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Abstract: This study investigates the use of terrestrial laser scanning (TLS) in urban excavation sites,
focusing on enhancing ground deformation detection by precisely identifying opening geometries,
such as gaps between pavement blocks. The accuracy of TLS data, affected by equipment specifica-
tions, environmental conditions, and scanning geometry, is closely examined, especially with regard
to the detection of openings between blocks. The experimental setup, employing the BLK360 scanner,
aimed to mimic real-world paving situations with varied opening widths, allowing an in-depth
analysis of how factors related to scan geometry, such as incidence angles and opening orientations,
influence detection capabilities. Our examination of various factors and detection levels reveals the
importance of the opening width and orientation in identifying block openings. We discovered the
crucial role of the opening width, where larger openings facilitate detection in 2D cross-sections. The
overall density of the point cloud was more significant than localized variations. Among geometric
factors, the orientation of the local object geometry was more impactful than the incidence angle.
Increasing the number of laser beam points within an opening did not necessarily improve detection,
but beams crossing the secondary edge were vital. Our findings highlight that larger openings and
greater overall point cloud densities markedly improve detection levels, whereas the orientation of
local geometry is more critical than the incidence angle. The study also discusses the limitations
of using a single BLK360 scanner and the subtle effects of scanning geometry on data accuracy,
providing a thorough understanding of the factors that influence TLS data accuracy and reliability in
monitoring urban excavations.

Keywords: terrestrial laser scanning; opening geometry; point cloud data; laser incidence angle;
scanning geometry

1. Introduction

In urban areas, such as residential or commercial zones, excavations pose significant
challenges due to the potential impacts on neighboring structures, utilities, and pedestrians.
Traditional surveying methods have often been insufficient in comprehensively determining
the impacts of such excavations. For instance, while asphalt and concrete pavements
adjacent to the excavations might not visibly settle, the underlying soil can be affected and
deformed. More flexible pedestrian block pavements, however, can manifest noticeable
deformations, resulting in changes in the gaps between blocks. Conventional ground
movement detection methods, such as affixing steel nails for level surveys, sometimes miss
significant shifts. Hence, monitoring the variations in the gaps between pavement blocks,
illustrated in Figure 1, offers a more comprehensive perspective on ground deformation
due to urban excavation.
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Figure 1. (a) Supporting wall and safety fence standing at an excavation site; (b) block pavement for 
pedestrians adjacent to the safety fence outside the excavation site; (c) example of misaligned blocks 
adjacent to the safety fence; (d) example of severe distortion in the block pavement. 

2. Materials and Methods 
2.1. Scanner 

The BLK360 TLS [2] was used to collect point clouds of the test specimens. Table 1 
lists the technical specifications of TLS. BLK360 operates based on the scanning optics of 
a vertically rotating mirror on a horizontally rotating base. A rotating optical mirror is 
used to transmit the laser beam to an object and receive a return beam. The point accuracy 
is expressed in Cartesian coordinates and is different from the measurement range. The 
scan angle step indicates the ability to resolve two equally intense point sources on adja-
cent lines of sight. The field of view (FOV) offers possible angle-scanning ranges in the 
horizontal and vertical directions. In the standard setup for upward scanning, the vertical 
FOV is limited to 300°, which results in the ground view beneath the scanner being 
missed. The scanner had a full view of the ground beneath the scanner upon the flipping 
of the Leica BLK360 scanner downward to the ground. 

Table 1. Technical specification of TLS [2]. 

Description Value 
System Leica BLK360 

Metrology method Pulse-based (time of flight) 
Laser pulse duration 4 10  s 

Pulse repetition frequency (PRF) 1,440,000 Hz 
Beam divergence (FWHM, full range) 0.0004 rad 

Beam diameter 2.25 mm at the front window 
Mirror rotation frequency 30 Hz 
Base rotation frequency 0.0025 Hz 
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Point accuracy (1 sigma) 6 mm at 10 m and 8 mm at 20 m 
Scan angle step size, Δ (°) * 0.00751 

Scan angle accuracy (°) 0.0111 
Field of view H/V (°) 360/300 

* The scan angle step size was estimated based on the angular velocity of the mirror, base rotation, 
and pulse repetition frequency. 

  

Figure 1. (a) Supporting wall and safety fence standing at an excavation site; (b) block pavement for
pedestrians adjacent to the safety fence outside the excavation site; (c) example of misaligned blocks
adjacent to the safety fence; (d) example of severe distortion in the block pavement.

Terrestrial laser scanning (TLS) has emerged as a modern approach to obtaining intri-
cate surface data. This aids in constructing accurate digital models and permits extensive
data collection during excavation processes [1]. Despite its potential, the accuracy of TLS
can differ based on the monitored objects and equipment specifications. For example, our
study employs the Leica BLK360 scanner from Leica Geosystems (Heerbrugg, Switzer-
land) [2]. According to the manufacturer, this scanner offers an accuracy of 6 mm at a
distance of 10 m and 8 mm at 20 m. Although the single-point accuracy of TLS might fall
short of traditional methods, such as level and total station surveys [3,4], the accuracy can
be enhanced through the intricate object extraction process [5,6]. Unfortunately, TLS does
not inherently capture specific features like the gaps or openings between blocks, which
represent our study’s focus. These features become discernible post the modeling of the
extracted scanned point clouds [7].

Geometrically, opening geometries between pavement blocks can be categorized as
specific forms of cracks in flat surfaces. Many studies have focused on devising computa-
tional techniques for detecting cracks in surfaces like concrete, asphalt, and timber [8–17].
Compared to photogrammetry, using TLS for crack detection is superior, especially for
assessing crack depths. Laefer et al. [18] present the fundamental mathematics and ex-
perimental validation for determining the minimum detectable crack width in unit-based
masonry using TLS. However, guaranteeing the integrity of data remains a challenge,
especially when detecting intricately structured cracks [19,20].

The quality and precision of point cloud data are influenced by several factors, such
as instrumental mechanisms, environmental conditions, object surface properties, scan
geometry, and object geometry [21–23]. Boehler et al. [7] present a comprehensive study
on the accuracy of 3D laser scanners, comparing various models through standardized
tests to assess the quality of the data that they produce. The effects of the scan geometry,
focusing on the laser incidence angle and the range of the beam, have been intensively
investigated [24–28]. The effects of the scan geometry have been extensively investigated
in various fields, such as tunnel inspection [29], structural deflection [30], soil surface
roughness assessment [31], rock surface roughness [32], and forests [33]. Gerbino et al. [34]
examined how the scanner-to-object orientation, ambient lighting, and scanner settings
affect the accuracy of 3D laser scanning in manufacturing inspection processes. Notably,
previous studies typically worked within certain environments, such as surveying only flat
or curved surfaces. However, many geometric aspects of scanning objects with localized
openings have yet to be thoroughly investigated.
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In this study, we investigate the impact of multiple factors related to scan geometry on
the detection of openings between blocks. Specifically, we examine the incidence angles,
opening dimensions, the orientations of localized opening geometries, the numbers of laser
points beaming into the opening, and point cloud densities. Through nine unique metrics,
we identify correlations between these parameters and their detection level. Our results
offer a ranked list of these factors, offering crucial insights for improved measurement
approaches in ground movement detection scenarios in the urban excavation.

2. Materials and Methods
2.1. Scanner

The BLK360 TLS [2] was used to collect point clouds of the test specimens. Table 1
lists the technical specifications of TLS. BLK360 operates based on the scanning optics of a
vertically rotating mirror on a horizontally rotating base. A rotating optical mirror is used
to transmit the laser beam to an object and receive a return beam. The point accuracy is
expressed in Cartesian coordinates and is different from the measurement range. The scan
angle step indicates the ability to resolve two equally intense point sources on adjacent lines
of sight. The field of view (FOV) offers possible angle-scanning ranges in the horizontal
and vertical directions. In the standard setup for upward scanning, the vertical FOV is
limited to 300◦, which results in the ground view beneath the scanner being missed. The
scanner had a full view of the ground beneath the scanner upon the flipping of the Leica
BLK360 scanner downward to the ground.

Table 1. Technical specification of TLS [2].

Description Value

System Leica BLK360
Metrology method Pulse-based (time of flight)

Laser pulse duration 4 × 10−9 s
Pulse repetition frequency (PRF) 1,440,000 Hz

Beam divergence (FWHM, full range) 0.0004 rad
Beam diameter 2.25 mm at the front window

Mirror rotation frequency 30 Hz
Base rotation frequency 0.0025 Hz
Min./max. range (m) 0.6 m/60 m

Range accuracy 4 mm at 10 m and 7 mm at 20 m
Point accuracy (1 sigma) 6 mm at 10 m and 8 mm at 20 m

Scan angle step size, ∆ (◦) * 0.00751
Scan angle accuracy (◦ ) 0.0111
Field of view H/V (◦) 360/300

* The scan angle step size was estimated based on the angular velocity of the mirror, base rotation, and pulse
repetition frequency.

2.2. Test Specimens

In lieu of concrete pavement blocks, which often exhibit dimensional inconsistencies
during mass production, we employed black-coated metal plates to meticulously construct
test specimens. Each plate has the dimension of 25 mm in width, 25 mm in thickness, and
145 mm in length. These specimens emulate four aligned paving blocks with a specified
opening geometry. Figure 2 describes these specimens with varying opening widths,
achieved by positioning pairs of metal blocks. Figure 2a illustrates the configuration of the
scanner and the opening geometry specimen.

As depicted in Figure 2a, the top view reveals the opening geometry as a rectangle,
characterized by a longer “primary edge” of length b and a shorter “secondary edge”
of length w. The reference point is set as the midpoint of the primary edge, shown in
Figure 2a, and the reference line is the horizontal line between the reference point and the
ground-projected center of the scanner. We established the opening width, w, between the
two blocks by 2, 5, 10, 15, and 20 mm, as shown in Figure 2c–g. To maintain the desired
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width, detachable white plastic spacers, calibrated to an accuracy of 0.01 mm, were inserted
between the blocks, as can be seen in Figure 2.
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Liu et al. [35] emphasize that the density of point clouds in single-scan TLS is closely
linked to object geometry, which, when combined with scan geometry and instrumental
parameters, quantitatively influences the distribution of points. Consequently, it is neces-
sary for the point cloud data from the scanned specimen to be segregated into two distinct
zones: ‘Zone A’, which encompasses the complex geometry of the opening, and ‘Zone B’,
which comprises the adjoining flat surface. Figure 2b delineates the dimensions of Zones A
and B, which, respectively, cover areas of 6000 mm2 and 9000 mm2. After scanning, the
point densities of Zones A and B are designated by ρA and ρB, respectively.

2.3. Test Configurations

Figure 3 illustrates the configuration of the scanner and the test specimen. The inci-
dence angle θ is defined as the angle between the laser beam vector and the normal vector
of a surface of the test specimen at the reference point. The angle α describes the orientation
of the opening geometry relative to the scanner, specifically, the angle between the normal
vector of the primary edge and the reference line in the horizontal plane. Figure 3 also
shows how the test specimen was configured prior to scanning at incidence angles θ of 0◦,
10◦, 20◦, 30◦, 45◦, or 60◦, and the orientation of the opening geometry, α = 0◦, 45◦, and 90◦.

Figure 4 describes the various symbols used for the geometric condition of the test
configuration. The vertical gap from the scanner to the specimen’s level surface is denoted
as H, which is constantly 107 cm in all the test configurations. The distance L represents the
span between the ground-projected center of the scanner and the reference point. β denotes
the angle offset of the current laser beam from the reference line in the horizontal plane,
with Lβ being the line from the scanner to the laser point of contact with the edge. Figure 4a
focuses on the cross-section of the opening geometry as it interacts with the laser beam
where θβ is the incidence angle of the laser at an arbitrary β, with θ being the angle when
β = 0. The depth of the opening in the cross-sectional view is d. The width, wβ, deviates



Remote Sens. 2024, 16, 759 5 of 18

from w depending on β. Figure 4a illustrates that the laser beam does not reach the base of
the opening completely, with nw being the number of the laser beam points reaching the
base. The critical angle at which the laser interacts with the opening’s base corner is θβ0.
For θβ less than θβ0, the laser touches the base of the opening. Otherwise, it only interacts
with its vertical face, with nd being the number of the laser beam points reaching the face.
Table 2 summarizes the geometric conditions of the test configurations.
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Figure 3. Configuration of the specimen and the scanner at (a) the incidence angle, θ, and the orientation
of the opening geometry, α. The scanner and the specimens were configured at the incidence angles of
(b) 0◦ and (c) 60◦. The TLS was flipped downward to scan the specimen on the ground.
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Table 2. Scan geometric conditions.

Setup Parameter Value

Set width of the block opening, w (mm) 2, 5, 10, 15, 20
Incidence angle, θ (◦ ) 0, 10, 20, 30, 45, 60

Orientation of the block opening, α (◦ ) 0, 45, 90

The trigonometric properties shown in Figure 4 can give the following equations to
calculate various geometric parameters, with ∆ being the scan angle step size of 0.00751◦:

nw = 1
∆

[
(Htan θβ+wβ)−tan θβ(H+d)
(H+d)+(Htan θβ+wβ)tan θβ

]
for θβ < θβ0 and

nw = 0 for θβ ≥ θβ0

(1)

nd = 1
∆

[
(Htan θβ+wβ)−Htan θβ0

H+(Htan θβ+wβ)tan θβ0

]
for θβ < θβ0and

nd = 1
∆

[
(Htan θβ+wβ)−Htan θβ

H+(Htan θβ+wβ)tan θβ

]
for θβ ≥ θβ0

(2)

Lβ =
Lcot α

cos βcot α − sin β
(3)

θβ = arctan
(

Lβ/H
)

and θβ0 = arctan
( Lβ + wβ

H + d

)
(4)

wβ = w
cos(β+α)

for the primary edge

wβ =
w+L(sin(β−β2)/sin(β−α))

cos(β−α)
for the secondary edge

(5)

β1 = arctan
(

bcos α

2L + bsin α

)
and β2 = arctan

(
bcos α

2L − bsin α

)
(6)

Using these geometric parameters, one can calculate nprime and nsecond, the numbers of
laser beams that intersect the primary edge line and the secondary edge line, respectively,
and ntotal , the total number of laser beam points reaching the base and vertical face of the
opening, as follows:

nprime = ∑
β2
β=β1

(nw + nd), nsecond = ∑
β3
β=β2

(nw + nd), and
ntotal = nprime + nsecond

(7)

2.4. Detection Level

Figure 5 provides a structured overview of the methodology employed to process
the point cloud datasets derived from TLS measurements. Once the scanning phase
was concluded, the dataset was transferred to a computer for further evaluation using
Leica Cyclone 3dr software (version 2023.0.0.42805) [36]. As depicted in Step 3, following
preliminary processing with Leica Cyclone 3dr, the dataset was transitioned to AutoCAD
software (version 2022). At this juncture, data points beyond the predefined boundary,
highlighted in red, were excluded. Step 4 to 6 involve segmenting the remaining data
points of interest into 20 distinct segments. A straight line, representing the top surface
of the blocks, is drawn through the 2-dimensional center of the point cloud regions that
do not encompass the opening geometry in the cross-sectional view of a chosen segment,
as highlighted in Step 7. This aids in identifying edges of the opening geometry where
points deviate from the straight line, as depicted in Step 8. In Step 9, the opening width
within the selected segment is measured by the distance between two edges facing each
other. In instances of excessive noise in the point cloud, hindering edge identification,
the corresponding segment dataset is marked as “non-detectable”. Upon processing all
20 segments, the detection level is quantitatively determined by calculating the proportion
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of successfully identified segments to the total 20 segments. For example, the detection
level reaches 90% when there are two non-detectable segments out of twenty segments.
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3. Results
3.1. Point Cloud Density

To determine the point cloud density, the dataset from Step 4 in Figure 5 is further
processed to remove points outside Zones A and B, shown in Figure 2b. The abscissa and
ordinate axes on the horizontal plane are then divided into 100 grid divisions, resulting in
10,000 mesh-like bins when viewed from above. The point cloud density is determined by
counting the points within each bin and then dividing by its area.

Figure 6 presents the planar variations in point cloud density using color gradients.
Observations from Figure 6a reveal a consistent distribution of data points over the plan
view for α = 90◦, irrespective of variations in the incidence angle (θ) or set width (w). It
is evident that the maximal point cloud density occurs at θ = 0. However, this highest
density does not necessarily mean the best data quality. In the test conditions with a narrow
set width (specifically, w = 2 or 5 mm) and small incidence angles (θ = 0◦ or 10◦), the
density distribution for α = 90◦ is nearly identical to the uniform distribution observed at
α = 0◦ shown in Figure 6b. Conversely, with a wide set width (e.g., w = 20 mm) and large
incidence angle (e.g., θ = 60◦) at α = 0◦, a distinctive linear pattern emerges, signifying the
opening geometry. This pattern deviates from the uniformly distributed point cloud density
associated with α = 90◦. A closer look at Figure 6b for α = 0◦ reveals noticeable differences
in point cloud density near the area encompassing the opening geometry, as indicated
by the distinct blue and red linear patterns. This underscores the inherent differences in
laser reflection between the vertical face of the opening geometry and the flat horizontal
surface of the test specimen. The patterns presented in Figure 6c for α = 45◦ reflect the
trends previously observed in the point cloud density distributions for α = 0◦. Due to
the clear trends noticed for α = 0◦ and 45◦, we assessed the point cloud densities for two
distinct zones: the A zone, which covers the opening, and the B zone outside of the A zone.
The average point cloud densities for these zones are represented by ρA (Zone A) and ρB
(Zone B). The exact dimensions for Zones A and B have been detailed earlier, in Section 2.2.
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3.2. Detection Levels

Figure 7 presents the changes in detection level, represented by the numbers in the
matrix cell, in correlation with a varying set width, w, and incidence angle, θ. This figure
reveals that detection levels remain consistently high at α = 90◦ for all values of w and θ.
However, detection levels are notably influenced by w, with a significant decrease observed
for narrower set widths at α = 0◦ and 45◦. Furthermore, when examining the detection
level at an incidence angle of θ = 60◦ at α = 0◦ and 45◦, capturing the opening geometry
becomes unfeasible, even with a large set width of 10 mm. These findings underscore the
interplay between geometric factors and their impact on detection levels.
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In Figure 8, the detection level shows variable degrees of correlation with ρA and ρB,
influenced by the orientation parameter α. At α = 0◦, a slight positive correlation emerges
between the detection level and ρA, indicating that a higher point cloud density within
Zone A may improve detection capabilities. With α shifting to 45◦, the correlation between
the detection levels and both ρA and ρB remain positive, although the scatter of the data
points increases, hinting at added complexities in detection introduced by the change in
orientation. The correlation becomes more distinct at α = 90◦, where ρA demonstrates
a strong positive correlation with the detection level, whereas ρB shows a more modest,
albeit positive, correlation. These observations are in line with the conclusions drawn by
Liu et al. [35], who found that object geometry plays a significant role in the variability in
point cloud density, which, in turn, affects the accurate reflection of the geometric features
of various targets.
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In Figure 9, the correlation between the quantity of laser beams and detection accuracy
of openings at α = 90◦, 0◦, and 45◦ is illustrated. At α = 90◦, an increase in laser beams
enhances detection, with the result of nsecond particularly improving and aligning closely
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with that of nprime. However, there appears to be a saturation point beyond which additional
beams do not significantly increase the detection level. In the context of α = 0◦, as shown in
Figure 9b, the detection level for nprime remains consistently optimal across varying beam
counts. In contrast, at α = 45◦ in Figure 9c, the detection levels for both nprime and nsecond
evolve with increased beam counts but do so in a coordinated manner. This suggests that
the test setup with α = 45◦ yields results that bridge the outcomes observed at both α = 0◦

and 90◦.
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4. Discussion

Although we observed some patterns in the detection levels under various parameters,
the hierarchy of their impact is yet to be determined. Soudarissanane et al. [26] identified
four principal factors that influence the quality of a scan point procured through TLS:
instrumental calibration, atmospheric conditions, object properties, and scanning geometry.
Expanding their results, our study focuses on the geometric factors of scanning. For a
systematic approach, we divided the following eight parameters into three categories.
The first group pertains to the test configurations and scan geometry. It encompasses
the set width (w), the orientation of the opening geometry (α), and the incidence angle
(θ). The second group includes the total number of laser beam points projected into the
opening geometry (ntotal), the subset that passes the primary edge line (nprime), and those
intersecting the secondary edge line (nsecond). The third group focuses on the point cloud
densities in Zone A covering the opening geometry (ρA) and the zone outside Zone A (ρB).

Figure 10 illustrates the correlation matrix, detailing the Pearson’s correlation values
between the detection level and eight parameters. The highest positive correlation to the
detection level can be found at the set width, w, while the highest negative correlation can be
found at the orientation of the opening geometry, α. Although Figure 10 allows for the ranking
of the influencing parameters based on correlation values, it is essential to note that Pearson
correlation primarily measures linear relationships. However, as seen in Figures 8 and 9, our
data do not always demonstrate a linear relationship between parameters and detection
level. Hence, examining other metrics becomes essential to capture the underlying patterns
more accurately. Herein, we have used nine ranking metrics to further investigate the
influence of various parameters on detection levels. Their characteristics and specialties are
outlined in Table 3.
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Table 3. Comparison of ranking metrics: characteristics and specialties.

Ranking Metrics General Characteristics Specialty

Pearson correlation coefficient Measures linear relationship between
two variables

Simple, widely used for
continuous variables

Partial correlation
Measures linear relationship between two

variables and controls for the effects of another
set of variables

Accounts for potential
confounding variables

Mutual information Measures dependence between variables, can
capture non-linear relationships

Detects any kind of relationship
(non-linear included)

Multivariate linear regression Explores relationship between two or
more variables

Can rank the importance of predictors for
a given response

Principal component analysis Transforms original variables into orthogonal set Extracts most informative features;
dimension reduction

Random forest analysis Ensemble tree-based learning method Offers feature importance ranking out of
the box

Lasso regression analysis Linear regression with L1 regularization Feature selection by shrinking some
coefficients to 0

Elastic Net analysis Combines L1 and L2 regularization of LASSO
and Ridge

Addresses multicollinearity;
feature selection

XGBoost analysis Gradient-boosted tree-based method High performance; provides feature
importance scores

Figure 11 presents the ranking of influencing parameters on detection levels using
nine different metrics. The Pearson correlation measures the linear relationship between
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variables, with the bar length and direction representing the correlation strength and type,
respectively. The partial correlation refines this by accounting for other variables, high-
lighting a direct relationship, with standardized coefficients offering insights. The mutual
information (MI) scores emphasize variable interdependency, where a higher score indicates
a stronger relationship. Linear regression examines the relationship between a dependent
variable and its predictors, with bar lengths denoting coefficient significance. Principal
component analysis (PCA) addresses dimensionality reduction, illustrating each factor’s
contribution to the primary component. Random forest evaluates factors’ importance based
on their prevalence in decision trees. LASSO regression incorporates a penalty for non-zero
coefficients, leading to potential feature selection, with bar lengths denoting coefficient
significance. Elastic net regression combines LASSO and ridge regression attributes, with
the bars indicating coefficient magnitude. Finally, XGBoost assigns importance scores to
each factor.
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Figure 12 presents the final ranking of influencing parameters on the detection level
of opening geometry using point cloud data. This ranking is determined based on the
Borda count of the parameters, as shown in Figure 11. The Borda count is a ranking-
based voting method where voters order choices, and points are assigned based on these
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rankings. This approach is useful for aggregating the preferences of multiple evaluators,
i.e., nine different metrics herein, in a way that accounts for the relative rankings of all
options [37,38]. The opening width, w, emerges as the paramount parameter, implying that
wider openings increase detection levels. Interestingly, ρB exhibits an advantage over ρA
slightly, emphasizing the primacy of point cloud density on flat surfaces over surfaces with
local geometry. Hence, a general enhancement in point density assumes greater significance
than localized density disparities. The high ranking of both ρA and ρB indicates that the
relationship between point cloud density and geometric parameters might be intricate.
Among the geometric parameters considered, w clearly outweighs both α and θ in influence.
Notably, α takes precedence over θ, suggesting that the orientation of the local geometry
is more influential than its angle of incidence. Theoretically computed numbers of the
laser beam point, specifically nprime, nsecond, and ntotal , are ranked lower. This indicates
that merely amplifying the number of beam points inside the opening is not a guaranteed
strategy for improved detection. Among these, nsecond stands out, suggesting that for
optimal detection, laser beams traversing the secondary edge are more consequential than
those on the primary edge.
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In summarizing the findings of our study, it is imperative to acknowledge certain
limitations that could influence the generalizability of our results. Primarily, the exclusive
use of the BLK360 scanner may limit the applicability of our findings across various static
TLS devices. It is worth noting that there can be significant differences in the quality of
data scanned by various 3D laser scanners, as reported by Boehler et al. [7]. As detailed by
Petrie and Toth [39] in their comprehensive comparison of TLS systems, different scanners
vary in technical specifications, which can potentially affect data accuracy and precision.
According to Soudarissanane et al. [23], two major influencing factors related to scanning
geometry—the incidence angle and range—are crucial, as they directly influence the signal-
to-noise ratio and the precision of measurements of planar surfaces. Soudarissanane [25]
found that the range effect model is dependent on the laser scanner model used. In our
study, the ranges in our test setups were less than 3 m, and their effect on signal deterioration
was insignificant. We observed the same pattern of signal deterioration with increasing
incidence angle, as depicted in Figure 7. Interestingly, we found that the orientation of
the local opening geometry, which also defines the scanning geometry, is as crucial as the
incidence angle.

Our research utilized a specific geometry of block opening, raising uncertainties about
the replication of our conclusions in scenarios involving different geometrical forms, like
holes or irregular cracks. Additionally, the absence of a diverse range of case studies,
particularly in more open environments, is a practical limitation. Environmental factors,
such as light intensity, humidity, and other conditions, distinct from geometric factors, play
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a significant role in TLS accuracy in open settings. However, these factors are not accounted
for in the current study, and thus, their impacts warrant separate investigation.

5. Conclusions

This study investigated different parameters influencing the detection level of opening
geometries using point cloud data acquired using the BLK360 laser scanner. Our findings
underscore the significance of several key parameters:

(1) Opening width: The width of the opening proved to be a crucial parameter. Larger
openings notably enhance detection levels, with a rectangular shape in a 2D cross-
sectional view becoming more distinct as the space between blocks expands. Under
our test configuration, we guarantee the detection of openings wider than 10 mm.

(2) Point cloud density: The broad increase in point density is more significant than
specific localized density variations. This indicates a complex relationship between
the point cloud density and geometric parameters, where object geometry is a key
factor in point cloud density variations, thereby influencing the precise depiction of
geometric characteristics in different targets.

(3) Geometric parameters: Among the geometric parameters considered, the orientation
of the local geometry (α) holds more weight than its angle of incidence (θ). Under our
testing setup, we ensure the detection of an opening geometry with α = 90◦.

(4) Laser beam points: Theoretically computed numbers for the laser beam point are
given lower priority. This suggests that simply increasing the beam points inside an
opening does not necessarily enhance detection levels. It is worth noting that nsecond
is prominent, suggesting that laser beams crossing the secondary edge have greater
impact than those on the primary edge.

There are limitations associated with the use of a single BLK360 scanner, which may
affect the generalizability of findings across various TLS devices due to differences in data
quality and technical specifications, as reported in previous research. Two factors related to
scanning geometry, incidence angle and range, significantly influence data precision. The
study’s tests showed negligible range effects under 3 m but confirmed signal deterioration
with increasing incidence angles, a pattern consistent with prior findings. Additionally,
the orientation of the local opening geometry, which also defines the scanning geometry,
was identified as a critical factor, highlighting the nuanced impact of scanner-specific
characteristics on data accuracy and reliability.
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