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Abstract: With the increasing demand for unmanned aerial vehicles (UAVs), the number of UAVs in
the airspace and the risk of mid-air collisions caused by UAVs are increasing. Therefore, detect and
avoid (DAA) technology for UAVs has become a crucial element for mid-air collision avoidance. This
study presents a collision avoidance approach for UAVs equipped with a monocular camera to detect
small fixed-wing intruders. The proposed system can detect any size of UAV over a long range. The
development process consists of three phases: long-distance object detection, object region estimation,
and collision risk assessment and collision avoidance. For long-distance object detection, an optical
flow-based background subtraction method is utilized to detect an intruder far away from the host.
A mask region-based convolutional neural network (Mask R-CNN) model is trained to estimate the
region of the intruder in the image. Finally, the collision risk assessment adopts the area expansion
rate and bearing angle of the intruder in the images to conduct mid-air collision avoidance based on
visual flight rules (VFRs) and conflict areas. The proposed collision avoidance approach is verified by
both simulations and experiments. The results show that the system can successfully detect different
sizes of fixed-wing intruders, estimate their regions, and assess the risk of collision at least 10 s in
advance before the expected collision would happen.

Keywords: detect and avoid (DAA); mid-air collision avoidance; deep learning; Mask R-CNN;
background subtraction; fixed-wing aircraft; unmanned aerial vehicle (UAV)

1. Introduction

In recent years, more and more companies have begun utilizing drones for many
applications because of their high flexibility and adaptability to various environments. As
the demand for UAVs has gradually increased, the collision problem between UAVs has
also risen. To regulate UAVs’ uncontrolled operations in the airspace, the Federal Aviation
Administration (FAA) has proposed a flight information sharing specification called remote
identification (RID) [1]. Besides Remote ID, FAA, NASA, and other federal partner agencies
have also proposed the concept of unmanned aircraft system traffic management (UTM) [2],
since the development of UAV logistics has led to the density of UAVs in low-altitude
airspace increasing. To prevent the risk of mid-air collisions, detect and avoid (DAA) is one
of the essential technologies of UTM, which ensures the safety of beyond-visual-line-of-
sight flight operations.

1.1. Airborne Sensing Technologies and Collision Avoidance Strategies for UAVs

The main concept of DAA is constructed by approaching time instead of distance
because time is more suitable to express the approaching speed of the intruder than distance.
Considering the reactivity of the pilot and the maneuverability of the UAV, the requirement
of DAA in UTM should be triggered at least 10 s before a collision occurs to ensure
minimum safety separation. The FAA proposed the Pathfinder project to further regulate
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the specifications beyond the current small UAV rules [3]. In the Pathfinder project report,
a safety regulation for the commercial use of a small UAV was mentioned. According to
the rules of the FAA’s project, a terrestrial acoustic sensor array (TASA) was developed to
sense obstacles from 5 nm away and over a full 360◦ field of view [4]. However, the main
purpose of this study is to prevent small UAVs from colliding with each other. Therefore,
acoustic sensors are too heavy and large for small UAVs.

To avoid intruder aircrafts that may pose a potential threat, sensing technologies are
necessary for advanced preparation. According to how the information is transmitted,
sensing technologies for DAA can be classified into two categories: cooperative and non-
cooperative [5,6]. The sensors utilized in cooperative methods include vehicle-to-vehicle
communication, automatic dependent surveillance broadcast (ADS-B), and RID. Nonco-
operative sensors include airborne radars, light detection and ranging (LiDAR) sensors,
acoustic sensors, and cameras. However, considering the payload capacity of small UAVs,
most of the sensors mentioned above are too large and heavy to be mounted on UAVs.
Moreover, the cost of some sensors is not affordable compared to the price of the UAV itself.
Therefore, a camera becomes an ideal sensor for UAVs to detect interesting objects and
targets. A monocular camera has many advantages, such as its light weight, low cost, the
fact that it is easy to equip, and it is also widely used in different applications. However,
depth information cannot easily and directly be obtained with a monocular camera.

After an intruder is detected by a sensor, the avoidance maneuver is necessary to
keep the intruder at a safe distance. For DAA systems in UAVs, there are two processes:
decision making and avoidance control. Decision making is based on object detection
and object tracking. Once an object is identified as an intruder, an avoidance maneuver is
triggered. There are two categories of avoidance control: planning avoidance [7–12] and
reactive avoidance [13–15]. Generally, planning avoidance methods are usually utilized
by cooperative DAA systems, such as artificial potential fields (APFs) [12], trajectory
generation [7], and path planning [10]. Most of these methods calculate a global solution
for avoiding obstacles in the environment. Some of the planning avoidance methods utilize
deep learning models to further optimize the solution [11]. On the other hand, reactive
avoidance is more passive than planning avoidance. It controls the host aircraft based
on the current state and solves the collision through local motion control. One planning
avoidance method utilizes nonlinear model predictive control (NMPC) to avoid an intruder
with a single vision sensor [16]. Another study [17] utilized a doppler radar to implement
collision avoidance. Since the sensor in our study is a camera, reactive avoidance is more
appropriate for the proposed DAA system.

1.2. Vision-Based Object Detection with Deep Learning Technology

With the help of deep learning technology, a vision-based DAA was proposed to
determine collision avoidance strategies only using vision information and to detect the
distance between a predefined intruder and the host in a previous study [18]. To conduct
collision avoidance, the object detection method and avoidance strategy are the two major
processes used to reduce the collision risk of UAVs. With the advantages of computer
vision and artificial intelligence (AI) technologies, vision-based object detection methods
have been studied for many decades and applied in many applications. In recent years,
there have been many studies focused on UAV detection with vision-based methods and
deep learning [19–23]. For instance, the you only look once (YOLO) method is a fast and
powerful object detection method which is applied to various subjects [24–27].

Most studies on the object detection of UAVs are focused on ground or static tar-
gets [26]. There are still many challenges in moving object detection, especially for mid-air
and fixed-wing UAVs [28]. Compared to multirotor UAVs, fixed-wing UAVs have higher
aerodynamic efficiency and performance, can carry more payload, and can travel longer
distances. However, the restrictions of fixed-wing UAVs are that they must move forward
at a desired airspeed and cannot perform hovering or move in any direction. For mid-air
vision-based object detection, Lai et al. proposed a multi-stage pipeline of a single-vision-
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based UAV DAA process [18]. The main purpose of this work was to detect an incoming
fixed-wing UAV in the image and estimate its distance using deep learning methods.
YOLOv3 was utilized in the study to detect the incoming UAV in the image, and the results
were passed through deep learning methods to estimate the distance between the incoming
UAV and the host. Although the result is accurate over a short range, there are still some
limitations to the study. The distance estimation model is sensitive to the size of the target;
that is, the estimation error would increase if the size of the target UAV was different from
the one used in the study. In addition, the detection range of this study is not long enough
to meet the requirements of UTM. Apart from deep learning methods, some vision-based
object detection methods utilize optical flow to detect moving objects in an image. In one
study [29], an optical-flow-based background subtraction algorithm is applied to detect
moving objects with a single vision. With the background model constructed with the
Lucas–Kanade optical flow algorithm, the background subtracted image between two
consecutive frames can be estimated. Consequently, moving objects, also known as the
foreground, will be highlighted. Even though the detection range in this approach is long
enough for the DAA process, there are still some drawbacks that must be overcome. One
of them is the interference of background noises, which causes failure in detecting and
tracking expected objects. Thus, this approach is combined with a Kalman filter to improve
the performance of object detection in this study.

1.3. Vision-Based Reactive Avoidance Methods for UAVs

For a monocular camera system, the avoidance strategy is based on the relative angle
and relative size of the intruder in the image. In one study [30], a single vision-based DAA
algorithm was utilized for an unmanned surface vehicle (USV) system. In this study, a
camera mounted on the USV was used to sense intruder USVs in the field of view (FOV).
The area and motion of an intruder USV in the image were then utilized to assess the risk
of collision. Unlike UAVs, USVs can only move on a two-dimensional plane. Therefore,
there are sufficient constraints to derive the relative position of a USV intruder in an image.
However, the dynamic motion of UAVs is more complex than that of USVs, as UAVs move
in three-dimensional space. The relative position of the UAV intruder should be obtained
in other ways, or other information in the image should be used to assess the risk.

Lyu et al. proposed another collision avoidance strategy for UAVs, which was only
based on a dynamic safety envelope [31]. The dynamic safety envelope was constructed
by the motion and position of the intruder in the image. The avoidance maneuver was
then implemented by visual servo control, which aims to keep the central point of the
image away from the dynamic safety envelope. This approach overcame the lack of
depth information limitations but ignored some special cases. In another study [32], the
concept of the time to closest point of approach (TTC) was utilized by a single-vision
collision avoidance system. The TTC is estimated by the relative size expansion ratio in
the proposed approach. However, the estimation of the TTC is most accurate in the center
of the image. Misestimations of the TTC may lead to wrong avoidance timing. Cichella
et al. proposed a relative-angle-based collision avoidance method for UAVs [33]. The line
of sight (LOS) represents the angle between the velocity vector of the host aircraft and
the distance vector from the intruder. The LOS rate controls the host aircraft to avoid an
intruder. The proposed method in the study [23] successfully kept the intruder at a certain
LOS and maintained the minimum distance within the safety range. The LOS is presented
in the form of coordinates in the image in this study.

The goal of this study is to improve the performance of the developed DAA and meet
the requirements of UTM. The contributions of this study are listed as follows:

(1) A comprehensive procedure for the mid-air collision avoidance approach based on
the determination of the collision risk for fixed-wing UAVs is proposed by using a
monocular camera.

(2) The proposed DAA does not require the sizes of the intruders or the exact distance
between an intruder and the host UAV to train the deep learning model.
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(3) The DAA could be triggered 10 s or earlier before a collision happened. Therefore, to
ensure a sufficient reaction time, the sensing range of this study must be larger than
10 s before the fixed-wing intruder reaches the host UAV.

(4) Flight tests were conducted to demonstrate long-range object detection and collect
data for the risk-based collision avoidance method.

(5) A collision avoidance strategy is proposed and evaluated in the simulations to ver-
ify the developed avoidance strategy with the proposed collision risk assessment,
which is determined by the area expansion rate and bearing angle of the intruder in
the images.

The remainder of this study is organized as follows: Section 1 presents related works
regarding vision-based object detection and reactive avoidance. A long-range vision-based
object detection method is introduced in Section 2. This section also covers a deep-learning-
based object area estimation method, including the Mask R-CNN model architecture, the
process for training the model, and the detection results of the custom training model.
Section 3 presents the risk assessment based on the relative information in the image and
defines the composition of the collision risk. The evaluation results of the simulations
and flight experiments are provided in Section 4. The proposed method is verified in this
section. Finally, the conclusion and future works are presented in Section 5.

2. Vision-Based Long-Range UAV Detection with Deep Learning Technology

The main purposes of this study are to detect UAVs that are approaching the host
aircraft as far away as possible and to assess the collision risk of an intruder UAV with only
vision information. First, an optical-flow-based background subtraction method is utilized
to detect long-range UAVs, which can highlight the areas that contain moving objects in an
image. Those areas will be cropped into smaller images for further calculations. Then, the
level of collision risk is determined by analyzing the location of the intruder UAV and the
area occupied by it in the image plane. The proposed collision risk assessment is carried
out, which is determined by the area expansion rate and bearing angle of the intruder in the
images. The area of the intruder UAV is estimated by an instance segmentation structure
called a Mask R-CNN. This section presents the processes of detecting long-range objects
and estimating their area with a Mask R-CNN. A flow chart of the UAV sensing system is
shown in Figure 1.
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Figure 1. The flow chart of the UAV sensing system.

2.1. Long Distance Object Detection

In this study, the definition of long distance is the distance that a fixed-wing intruder
UAV can fly within 10 s or more. Generally, long-distance objects look like tiny dots in an
image. In this case, the deep-learning-based method will not detect them successfully as
the target is too small to identify. An optical-flow-based background subtraction method
is utilized to detect moving objects in the image. The process of long-distance object
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detection is shown in Figure 2. First, a set of feature points is extracted by corner detection.
Afterward, the Lucas–Kanade optical flow algorithm uses background subtraction to detect
the moving objects in the image. In addition, a two-dimensional Kalman filter is utilized to
track the object in the image.
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2.1.1. Homogeneous Matrix Estimation and Image Perspective Transform

In this study, Shi–Tomasi corner detection is used to detect a set of salient points, p. To
ensure that the salient points are more evenly distributed in the image, they are re-detected
every few frames. Furthermore, the image is divided into left and right parts, and their
respective salient points are detected separately to guarantee a uniform distribution of
these points. The Lucas–Kanade method is then utilized to estimate the local motion of
each salient point.

With the local motion of the salient points, the global transformation matrix, Ht, can
be fitted by the least-squares method, as follows [29]:

Ht = argmin
H

∑
pt∈Pt,pt−1∈Pt−1

∥pt − H·pt−1∥2 (1)

where Pt and Pt−1 are the sets of salient points in the current frame of the image, It, and the
previous frame of the image, It−1, respectively. More detail on the global transformation
matrix, Ht, can be found in [29].

The perspective transform model is chosen as the intruder UAV occupies a tiny area in
the image. After the homogeneous matrix is determined, a perspective transform is applied
to the image in the previous frame, It−1, to establish the background model of the image in
the current frame, It.

2.1.2. Background Subtraction and Object Detection

With the established background model of the current image, the background sub-
tracted image is computed to capture the moving objects whose motions are considerably
different from the background motion. Although most of the background is subtracted,
some unexpected noises in the background-subtracted image are still present due to the
uneven distribution of the salient points or complex background motion. Therefore, two
processes are applied to reduce the noise. The first one is image post-processing. Two
morphological operations are applied to highlight the exact targets: top-hat and black-hat.
Both operations are used to extract tiny elements and details from the input images. The
former is used to enhance brighter features in the image. In contrast, the latter is used
to enhance darker features in the image. The output filters the background-subtracted
image and reduces most of the background noise. The second process is object tracking
with a Kalman filter. A two-dimensional linear Kalman filter is utilized to smooth the data
and track the object in the image. The estimated states are the position and velocity of the
detected object on the 2D image plane. A Kalman filter can estimate the state of a dynamic
system from a series of measurements that contain uncertainty.

2.2. Object Area Estimation

A deep-learning-based UAV area estimation method is utilized to assess the risk of
the intruder UAV in the image frames. The absolute distance from the camera or host UAV
to the intruder UAV is not necessary. The main technology explored in this section is called
instance segmentation, which implements object detection and semantic segmentation
simultaneously. A Mask R-CNN is chosen as the detector, which not only detects the
object but also calculates the area (mask) of the object. Upon successful object detection
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through background subtraction, the region of interest (ROI) containing the intruder UAV
is cropped from the original image. Next, the ROI is input to the custom-trained Mask
R-CNN detector to estimate the area. In addition, the process of training the custom Mask
R-CNN model is provided in this section.

2.2.1. Mask R-CNN Detector

Object detectors can be classified into two main categories: one-stage detectors and
two-stage detectors. The R-CNN series belongs to two-stage detectors, which have higher
accuracy in recognizing objects than one-stage detectors like YOLO and SSD. However,
two-stage detectors consume more computational resources and time. In this study, a Mask
R-CNN [34] is employed as an object detector to estimate the area occupied by the intruder
UAV in the image for the following reasons:

(1) Compared to the previous version of R-CNNs, Mask R-CNNs added a new output:
the mask, which represents the area of the object.

(2) As a two-stage detector, a Mask R-CNN has relatively high accuracy in object instance
segmentation.

The architecture of a Mask R-CNN is illustrated in Figure 3, which is mostly the
same as the structure of a Faster R-CNN. The only difference is that a Mask R-CNN has
an additional output called the mask [34]. The architecture consists of two stages. The
first stage generates proposals that might contain objects by scanning the image, and the
second stage arranges the proposals and generates bounding boxes, masks, and classes of
the objects. In this study, ResNet101 is selected as the backbone CNN because its deeper
structure allows for better recognition of smaller objects, which is essential for the needs of
this research. More details about the architecture and parameters of Mask R-CNNs can be
found in the studies [34,35].
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2.2.2. Training Process

This section provides the process of training the custom Mask R-CNN model, including
dataset collection, data labeling, and the training process. There are many open-source im-
age datasets on the internet, such as Microsoft Common Objects in Context (MS COCO) [36],
Cifar-10, and ImageNet [37]. Each of them has a wide variety of classes and sufficient data.
However, image datasets that focus on fixed-wing UAVs are not available. In other words,
it is necessary to collect a custom dataset to carry out object detection on fixed-wing UAVs.
A real-flight UAV image dataset and synthetic images that contain UAVs were collected for
training purposes. The software used to generate the images is Blender 2.8 [38], which is a
powerful 3D graphic processing software. It has various applications, such as animation
and game making and image and video rendering. 1python code and Blender software
were combined to generate numerous UAV images with different attitudes automatically.
This study ended up collecting a dataset with 1000 UAV images. The UAVs’ roll, pitch,
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and yaw angles range between ±15, ±15, and ±75 degrees, respectively. The attitude
specifications of the UAVs in the images and the image information are listed in Table 1.

Table 1. The attitude specification of the UAVs and image information.

Image Information Value

Image Resolution 1920 × 1080
Focal Length 35 mm

Attitude Range (deg)

Roll −15~15
Pitch −15~15
Yaw −75~75

After the dataset collection was completed, the next step was image labeling. The
dataset was divided into two subsets, training and validation data, in a 7:3 ratio. In this
study, MakeSense.ai was chosen as the image-labeling tool as it is an open-source and
online tool. Therefore, it does not consume local resources while labeling the images. In
contrast to object detection, instance segmentation was implemented. Consequently, the
labels are polygons instead of rectangles. In this study, a custom Mask R-CNN model was
trained with the pre-trained weight of the MS COCO dataset. The model is trained for
50 epochs with 100 training steps per epoch, resulting in a final loss of about 0.9. The mean
average precision (mAP) at epoch 50 is 0.98. It took about 2.5 h to train the model with a
NVIDIA GeForce GTX 1660 GPU card (TSMC, Hsinchu, Taiwan).

2.2.3. Object Area Detection Results

The detection results of the custom Mask R-CNN model are shown in Figures 4
and 5. Figure 4 shows the detection results for synthetic images generated by Blender. The
background is also detected and displayed in orange. Figure 5 shows the detection result
in real-flight videos. Most of them have successfully detected the position and mask of the
UAV. Besides detecting the UAV in the images, the pixel-wise accuracy of the model was
also evaluated using synthetic videos. The ground truth of the area was extracted by HSV
thresholding. For the convenience of HSV thresholding, the background of the video was
simplified to a single color. The scenario in the synthetic video is shown in Figure 6, where
the distance is from 200 m to 10 m. The results are shown in Figure 7, where the pixel-wise
percentage accuracy is 87.89%. In addition to evaluating the mask accuracy, the relation
between different approaching speeds and the area estimation curve is also provided in
Figure 8. As Figure 9 shows, the slope of the area difference rate increases as the distance
between the host and UAV intruder decreases.
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3. Collision Risk and Avoidance Strategy

In this section, a two-dimensional image-based risk assessment of mid-air UAV colli-
sion avoidance is proposed. Since a monocular camera is chosen as the only sensor in this
research, it would be difficult to capture depth information directly. Therefore, only the
information shown in the image is utilized to achieve a collision risk assessment of mid-air
collisions. The coordinates and the area of the intruder were estimated in the previous
section. In addition, the moving direction of the intruder is estimated by the intruder’s
positions between two consecutive frames. These estimations are utilized to analyze the
potential threat of intruders and to detect the collision risk.

3.1. Proposed Collision Risk

The collision risk of an approaching UAV is constructed by three parts: (1) the area
expansion factor, (2) the position factor, and (3) the bearing factor. Since all the information
received is based on the two-dimensional image plane, the specific time to the closest point
of approach (TTC) or distance to the closest point of approach (DCPA) cannot be estimated.
Instead, a relative collision risk between the host aircraft and the intruder is defined in
this study. Those three factors mentioned above are distributed by different weights. The
collision risk is presented as follows:

Risktotal = w∆a ∗ Risk∆a + wp ∗ Riskposition + wb ∗ Riskbearing (2)

where Risk∆a is the area expansion factor, Riskposition is the position factor, Riskbearing is
the bearing factor, and w∆a, wp, and wo are their weightings (w∆a + wp + wo = 1). Risk∆a,
Riskposition, and Riskbearing are nondimensional parameters.

The area of the intruder in the video is continuous data. The connection between
collision risk and the area expansion factor is based on the expansion rate of the area.
In [30], the area difference of the USV between two consecutive frames is directly utilized
to assess the probability of collision. However, the area difference is close to zero or floating
near zero when the object is at a certain distance. Secondly, the area estimation uncertainty
would lead to a false result. Consequently, the area difference is replaced by the area
expansion rate to assess the risk of approaching the object, and the definition of the area
expansion factor is listed as follows:

Risk∆a =
(at − a0)√

a02 + (a t − a0)
2

(3)



Remote Sens. 2024, 16, 756 10 of 20

where at is the intruder’s area in the current frame, and a0 is the intruder’s area in the
frame that the intruder is first detected in. The position factor of the collision risk is defined
by 2D coordinates. The definition of the position factor is listed as follows:

Riskposition =


0, i f

∣∣∣∣−−⇀ptO

∣∣∣∣ > H/2

H/2−
∣∣∣∣−−⇀ptO

∣∣∣∣
H/2 , i f

∣∣∣∣−−⇀ptO

∣∣∣∣ < H/2

(4)

where pt is the coordinate of the intruder in the current frame, H is the height of the image,
and O is the center of the image. An illustration of the position factor is shown in Figure 10,
where the orange circle represents the warning area. From a three-dimensional perspective,
the warning area becomes a cone. Objects inside the cone range are threatening to the
host aircraft. The position factor increases as the distance between the intruder and the
center decreases.
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The final part of collision risk concerns the intruder’s moving direction, which is also
called the bearing factor. The moving direction of the intruder is defined by the vector
composed of the intruder’s positions between two consecutive frames. The definition of
the bearing factor is listed as follows:

Riskbearing =

{
0, i f 90

◦
< θV < 180

◦

cos(θV), i f 0 < θV < 90
◦ (5)

cos(θV) =

−−−⇀
pt−1O

· −−−⇀
pt−1 pt∣∣∣∣−−−⇀pt−1O

∣∣∣∣∣∣∣∣−−−⇀pt−1 pt

∣∣∣∣ (6)

where pt−1 is the coordinate of the intruder in the previous frame. An illustration of the
bearing factor is shown in Figure 10. If θV is an acute angle, the intruder is flying toward
the center of the frame. On the contrary, if θV is an obtuse angle, the intruder is flying away
from the center of the frame.

3.2. Collision Avoidance Strategy Based on Collision Risk

In this study, the selected collision scenario is the UAV logistics of fixed-wing UAVs in
low-altitude airspace. Since the low-altitude airspace for drone delivery is assumed to use
the same flight level, this study aims to use only the horizontal rotation direction in the
avoidance analysis and experiment. For the avoidance maneuvers, we consider the flight
dynamics of fixed-wing UAVs, such as the attitude change and the yawing rate constraints
of the fixed-wing UAVs. Considering the maneuverability of this kind of UAV, the collision
avoidance rules only concern horizontal turning action. The principle of avoidance follows
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visual flight rules (VFRs). Situations with a potential threat of collision are illustrated in
Figure 11, where the dashed lines represent the original paths of the UAVs, and the solid
lines represent the avoidance paths of the UAVs. This research only considers crossing and
head-on cases.
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Figure 11. Situations with potential threat of collision and avoidance rules based on VFRs.

The scenario in this study is that the host aircraft is conducting waypoint following
while an intruder appears in the FOV of the camera. Therefore, after assessing the collision
risk of the intruder, the collision avoidance system gives avoidance control to the host
aircraft based on the collision risk. The host continuously assesses the risk while avoiding
the intruder to keep the intruder away from the safety range. The conflict areas of both
UAVs determine the potential collision hazard. If the conflict areas of the two UAVs overlap,
these two UAVs are defined as potential collision hazards. The conflict area is defined as a
sector centered on the UAV’s velocity vector with a range of 6 degrees. The formation of
the conflict area is shown in Figure 12.
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The assumptions made about UAV maneuvers are listed as follows:

a. The host aircraft must have an initial velocity as shown in Equation (7). If the host
aircraft hovers at a fixed point, the avoiding maneuver will not affect the host aircraft.

0 < Vhost (7)

b. The angular velocity of the host aircraft has an upper bound (Equation (8)) to limit
the avoidance maneuver to a reasonable range.

.
θhost <

.
θmax (8)

c. The control law refers to [33], which is composed of waypoint following,
.
θtr, and

collision avoidance,
.
θca, as shown in Equation (9). In Equation (10), ktr is the pro-

portional gain of the waypoint following command. As shown in Equation (10) and
Figure 13,

.
θtr is controlled by a waypoint following controller modified from [32],

and D is the distance between the virtual target and the host aircraft.

.
θhost =

.
θtr +

.
θca (9)
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.
θtr = −ktr ∗ sin(θe) (rad/s) (10)

d. The proposed collision avoidance system aims to reduce the collision risk and ensure
the minimum TTC between the intruder and the host aircraft.

e. The avoidance maneuver intensity is another crucial factor to be concerned about.
The intensity is equal to the angular velocity. The value of collision risk determines
the avoidance intensity, and the function is defined as follows:

.
θca =

π

2
∗ Risktotal (rad/s) (11)

f. Equation (11) is also modified from the study [32]. When the intruder UAV is
determined by the collision risk, we force the host UAV to travel in a direction
perpendicular to the position of the intruder UAV with respect to the host UAV.
Risktotal is the weighting to adjust the value of

.
θca. If the collision risk of the intruder

exceeds 0.5, the avoidance maneuver will remain the same for 1 s.
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Figure 13. An illustration of the path following the controller.

4. Simulation and Flight Experiment Results

To verify the proposed mid-air collision avoidance approach, simulations and real
flight tests were conducted to evaluate the performance of the long-range object detection
and collision avoidance strategies. Long-range object detection and area estimation are
evaluated by real-flight experiments. To reduce the incidence of aircraft accidents, the
proposed collision avoidance strategy is evaluated through simulations.

4.1. Real-Flight Experiments

In the real-flight experiments, a Volantex Ranger 2000 V757-8 2000mm, manufactured
by Volantex, Zduńska Wola, Poland, was chosen as the intruder, and a Parrot ANAFI
drone served as the host aircraft to collect the data. The appearance of the Ranger 2000
is shown in Figure 14, and the specifications of the Ranger 2000 are listed in Table 2. For
the convenience of sampling GPS points, the host hovered over a fixed point. Two cases,
crossing and head-on, were investigated to test the object detection and area estimation
capabilities. Information about the experiment cases is shown in Table 3. In the crossing
case, the intruder crosses from left to right. Whereas in the head-on case, the intruder
first turns to the camera and flies straight into the camera. Top-view, 3D trajectories of the
intruder in the experiments are shown in Figures 15 and 16. The maximum detection range
is about 400 m, which meets the DAA requirements for UTM.
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Table 2. The specifications of Volantex Ranger 2000 V757-8 2000mm.

Specification Value

Wingspan 2.0 m
Overall Length 1.1 m
Height 0.25 m
Average Speed 20 m/s

Table 3. The information about the experiments.

Case Crossing Head-On

Video Information

Resolution 3840 × 2160 3420 × 1924
Focal Length 35 mm 35 mm

FOV 69 degrees 69 degrees
Frames Per Second 30 30

Weather Overcast Cloudy

Intruder’s Information

Average Speed 20 m/s 20 m/s
Altitude 100 m 50 m

Host’s Information

Altitude 90 m 45 m
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In the crossing experiment, the intruder was first detected 350 m away from the camera,
and the Mask R-CNN model recognized it successfully as well. The trajectory of the intruder
on the 2D image plane, which is detected by the background subtraction method with
the help of a Kalman filter to eliminate background noise, is shown in Figure 17. The
proposed method can produce a smooth and continuous trajectory. The results of the area
estimation of the intruder are shown in Figures 18 and 19 for the crossing and head-on
cases, respectively. After the data was smoothed using a Kalman filter, the regression curve
was found, which represents the area expansion curve of the intruder.
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4.2. Collision Avoidance Simulations

The simulations were conducted to verify the feasibility and performance of the pro-
posed collision avoidance approach, including the detection of an intruder, the estimation
of the flight area, the assessment of collision risk, and the avoidance of mid-air collisions in
the simulations. Different simulated scenarios, including different sizes and types of in-
truders and different velocities of intruders and host aircraft, were executed. Two different
wingspans in the Sky Surfer fixed-wing UAV model and a fly-wing model were used in
the simulations as intruders. The simulations were carried out using Blender 2.8 software.
The intruder-approaching simulations were presented in the form of three-dimensional
animations rendered by Blender software [38], and the trajectory control of the host was
calculated with Python code to determine the camera parameters in the simulations. The
sampling rate of collision risk is set to 3 Hz to match the actual computing speed. The
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camera information is shown in Table 4, and the simulation cases and conditions are shown
in Table 5.
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Table 4. Video information in the simulation.

Video Information Value

Resolution 3840 × 2160
Focal Length 35 mm
FOV 54 degrees
Video Length 300 frames
Frames Per Second 30

Table 5. Information on collision avoidance cases.

Case Type of the Intruder (Wingspan) Speed of UAVs
Vint Vhost

Crossing 1 I Fixed-wing (2.0 m)
15 m/s 5 m/sII Fixed-wing (1.4 m)

Crossing 2 I Fixed-wing (2.0 m)
5 m/s 15 m/sII Fixed-wing (1.4 m)

Crossing 3 Flywing (3.5 m) 15 m/s 15 m/s

Head-on
I Flywing (3.5 m) 15 m/s 5 m/s
II 5 m/s 15 m/s
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The proposed collision risk is composed of three factors: area expansion, position,
and bearing. The weightings for the three collision risk factors are determined by a bio-
inspired algorithm. For an animal’s vision system, the TTC is the most crucial component
of determining whether the intruder is a threat or not. In a single-vision system, the TTC is
roughly estimated by the size expansion rate of the intruder. Therefore, the area expansion
ratio should be the main factor that affects the collision risk. In addition to the TTC, the
position of the intruder also significantly affects the collision risk. As for the bearing angle
of the intruder, it has less effect on determining the collision risk since it is mostly used
to determine whether the intruder is approaching the center of the image. After trying
several sets of distributions of weights, the best distribution that matches the requirements
of most scenarios was found to be w∆a = 0.5, wp = 0.333, and wb = 0.167. The maximum

angular velocity of the host aircraft was set to
.
θmax = π/2 rad/s, and the gain used for the

.
θtr calculation was set to ktr = 1.5.

The results are shown in Table 6. The performance is evaluated based on the detected
range, the distance when the collision avoidance began, the minimum TTC, and the
minimum separation distance (MSD). The detected range is the distance between the
host and the intruder when the intruder is first detected. The distance when collision
avoidance began is the distance between the host and the intruder when the collision risk
assessment triggered collision avoidance. The minimum TTC is the estimated minimum
time to the closest point of approach. The MSD is the minimum separation distance between
the host and the intruder. For these four evaluations, the larger these values are, the safer
the host flight is and the better the proposed collision avoidance approach.

Table 6. The results of each simulated case.

Case
Distance (m)

Min TTC (s) MSD (m)
Detected Range Collision Avoidance Began

Crossing 1 I 292.3 233.8 10.16 21.52
II 292.3 285.9 11.85 25.57

Crossing 2 I 292.4 292.4 14.54 42.95
II 292.4 279.4 13.88 38.54

Crossing 3 434.6 434.6 13.93 56.61

Head-on I 300 300 5.01 15.90
II 300 300 6.97 31.14

For the crossing cases, the intruder approached the host aircraft at an angle of 30 de-
grees from the right. For the head-on cases, the intruder approached the host aircraft
straightforwardly. The corresponding video frames of Crossing 1-I are shown in Figure 20,
and it shows that as the intruder approaches, the estimated areas increase. Figure 21 shows
the corresponding video frames of Head-on I, and the estimated areas are also increasing
when the intruder is approaching. The trajectories of the host and intruder in all cases are
shown in Figure 22.

As supported by Table 6 and Figure 22, the proposed collision avoidance approach
allows the host aircraft to successfully detect and avoid the different types, sizes, and
velocities of intruders. Since the collision risk is assessed based on the area expansion rate
in this study, the simulated results of different sizes of intruders should be about the same.
Therefore, in Crossing 1 and Crossing 2, the minimum TTCs only have 1.69 (s) and 0.66 (s)
differences, which means the proposed method is applicable to different sizes of intruders.
For the host aircraft with speeds of 5 m/s, the average minimum TTC is 30% less than
those with a speed of 15 m/s, and the relative speed in each case is the same (20 m/s). This
means that the avoidance efficiency is related to the evasion speed of the host aircraft.

In Figure 22, a few timestamps are shown to indicate the positions of the host and
intruder aircraft. t0 is the time when the intruder is first detected, t1 is the time when
collision avoidance begins, and t_5 is the time when the intruder is out of sight. The total
time for which the intruder is in the host’s sight for the different cases in the order shown
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in Table 6 is 13.3, 13.6, 12.67, 11.6, 12.67, 14.0, and 11.3, respectively. All cases have achieved
the goal of this research, which is to detect the intruder 10 s before the collision.
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5. Conclusions

In this study, a vision-based mid-air object detection and avoidance approach for
small fixed-wing UAVs was developed with the help of deep learning and risk assessment
methods. The proposed collision avoidance approach consists of three stages: (1) intruder
detection, (2) area estimation, and (3) collision risk assessment and collision avoidance.
Firstly, a moving intruder is successfully detected by the background subtraction method
without depth information. Secondly, a custom-trained Mask R-CNN model is utilized to
recognize the class of the fixed-wing intruder and estimate its area. Thirdly, the collision
risk of the intruder is assessed by analyzing its area expansion ratio, coordinates in the
image, and relative motion in the image. The background subtraction and area estimation
methods were evaluated with real flight videos, and the results successfully achieved our
objectives. The maximum detection range of the proposed vision-based detection method
is about 400 m, which meets the DAA requirements for UTM. The risk-based collision
avoidance method was evaluated by the simulations, and the results show that the host
aircraft avoided the intruder by a safe distance and TTC in most of the scenarios. All the
cases achieved the goal of this research, which is to detect the intruder 10 s before the colli-
sion. Some future works that can improve the proposed approach include optimizing the
weighting distribution of the collision risk to improve the efficiency of collision avoidance
and extending the custom Mask R-CNN dataset by adding different kinds of UAVs, such
as quadcopters and helicopters.
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