetic techniques. However, the final products may have a low
timeliness and are generally used for product comparison and analysis [15,16].

At interannual or shorter time scales, Atmospheric Angular Momentum (AAM) is
considered to be the primary factor contributing to variations in LOD [17,18]. Rosen and
Salstein [18] demonstrated that AAM accounts for 90% of LOD variations at seasonal and
shorter time scales. Gross et al. [19] demonstrated that AAM explains 85.8% of the LOD
variations on interannual time scales. Rekier et a1. [20] analyzed the LOD data of IERS EOP
C04 series and the total geophysical angular momentum data of AAM, Oceanic Angular
Momentum (OAM), and Hydrological Angular Momentum (HAM), and explained the
correlation between LOD and angular momentum.

Dickey et al. [21] found that at shorter time scales, the signal-to-noise ratio of AAM
is superior to that of LOD, suggesting that AAM data may provide a better indication
of high-frequency variations in LOD compared to geodetic measurements. Freedman
et al. [22], through an analysis of the periodicity and power spectra of AAM and LOD,
discovered a high degree of consistency between the two variables. They proposed that in
the absence of geodetic data, AAM is both a reasonable proxy and useful supplement to
geodetically derived LODs even for high-frequency fluctuations.

Research has shown that the use of AAM and other data can improve the prediction
accuracy of Universal time (UT1) and LOD. Johnson et al. [23] demonstrated that the
utilization of AAM data can enhance the short-term prediction accuracy of UT1 and LOD.
Dill and Dobslaw [24] incorporated AAM, OAM, and HAM data into the prediction of UT1
and LOD, leading to a significant improvement in the prediction accuracy. Furthermore, Dill
et al. [25] introduced Sea-Level Angular effective Momentum (SLAM) data and constructed
Effective Angular Momentum (EAM) data (EAM = AAM + OAM + HAM + SLAM), which
notably enhanced the short-term prediction accuracy of UT1 and LOD within 1–6 days.
With the improvement in the accuracy of the EAM dataset, the IERS has begun utilizing
AAM data to assist in their daily Earth Orientation Parameter (EOP) prediction products.

Li et al. [26] proposed a UT1/LOD prediction method based on a denoised EAM
dataset. By improving the prediction accuracy of UT1/LOD, it was demonstrated that
combining the least squares fitting residuals of the C04 LODR (tidal-corrected LOD) and
EAM LODR can enhance the accuracy of EAM LODR. Building upon the work of Li
et al. [26], this study combines GNSS LODR with EAM LODR to simultaneously improve
the accuracy of EAM and LODR. Additionally, an attempt is made to provide the formal
error of EAM.

In this paper, the following steps were taken. Firstly, the GNSS LOD sequence was
examined and outliers were detected and removed using a first-order difference method.
The outliers were replaced with a weighted average of the preceding and succeeding values.
Then, a least squares algorithm was used to fit the derived LODR dataset from EAM and
the tidal-corrected GNSS LODR. The residuals obtained from the fitting were subjected to
Kalman filtering. The processed residual terms were combined and ultimately merged with
the fitted terms to obtain the combined LODR sequence. During the combination process,
simulations were conducted to assess the combination’s effectiveness under different formal
EAM errors, and a reasonable formal EAM error was determined. The second section of
this article provides a brief description of the dataset used. Section 3 outlines the data
processing workflow, including tidal correction, EAM data analysis, outlier removal, least
squares fitting, Kalman filtering, and combination algorithms. Section 4 simulates the
formal error of EAM and studies its contribution to the combination with LOD. Section 5
evaluates the combined effect of different GNSS analysis organization LOD datasets and
EAM using measured datasets. Section 6 discusses the rationality of the algorithm in detail,
including the correlation analysis between GNSS LOD formal error and accuracy. Section 7
presents the main research findings of this article.
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2. Data Set
2.1. LOD Dataset

This article analyzes the LOD products of two GNSS institutions, Wuhan University
(WHU) and the Jet Propulsion Laboratory (JPL). WHU serves as the data analysis center for
the International GNSS Monitoring and Assessment System (iGMAS) and the International
GNSS Service (IGS), while JPL serves as the data analysis center for IGS. In the subsequent
sections of this article, the WHU/JPL LOD dataset spanning from January 2019 to December
2022, a total of 4 years, is used for algorithm verification. The precise C04 LOD dataset is
used for result comparison and analysis.

2.2. EAM Dataset

The EAM function is composed of the Z-components of AAM, OAM, HAM, and
SLAM, which are combined together. The modeling process of OAM and the calculation
method of HAM are described in detail by Jungclaus et al. [27] and Dill [28]. The calculation
processes of AAM and SLAM are explained in detail in the literature by Dobslaw and
Dill [29], Tamisiea et al. [30], and Hageman and Dumenil [31]. The datasets of AAM, OAM,
HAM, SLAM, and others are provided by the German Research Centre for Geosciences
(GFZ). The website for accessing these datasets is http://esmdata.gfz-potsdam.de:8080
(accessed on 1 December 2023) [31].

Due to the inconsistent sampling intervals of AAM, OAM, HAM, and SLAM data, as
shown in Table 1, a weighted approach was used to convert the 3 h sampling interval to a
24 h sampling interval. The four components were then added together to form the EAM
dataset. In constructing the EAM, this study refers to Dill et al. [25].

Table 1. Effective Angular Momentum of Earth.

Angular Time Resolution Update Frequency Proportion

AAM 3 h 24 h 97.6%
OAM 3 h 24 h 0.8%
HAM 24 h 24 h 0.5%
SLAM 24 h 24 h 1.1%

3. Methods
3.1. LOD Tidal Correction

This article first applies the experience model provided by the IERS protocol to correct
tidal variations in the LOD products of WHU and JPL [1]. This correction results in an
LODR sequence that removes tidal components.

3.2. EAM Data Analysis

According to the Liouville equation,

Ψ = − Ω
2π

dUT1R
dt

(1)

LODR is derived by

LODR = −2π

Ω
Ψ (2)

where, Ψ is the angular momentum, and Ω is the average angular velocity of the Earth
7.292115 × 10−5 rad s−1. The above formula allows conversion between LODR and GAM.
In this article, the AAM, OAM, HAM, and SLAM datasets from January 2019 to December
2022, a total of 4 years, were combined into EAM using the method shown in Section 2.2.
Based on the Liouville equation, EAM was then converted into LODR and compared with
the IERS 14C04 LODR series. The comparison is shown in Figure 1.

http://esmdata.gfz-potsdam.de:8080


Remote Sens. 2024, 16, 722 4 of 17

Remote Sens. 2024, 16, x FOR PEER REVIEW 4 of 18 
 

 

Section 2.2. Based on the Liouville equation, EAM was then converted into LODR and 
compared with the IERS 14C04 LODR series. The comparison is shown in Figure 1. 

 
Figure 1. The red and black lines in the top panel represent the C04 LODR and the LODR derived 
from EAM, respectively. The bottom panel displays the difference between the LODR derived from 
EAM and the C04 LODR, represented by the black line. 

The strength of the correlation between the LODR derived from EAM (EAM LODR) 
and the C04 LODR can be represented using the Pearson correlation coefficient, as shown 
in Figure 2. According to Equation (3), the Pearson correlation coefficient between two 
continuous variables (X and Y) is obtained by dividing their covariance by the product of 
their respective standard deviations. 

( )
( , )

,
YX

cov X Y
x yρ

σ σ
=  (3)

Figure 1. The red and black lines in the top panel represent the C04 LODR and the LODR derived
from EAM, respectively. The bottom panel displays the difference between the LODR derived from
EAM and the C04 LODR, represented by the black line.

The strength of the correlation between the LODR derived from EAM (EAM LODR)
and the C04 LODR can be represented using the Pearson correlation coefficient, as shown
in Figure 2. According to Equation (3), the Pearson correlation coefficient between two
continuous variables (X and Y) is obtained by dividing their covariance by the product of
their respective standard deviations.

ρ(x,y) =
cov(X, Y)

σXσY

(3)
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Figure 2. Correlation coefficient between EAM LODR and C04 LODR. It can be observed that the
EAM LODR and the C04 LODR exhibit a strong positive correlation, with a correlation coefficient
of 0.916.
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3.3. GNSS LODR Outlier Removal

The LODR data for WHU and JPL from January 2019 to December 2022 were compared
with the LODR data from IERS C04, as shown in Figure 3.
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Figure 3. The red, green, and light blue lines in the top panel represent the LODR data from
C04, WHU, and JPL, respectively. In the bottom panel, the green and light blue lines represent
the difference between WHU and C04 LODR, and JPL and C04 LODR, respectively. To facilitate
distinction, a bias of −50 us was added to the JPL and C04 LODR difference.

From the bottom panel in Figure 3, it can be observed that the difference between WHU
and C04 is relatively stable with smaller fluctuations. On the other hand, the difference
between JPL and C04 shows larger fluctuations and exhibits noticeable periodicity. In
particular, there is an outlier point of approximately 200 us for WHU around December
2019. Considering the data’s stationarity and the data themselves, without relying on
external data, a first-order difference method is proposed for outlier detection. The first-
order difference in LODR between WHU and C04 is shown in Figure 4.

From Figure 4, it can be observed that the first-order difference in C04 LODR, repre-
sented by the red line, appears to be more stable without any outlier points. On the other
hand, the first-order difference in WHU LODR, represented by the black line, shows an
outlier point that coincides with the outlier point in the difference between WHU LODR
and C04 LODR. By using the first-order difference method, the outlier points in WHU
LODR can be accurately removed. When removing outlier points, a weighted average
of the data before and after the outlier point is used to replace the removed outlier point,
ensuring the continuity of the data.
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Figure 4. In the top panel, the red, black, and green lines represent the first-order difference in
LODR data for C04 and WHU, as well as the difference between WHU LODR and C04 LODR. To
facilitate distinction, a deviation of −100 us is added to the first-order difference in WHU LODR data
and the difference between WHU LODR and C04 LODR. The black and green lines in the bottom
panel correspond to the first-order difference in WHU LODR after removing outlier points, and the
difference between WHU and C04 LODR after outlier removal, respectively.

3.4. Least Squares Fitting

The LODR sequence mainly consists of the long-term trend term, semi-annual term,
annual term, and irregular variation term. The trend term and periodic terms are fitted
using the least squares method, according to the following formula:

fLODR(t) = a0 + a1t +
n
Σ

i=1

[
ci sin(

2πt
Ti

) + di cos(
2πt
Ti

)

]
(4)

where, a0 and a1 represent the parameters of the linear trend component, ci and di represent
the parameters of the periodic component, Ti represents the length of the periodic cycle,
and n represents the number of cycles. Here, n is set to 8, and the values of Ti correspond
to 9.13, 13.7, 27.4, 121.75, 182.62, 365.24, 1095.72, and 3396.73 days [25,32–34].

Figure 5 from top to bottom represents the LODR data, least squares fitting, and
residual of the fitting for the C04, WHU, JPL, and EAM datasets, respectively. It can be
observed that there is a significant deviation between the EAM LODR data and the C04
LODR data. However, the residuals of the least squares fitting for both datasets are almost
identical, and the Pearson correlation coefficient between the residuals of the two fits is
as high as 0.9876. This finding suggests that although there is a noticeable discrepancy
between the EAM and C04 LODR data, their respective least squares fits exhibit similar



Remote Sens. 2024, 16, 722 7 of 17

patterns of residual error. The high Pearson correlation coefficient indicates a strong linear
relationship between the residual error of the two fits.
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C04, WHU, JPL, and EAM, respectively. In the middle panel, the red, green, light blue, and black lines
represent the least squares fitting of LODR for C04, WHU, JPL, and EAM, respectively. In the bottom
panel, the red, green, light blue, and black lines represent the residual terms of the least squares fits
for C04, WHU, JPL, and EAM LODR data, respectively.

3.5. Kalman Filtering and Combination

The LODR least squares fitting residuals for EAM, WHU, and JPL can be processed
using Kalman filtering for noise reduction. Kalman filtering is an optimal linear filter based
on the minimum mean square error criteria. It only requires the previous estimate and
the current observation to calculate the current estimate [35–38]. The state equation and
observation equation for Kalman filtering are as follows:

xk = Fkxk−1 + wk
zk = Hkxk + vk

(5)

The prediction equation and the correction equation are as follows:

xk/k−1 = Fkxk−1/k−1
xk/k = xk/k−1 + Kk(zk − Hkxk/k−1)

(6)
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The Kalman gain and covariance matrix are as follows:

Kk = Pk/k−1Hk
T/(HkPk/k−1Hk

T + Rk) (7)

Pk/k−1 = FkPk−1/k−1Fk
T + Qk

Pk/k = (1 − Kk Hk)Pk/k−1
(8)

As can be seen in Figure 6, after filtering, the difference between the residuals of EAM
LODR (least squares fitting residuals) and C04 LODR (least squares fitting residuals) is
smaller. In other words, the black line in the lower figure is more stable with smaller
fluctuations compared to the red line.
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Figure 6. The red and black lines in the top panel represent the residual of EAM LODR least squares
fitting and the residual of EAM LODR least squares fitting after Kalman filtering, respectively. The
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fitting residuals and the C04 LODR least squares fitting residuals, as well as the difference between
the EAM LODR least squares fitting residuals after Kalman filtering and the C04 LODR least squares
fitting residuals.

The Kalman combination algorithm is used to combine the least squares fitting resid-
uals of EAM LODR with those of WHU/JPLLODR. There are errors present in the least
squares fitting residuals of EAM, WHU/JPL, and C04. Therefore, by applying the Kalman
algorithm to combine the least squares fitting residuals of EAM LODR with those of
WHU/JPL LODR, we can obtain a combined value that is closest to the least squares fitting
residuals of C04. This can, in turn, improve the LODR accuracy of WHU/JPL. The formula
is as follows:

Z = Z1 + A × (Z2 − Z1) (9)
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Z1 represents the least squares fitting residuals of EAM LODR, and Z2 represents
the least squares fitting residuals of WHU/JPL LODR. By calculating the weight of their
combination using the formal error, denoted as A (A = the formal error of EAM LODR/(the
formal error of EAM LODR+ the formal error of WHU/JPL LODR)), the optimal combined
value Z can be obtained.

4. Simulation Experiment of EAM Formal Error

Currently, there is no institution that has released the numerical values and distribu-
tion of the formal error or uncertainties associated with AAM, OAM, HAM, and SLAM.
However, relevant research has been conducted by Rosen et al. [39], Gross and Eubanks [40],
Bell et al. [41], and Gross et al. [42] to evaluate the error present in AAM data. In construct-
ing a Kalman filter, Freedman et al. [22] selected 50 us as the formal error for AAM analysis
and prediction sequences. Based on the above analysis, we have chosen a range of 0–100 us
as the formal error for EAM and conducted combined simulation experiments.

4.1. WHU and EAM Simulation Combination Experiment

The LODR products of WHU from January 2019 to December 2022 were used for
LOD combination experiments with EAM under different formal error. In the combination
experiment, the formal error of EAM and WHU LODR is taken as the weight of the
combination, and the precision of the combined LODR is compared with that of C04 LODR.
The combination result is shown in Figure 7.
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Figure 7. The blue line in the top panel represents the accuracy of WHU LODR, which is the standard
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of the combined WHU LODR and EAM LODR with a different formal error (denoted as COM). The
bottom panel shows the variation in LODR combination accuracy between EAM and WHU LODR
with respect to the ratio of formal error in EAM and WHU LODR.

Based on Figure 7, we can observe that when the formal accuracy of EAM is much
lower than that of WHU, the combined LODR precision is lower. As the formal error of
EAM increases, the combined LODR precision gradually converges to the LODR precision
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of WHU. This can be understood as when the formal accuracy of EAM is much lower than
that of WHU, it indicates that the proportion of EAM in the combination approaches 1. On
the other hand, when the formal accuracy of EAM is much higher than that of WHU, it
indicates that the proportion of EAM in the combination approaches zero. When the ratio
of formal accuracy between EAM and WHU is 3–5 times, i.e., the formal accuracy of EAM
is between 4 and 10 us, it can result in a higher combined LODR precision (WHU’s formal
accuracy is 1.16 us).

4.2. JPL and EAM Simulation Combination Experiment

The LODR products of JPL from January 2019 to December 2022 were used for LOD
combination experiments with EAM under different formal errors. In the combination
experiment, the formal errors of EAM and JPL LODR are taken as the weight of the
combination, and the precision of the combined LODR is compared with that of C04 LODR.
The combination result is shown in Figure 8.
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Figure 8. The description of Figure 8 is similar to Figure 7, with the only difference being the
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In Figure 8, similar conclusions were also obtained as in Figure 7. As the magnitude of
EAM’s formal error increases, the combined LODR gradually converges to the accuracy of
JPL LODR. When the ratio of formal accuracy between EAM and JPL is of 2.5–5 times, i.e.,
the formal accuracy of EAM is between 15 and 30 us, it can result in a higher combined
LODR precision (JPL’s formal accuracy is 6.32 us).

4.3. iGMAS and EAM Simulation Combination Experiment

To further validate the formal error of EAM, an LOD combination experiment was
conducted using the iGMAS LODR products from January 2019 to December 2022, along
with EAM incorporating various levels of formal error. The combination result is shown
in Figure 9.
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replacement of WHU LODR with iGMAS LODR.

Similar findings to Figure 7 were observed in Figure 9, showing a gradual convergence
of the combined LODR towards the precision of iGMAS LODR as the formal error of EAM
increased. When the ratio of formal accuracy between EAM and iGMAS is 2–4 times, i.e.,
the formal accuracy of EAM is between 10 and 30 us, it can result in a higher combined
LODR precision (iGMAS formal accuracy at 7.20 us).

5. Combination of Measured Datasets
5.1. Combination of WHU with EAM

When using the LOD products of WHU from Janurary 2019 to Decemeber 2022,
the tidal term was deducted according to the IERS agreement to obtain the LODR data.
The first-order differencing method was applied to identify and fill in outliers. An EAM
sequence was constructed using the method described in Section 2.2. The EAM sequence
was converted to EAM LODR using the Liuville equation. A least square fitting was
performed on both WHU LODR and EAM LODR to obtain the residual terms and the
fitted terms. Kalman filtering was applied separately to the residual terms to reduce noise,
and then Kalman combination was performed on the denoised residual terms. Finally,
the combined residual terms were added to the fitted terms of WHU LODR to obtain the
combined WHU LODR. During the combination process, the ratio between the formal
error of EAM and that of WHU is 4.3, i.e., the formal error of EAM is 5 us. The final
combined WHU LODR was compared and analyzed with C04 LODR. The combination
result is shown in Figure 10.

Table 2. Statistics of combined WHU and EAM.

Products STD
(us)

MEAN
(us)

MEDIAN
(us)

MAX
(us)

MIN
(us)

WHU 13.51 −20.28 −19.86 21.29 −63.12
COM 10.57 −20.27 −19.89 12.56 −58.97
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fore the combination, the precision of the WHU LOD is 13.51 us, and after the combina-
tion, it is 10.57 us, resulting in a precision improvement of 21.76%. Additionally, the mean 
and extreme values have also been improved after the combination. It should be noted 
that the comparison results in this section are slightly different from those in Section 4.1. 
This is because in Section 4.1, the WHU is interpolated to the zero moment (UTC 00:00) of 
EOP 14 C04 for comparison, while in this section, the EOP 14 C04 is interpolated to the 
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Figure 10. The green line in the top panel represents the difference between the WHU LOD (after
removing outliers) and C04 LOD, while the red line represents the difference between the combined
LOD (WHU LOD and EAM) and C04 LOD. To enhance clarity in the comparison results, a 50 us
offset is added to the difference between WHU and C04 LOD in the graph. The bottom panel is
a histogram that shows the distribution of the differences displayed in the top panel. The x-axis
represents the difference values in microseconds, and the y-axis represents probability. To improve
visual representation, a curve fitting is applied to the histogram. The distributions of the two types of
differences all follow normal distribution. The red and green lines are normal distribution curves
with the fitted mean and standard deviation listed in Table 2.

In Table 2, the column “COM” means the combination of WHU LODR and EAM
LODR. The curve fitting in Figure 10 and the histogram clearly show that the peak value
of the WHU LODR combination is higher, the convergence is better, and the distribution
is more concentrated compared to the combination before. Table 2 provides a statistical
analysis of the difference between WHU before and after combination with C04 LOD. Before
the combination, the precision of the WHU LOD is 13.51 us, and after the combination, it
is 10.57 us, resulting in a precision improvement of 21.76%. Additionally, the mean and
extreme values have also been improved after the combination. It should be noted that the
comparison results in this section are slightly different from those in Section 4.1. This is
because in Section 4.1, the WHU is interpolated to the zero moment (UTC 00:00) of EOP
14 C04 for comparison, while in this section, the EOP 14 C04 is interpolated to the noon
moment (UTC 12:00) of WHU for comparison.

5.2. Combination of JPL with EAM

Using least squares fitting, the JPL LODR and EAM LODR from January 2019 to
December 2022 were fitted. The residuals and fitted values were obtained. The residuals
were then separately filtered using Kalman filtering to reduce noise. After that, the filtered
residuals were combined using Kalman fusion. Finally, the combined residuals were added
to the JPL LODR fitted values to form the combined JPL LODR. During the combination
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process, the ratio of the formal error between EAM and JPL is 3.8, i.e., the formal error
of the EAM is 24 us. The final combined JPL LODR was compared and analyzed with
the C04 LODR. In Table 3, the column “COM” means the combination of JPL LODR and
EAM LODR.

Table 3. Statistics of combined JPL and EAM.

Products STD
(us)

MEAN
(us)

MEDIAN
(us)

MAX
(us)

MIN
(us)

JPL 17.75 −34.09 −33.94 28.32 −92.75
COM 15.42 −34.06 −33.68 10.27 −83.98

Figure 11 shows the curve fitting and histogram, indicating that the combined JPL
LODR has higher and more concentrated peaks compared to before combination. Table 3
presents the statistical analysis of the differences between JPL LODR before and after
combination with C04 LODR. The accuracy of JPL LODR before combination is 17.75 us,
while after combination, it improves to 15.42 us, showing a precision improvement of
13.35%. The mean, median, and extreme values are all improved after combination. It is
important to note that the results of this section slightly differ from Section 4.2. This is
because Section 4.2 compares JPL interpolated to the zero-epoch moment (UTC 00:00) of
EOP 14 C04, while this section compares EOP 14 C04 interpolated to the noon moment
(UTC 12:00) of JPL.
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6. Discussion
6.1. Correlation Analysis between Formal Error and Deviation

Sections 4 and 5 indicate that combining the appropriate EAM with GNSS LODR can
improve the accuracy of LOD. To further validate the rationality of using formal error as
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combination weights in the combination algorithm, we analyzed the correlation between
the formal accuracy of GNSS LOD and its deviation from C04 LOD, as shown in Figure 12.
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Figure 12. The formal accuracy of JPL LOD and its deviation from C04 LOD. The blue line represents
the uncertainty, i.e., formal error, of JPL LOD. The red line represents the difference between JPL LOD
and C04 LOD, i.e., external fit accuracy.

From Figure 12, we can clearly observe a strong correlation between the formal error
and external fit accuracy of JPL LOD. Both exhibit consistent periodicity. Therefore, it is
reasonable to use the formal error for composite weighting in our methodology, which
indirectly validates the rationality of using the accuracy of the combination algorithm to
assess the formal error of EAM.

The simulation experiments conducted with WHU, JPL, and iGMAS indicate that
when the formal error of the EAM is 2–5 times that of GNSS LOD, a higher precision LOD
composite product can be achieved. Specifically, when the formal error of EAM is in the
range of 10–30 us, it can improve the LOD accuracy by more than 10%. The formal errors
of WHU, JPL, and iGMAS are 1.16 us, 6.32 us, and 7.20 us, respectively. Based on the
combination results and the formal accuracy of different LOD products, we suspect that
the WHU LOD product may have a lower formal accuracy.

6.2. Comparison between IERS 20 C04 and IERS 14 C04

In the accuracy comparison section of this article, IERS 14 C04 was selected as the
reference. This was because the IERS 20 C04 version was only released and used starting
from 14 February 2023. Therefore, the IERS 14 C04 sequence was chosen for the accuracy
comparison analysis in this study. Below is a brief analysis of the differences between IERS
14 C04 and IERS 20 C04.

From Figure 13, it can be observed that there seems to be a slight deviation between
IERS 14 C04 and IERS 20 C04. The standard deviation of the difference in LOD values is
21.7 us. We noticed that LOD values in IERS 20 C04 and IERS 14 C04 exhibited a mismatch
on 20 December 2020. The difference in LOD values was around 300 us. We suspect that
this difference on 20 December 2020 may be abnormal.

Based on the analysis above, it can be concluded that even in the case of IERS C04
products, there is a possibility of encountering abnormal values, and there is a fluctuation
of 20 us in LOD values between the two versions. Therefore, we recommend that IERS
considers adding the EAM dataset when performing EOP combination to enhance the
robustness of the data.
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6.3. Prospects

Using the EAM dataset can improve the combination accuracy of LOD, but it cannot
correct the systematic bias of LOD. If we want to further correct the systematic bias of LOD,
we can only use the UT1 dataset for correction. For example, the final products and rapid
products of IGS use the UT1 dataset for correcting the systematic bias. Considering this,
we propose some follow-up plans:

(a) Carry out EAM, LOD, and UT1 combination algorithms to improve the accuracy of
LOD while further correcting the system bias of LOD, and attempt to obtain higher
accuracy UT1 and EAM sequences.

(b) Further analyze and validate the formal error of EAM. This involves conducting
in-depth investigations into the sources and magnitudes of error in the EAM dataset,
with the aim of improving its reliability and accuracy.

(c) Apply the LOD obtained from the combination of EAM and LOD to EOP predic-
tion. This can compensate for the one-day delay in EOP rapid LOD products, thus
enhancing the accuracy of EOP prediction.

(d) Conduct experiments combining polar motion (PM) and EAM to explore the impact of
EAM on PM. This research aims to understand how the EAM dataset can be utilized
to improve the prediction and modeling of PM.

7. Conclusions

Due to the improvement in the accuracy of atmospheric and oceanic angular momen-
tum models based on global meteorological and oceanographic monitoring data, as well
as their high correlation with LOD, this paper proposes a combination method of EAM
(AAM + OAM + HAM + SLAM) and GNSS LOD data at the residual level. The combination
method is validated using the LOD datasets from WHU and JPL over a 4-year time scale.
The influence of EAM on the accuracy of LOD combination under different formal errors is
simulated, and we attempted to determine the reasonable range of formal error for EAM
based on the simulation results. The main conclusions are as follows:

(a) After applying the EAM dataset with reasonable formal error, the LOD accuracy can
be improved by 10–20%. However, this does not correct its systematic error.

(b) Through simulation experiments, we have determined that when the formal error of
the EAM dataset is 2–5 times that of the GNSS LOD dataset, specifically within the
range of 10–30 us, the combined accuracy of LOD is significantly improved.

(c) We have analyzed the correlation between the formal error of GNSS LOD and the ac-
curacy of external conformity. Through both simulation and actual measurement data,
it has been demonstrated that using formal accuracy weighting in the combination
process is a valid approach.
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