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Abstract: With the growing scarcity of spectrum resources, wideband spectrum sensing is necessary
to process a large volume of data at a high sampling rate. For some applications, only second-order
statistics are required for spectrum estimation. In this case, a fast power spectrum sensing solution is
proposed based on the generalized coprime sampling. The solution involves the inherent structure of
the sensing vector to reconstruct the autocorrelation sequence of inputs from sub-Nyquist samples,
which requires only parallel Fourier transform and simple multiplication operations. Thus, it takes
less time than the state-of-the-art methods while maintaining the same performance, and it achieves
higher performance than the existing methods within the same execution time without the need to
pre-estimate the number of inputs. Furthermore, the influence of the model mismatch has only a
minor impact on the estimation performance, allowing for more efficient use of the spectrum resource
in a distributed swarm scenario. Simulation results demonstrate the low complexity in sampling
and computation, thus making it a more practical solution for real-time and distributed wideband
spectrum sensing applications.

Keywords: genralized coprime sampling; power spectrum sensing; non-sparsity; blind sensing;
cyclostationary

1. Introduction

The demand for spectrum resources is increasing due to the rapid development of
low-orbit satellite constellation systems (e.g., SpaceX, OneWeb), 5G/6G networks, and the
Internet of Things (IoT) [1,2]. These applications are driving an unprecedented increase
in demand for wideband spectrum sensing. Correspondingly, direct sampling requires a
high-speed analog-to-digital converter (ADC) [3] based on the Shannon–Nyquist sampling
theorem, increasing data volume and energy consumption.

Currently, the most widely used methods are sweep-tune sampling and filter band
sampling. Both of these methods fall under the category of low-speed sampling. However,
the scanning scheme has a detection latency and may miss short-lived signals [4]. In
addition, the filter band scheme has a complicated structure and is prone to serious channel
crosstalk [5]. Consequently, there has been a trend towards using wideband spectrum
sensing as a guide.

The recent compressive sensing (CS) theory provides a sub-sampling scheme that of-
fers low-speed and large instantaneous bandwidth by utilizing the sparsity in the frequency
domain [6,7]. The typical CS schemes include the analog-to-information converter (AIC),
multi-coset sampling (MCS), and multi-rate sampling (MRS). The typical AIC architecture
is the modulated wideband converter (MWC), which presents significant challenges for the
implementation of the Nyquist-rate pre-randomizing [8]. The MCS architecture is currently
a preferred scheme for the ADC with high-speed and high-precision, which cannot obtain
a high significant bit because of the mismatching between multiple channels [9]. The MRS
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architecture is currently a preferred scheme for the sparse array signal acquisition, whose
performance is limited by time synchronization accuracy [10]. Obviously, the engineering
implementation of these schemes presents major difficulty, which restricts their applica-
tions. Furthermore, the CS-based methods [3,11] for sparse signal recovery have high
computational complexity and are extremely sensitive to model matching and noise, which
mainly include greedy methods, convex methods, and others. Therefore, reducing the
dependence of signal processing algorithms on model mismatches between the digital and
the analog world is an interesting research idea.

To overcome these difficulties, the approach to spectrum estimation has shifted from
processing the original signal to analyzing its second-order statistics. In this context, the
compressive covariance sensing (CCS) theory provides a wideband spectrum sensing
scheme that operates at a low-speed and has a large instantaneous bandwidth. It is reliable
even in environments with a low signal-to-noise ratio (SNR) and in non-sparse conditions.
Generally, according to the methods of computation, the CCS-based wideband power
spectrum sensing can be divided into the time-domain approach [12] and the frequency-
domain approach [13]. The time-domain approach establishes a relationship between
the original inputs and the output samples through the selection matrix with zero and
one elements under the equivalent Nyquist-rate sampling. As well as this, the frequency-
domain approach builds the relationship between both frequency representations of them.
However, these studies mainly focus on the MWC and MCS schemes.

For the MRS scheme, the existing CCS-based methods include entropy function mini-
mization [14], matrix norm minimization [15], and Toeplitz matrix completion [16], among
others. However, all these methods are based on the reconstruction of the covariance matrix
and the use of multiple signal classification (MUSIC) algorithm, which have high computa-
tional complexity and require pre-estimation of the number of signals. Additionally, they
are also sensitive to model matching.

Furthermore, a computationally efficient method is developed, which is based on
the relationship between the autocorrelation sequence and sub-sampling samples of the
MCS scheme [17]. Building on this, a fast solution for generalized coprime sampling is
introduced, which utilizes only parallel FFT and multiplication operations. As a result, it
achieves a reduced time and low estimation error, presenting a trade-off between system
performance and the number of degrees of freedom (DOFs). Moreover, model mismatch
has minimal effect on performance, making a more practical solution for real-time and
distributed wideband spectrum sensing applications.

The rest of this paper is organized as follows: Section 2 describes the signal model
and the proposed fast power spectrum sensing solution. Section 3 conducts an analysis
and validation of the proposed solution through simulation. The discussion is presented in
Section 4.

Notations: The bold characters denote vectors. The notations R, N, and N+ represent
the set of real numbers, nonnegative integers, and positive integers, respectively. The
superscripts (·)T and (·)H indicate the transpose and conjugate transpose of a vector or
a matrix, respectively. The operator ◦ signifies the Hadamard product, | · |2 signifies the
element-wise square modulus of a vector, and ceil(·) signifies round up to an integer. The
symbols Fa and F−1

a mean the a-point fast Fourier transofrm (FFT) and the inverse fast
Fourier transofrm (IFFT), respectively.

2. Materials and Methods
2.1. Signal Model

The generalized coprime sampling architecture comprises two uniform sub-Nyquist
sampling channels, whose sampling periods are coprime multiples of the Nyquist sampling
period. The introduction of two additional operations, the multiple coprime unit factor
p ∈ N+ and the non-overlapping factor q ∈ N+, enhances the number of DOFs and
improves the estimation accuracy. Consequently, the coprime sampling scheme is presented
with sampling intervals r0Ts and r1Ts, as depicted in Figure 1. Without loss of generality, it
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is assumed that r0 < r1 with r0, r1 ∈ N+, where r0 and r1 are coprime. Additionally, the
sampling interval Ts corresponds to the Nyquist sampling rate fs.

Figure 1. Coprime sampling scheme.

For a wide-sense stationary or cyclostationary process X(t), t ∈ R, it consists of a
number of frequencies that are confined within the bandwidth Bs ≤ fs/2. The outputs of
two uniform sub-Nyquist sampling channels can be expressed as

y0[n0] = x[r0n0] = X(r0n0Ts), n0 ∈ N
y1[n1] = x[r1n1] = X(r1n1Ts), n1 ∈ N

(1)

where x[n], n ∈ N denotes the Nyquist sampling samples, and the highest sampling rate of
the coprime sampling system is given by 1/(r0Ts) = fs/r0.

Accordingly, the elements of the sensing vector corresponding to the two coprime
samplers can be denoted as

a0[i] =
{

1, i = r0l0 + kr0r1
0, elsewhere

(2)

and

a1[i] =
{

1, i = r1l1 + (k + q)r0r1
0, elsewhere

(3)

where l0 = 0, 1, . . . , r1 − 1, l1 = 0, 1, . . . , r0 − 1, and k = 0, 1, . . . , p − 1.
From a data acquisition perspective, the output samples obtained from the generalized

coprime sampling scheme are a subset of the Nyquist samples, positioned at

P = {r0l0 + kr0r1} ∪ {r1l1 + (k + q)r0r1} (4)

Based on the sensing vectors, the relationship between the elements of the generalized
coprime sampling vector and the Nyquist sampling vector can be expressed as

y[n] =
{

x[n], n ∈ P
0, elsewhere

(5)

and the elements of the associated sensing vector are defined as

a[n] =
{

1, n ∈ P
0, elsewhere

(6)

As a result, there is
y[n] = a[n] ◦ x[n] (7)

where x[n] =
[
x[0], x[1], . . . , x[N − 1]

]T , a[n] =
[
a[0], a[1], . . . , a[N − 1]

]T , and y[n] =[
y[0], y[1], . . . , y[N − 1]

]T are all vectors of size N × 1.
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2.2. Proposed Fast Solution

Considering the widely-used unbiased estimation of the autocorrelation sequence for
the output of generalized coprime sampling, the elements ry[m] can be expressed as

ry[m] =
1
N

· y[n]yH [n − m] (8)

Substituting Equation (7) into Equation (8) results in

ry[m] =
1
N

· (a[n] ◦ x[n])(aH [n − m] ◦ xH [n − m])

=
1
N

·
(
(a[n]aH [n − m]) ◦ (x[n]xH [n − m])

)
= ra[m] ◦ rx[m]

(9)

where |m| ≤ N − 1. Thus, the power spectrum can be obtained by performing FFT on
the autocorrelation sequence {rx[m]}, which is derived from the autocorrelation sequence
{ry[m]} and {ra[m]}. Therefore, a computationally efficient practical solution is employed
to obtain the estimation of the autocorrelation sequences. The steps are as follows:

Step 1: Pad vectors a[n] and y[n] with an additional N zeros.

a2N [n] =
{

aN [n], 0 ≤ n ≤ N − 1
0, N ≤ n ≤ 2N − 1

(10)

and

y2N [n] =
{

yN [n], 0 ≤ n ≤ N − 1
0, N ≤ n ≤ 2N − 1

(11)

Step 2: Calculate the autocorrelation sequence based on the power spectrum estimation
of vector a2N [n] =

[
a[0], a[1], . . . , a[2N − 1]

]T and y2N [n] =
[
y[0], y[1], . . . , y[2N − 1]

]T by
involving FFT and IFFT.

r̂′a[k] = F−1
2N |F2Na2N |2/N (12)

and
r̂′y[k] = F−1

2N |F2Ny2N |2/N (13)

where k = 0, 1, . . . , 2N − 1.
Step 3: Truncate the autocorrelation sequence of interest according to the frequency

resolution of the system ∆ f .

r̂y[m] =

{
r̂′y[m], 0 ≤ m ≤ M − 1
r̂′y[m + 2N], −M + 1 ≤ m ≤ −1

(14)

and

r̂a[m] =

{
r̂′a[m], 0 ≤ m ≤ M − 1
r̂′a[m + 2N], −M + 1 ≤ m ≤ −1

(15)

where M = ceil( f s/2/∆ f ) + 1.
Step 4: Compute the autocorrelation sequence of the inputs using the obtained se-

quences {r̂y[m]} and {r̂a[m]}.
r̂x[m] = r̂y[m]/r̂a[m] (16)

where m = −M + 1, . . . ,−1, 0, 1, . . . , M − 1.

Step 5: Obtain the power spectrum estimation by taking the FFT of the vector
r̂x[m] =

[
r̂x[−M + 1], . . . , r̂x[1], r̂x[0], r̂x[1], . . . , r̂x[M − 1]

]T .

Ŝx(ω) = |F2M−1 r̂x[m]| (17)
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The block diagram that illustrates the fast power spectrum sensing solution for gener-
alized coprime sampling is depicted in Figure 2. The proposed solution is efficient because
it only involves FFT/IFFT operations and some basic multiplication operations. Moreover,
as shown in the red section of Figure 2, the autocorrelation sequence {r̂a[m]} of the sensing
vector can be pre-calculated offline. This calculation solely depends on the generalized
coprime sampling scheme.

Consequently, the computational complexity of the proposed solution involves per-
forming the FFT on a (2N)-point sequence twice, resulting in (2N)log(2N) floating-point
operations according to (13). In addition, the FFT is performed on a (2M − 1)-point se-
quence once, leading to (2M − 1)log(2M − 1) floating-point operations according to (17).
After incorporating 2M − 1 multiplication calculations, the total computational complexity
requires (4N)log(2N) + (2M − 1)log(2M − 1) + (2M − 1) floating-point operations. This
leads to a lower computational complexity compared to the state-of-the-art methods. Mean-
while, it is feasible to effectively compute the FFT operations in parallel, making it a more
suitable practical solution for real-time wideband power spectrum sensing applications.

As researched in the state-of-art, there is an example of wideband spectrum sensing
based on the MWC architecture with a 1 GHz bandwidth, which requires a spectrum reso-
lution of 10 kHz. The time-domain approach involves at least 1014 floating-point operations
in total, assuming that the number of sampling branches is set to 8, the downsampling
factor sets to 25, then the number of output samples need to be 4000, and the number of
samples used to calculate the correlation matrix is set to 100. Moreover, the more efficient
time-domain approach has the same computational complexity as the frequency-domain
approach, which involves more than 107 floating-point operations in total under the same
assumption. Additionally, regarding the MCS schemes, 1.08 × 107 floating-point opera-
tions are needed. In comparison, the proposed method involves 8.805 × 106 floating-point
operations in total.

Figure 2. Block diagram of the proposed fast power spectrum sensing solution.
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3. Results

In the experiments, it is assumed that there are I inputs with identical powers, which
are distributed in the frequency band [2, 18] GHz. Subsequently, the coprime integers
r0 = 3, r1 = 4 and the Nyquist sampling rate fs = 32 GHz are set. Furthermore, the relative
root mean square error (RMSE) is adopted to evaluate the performance of the proposed
fast power spectrum sensing method, which is defined as follows:

Relative RMSE( fi) =
1
fs

√√√√ 1
500I

500

∑
j=1

I

∑
i=1

( f̂i(j)− fi)2 (18)

where f̂i(j) is the estimation of fi from the jth Monte Carlo trial, and five hundred Monte
Carlo trials are conducted.

3.1. Estimated Power Spectrum Performance

Herein, the estimated power spectrum results are initially displayed, with p = 3000
and an input SNR of 15 dB. As shown in Figure 3, there are I = 50 mono-frequency
pulse (MP) signals, which are randomly distributed. Figure 4 depicts I = 20 binary phase
shift keying (BPSK) signals for 1 M symbols per second with random frequency and code.
Figure 5 presents I = 2 linear frequency modulation (LFM) signals with 10 GHz bandwidth
under ±6 GHz initial frequencies. Figure 6 shows I = 21 mixture signals of three types. As
can be observed, all frequencies are estimated accurately with the proposed method.

Furthermore, there are multiple LFM signals that share the same carrier frequency but
have different quadratic modulation coefficients. The frequency and bandwidth of these
signals are randomly selected. Compared with Figure 7, the power spectrum estimation
shows an increase in the number of pseudo-spectra as more signals are aliased, and as the
number of aliased signals increases, as shown in Figure 8 and Figure 9, respectively.

Figure 3. Estimated power spectrum of MP signals (I = 50, SNR = 15 dB).
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Figure 4. Estimated power spectrum of BPSK signals (I = 20, SNR = 15 dB).

Figure 5. Estimated power spectrum of LFM signals (I = 2, SNR = 15 dB).

Figure 6. Estimated power spectrum of mixed signals (I = 21, SNR = 15 dB).
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Figure 7. Estimated power spectrum of LFM signals with the same carrier frequency (I = 2,
SNR = 15 dB).

Figure 8. Estimated power spectrum of LFM signals with the same carrier frequency (I = 2,
SNR = 15 dB).

Figure 9. Estimated power spectrum of LFM signals with the same carrier frequency (I = 3,
SNR = 15 dB).
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3.2. Relative RMSE Performance

As depicted in Figure 10, the RMSE results are compared as a function of the input
SNR, where I = 18 MP signals are utilized and the frequency is randomly selected. It is
observed that the RMSE tends to stabilize when SNR is greater than −2 dB for p = 300.
Under the same conditions, the original method exhibits better performance at a low
SNR by utilizing the Toeplitz matrix completion. Meanwhile, the estimation performance
improves as p increases, due to the fact that the DOF increases with p, leading to improved
resolution. Clearly, the performance of the MCS scheme is the worst with the same number
of samples as p = 3000, which is due to the probability of signal loss during the process
of power spectrum estimation. As expected, Figure 11 presents the same result. However,
the selection of coprime sampling rate makes less of a difference to performance when p is
greater than 1000. This is because the system redundancy under simulation is sufficient.

Figure 10. Relative RMSE versus SNR (I = 18).

Figure 11. Relative RMSE versus p (I = 18, SNR = 0 dB).

3.3. Execution Time Performance

Furthermore, the multiple coprime unit factor p not only affects the resolution, but
also determines the execution time of algorithms. Consequently, the execution time results,
as a function of p, are compared as illustrated in Figure 12, where I = 10 MP signals are
utilized and the frequency is randomly selected at 0dB SNR. The computing environment
is based on Windows 11, equipped with an AMD Ryzen 5 3500U processor, Radeon
Vega Mobile Gfx at 2.10 GHz, and 20.0 GB of RAM from Lenovo in Beijing, China. It is
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evident that the execution time of the proposed method has significant advantages over
the matrix completion method. Analogous to Figure 13, the proposed method surpasses
the matrix completion method under identical execution time. Additionally, the proposed
method requires less time than the matrix completion method under the same performance.
However, both methods depend on a larger number of samples. Therefore, a tradeoff exists
between execution time and system performance.

Figure 12. Execution time versus p (I = 10, SNR = 0 dB).

Figure 13. Execution time versus relative RMSE under the same number of samples (I = 18,
SNR = 5 dB).

3.4. Model Mismatching Performance

Finally, the influence of the model matching degree between the sensing vector and
measurements on the performance is discussed in Figure 14 with the 5 dB SNR. Here,
I = 18 frequencies are randomly selected for MP signals, and different time delays are used,
which are unknown to the sensing vector. As a result, the influence of the model mismatch
causes minimal fluctuation in RMSE within 200 µs. This is interesting, as it suggests that the
fact potentially enables more efficient utilization of the spectrum resource in a distributed
swarm scenario.
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Figure 14. Relative RMSE versus model matching (I = 18, SNR = 5 dB).

4. Discussion

A fast power spectrum sensing solution for generalized coprime sampling is proposed
that only uses the parallel FFT and simple multiplication operations. It has obvious advan-
tages over existing methods in terms of spectrum estimation performance and execution
time. Moreover, there is no need to pre-estimate the number of inputs. Furthermore,
the influence of the model mismatch has minimal impact on the spectrum estimation
performance. That makes it more suitable for further discussion on its application in the
distributed swarm scenario.
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