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Abstract: Continuous and accurate precipitation data are critical to water resource management and
eco-logical protection in water-scarce and ecologically fragile endorheic or inland basins. However, in
typical data-scarce endorheic basins such as the endorheic basin of the Yellow River Basin (EBYRB) in
China, multi-source precipitation products provide an opportunity to accurately capture the spatial
distribution of precipitation, but the applicability evaluation of multi-source precipitation products
under multi-time scales and multi-modes is currently lacking. In this context, our study evaluates
the regional applicability of seven diverse gridded precipitation products (APHRODITE, GPCC,
PERSIANN-CDR, CHIRPS, ERA5, JRA55, and MSWEP) within the EBYRB considering multiple
temporal scales and two modes (annual/monthly/seasonal/daily precipitation in the mean state and
monthly/daily precipitation in the extreme state). Furthermore, we explore the selection of suitable
precipitation products for the needs of different hydrological application scenarios. Our research
results indicate that each product has its strengths and weaknesses at different time scales and modes
of coupling. GPCC excels in capturing annual, seasonal, and monthly average precipitation as well
as monthly and daily extreme precipitation, essentially meeting the requirements for inter-annual or
intra-annual water resource management in the EBYRB. CHIRPS and PERSIANN-CDR have higher
accuracy in extreme precipitation assessment and can provide near real-time data, which can be
applied as dynamic input precipitation variables in extreme precipitation warnings. APHRODITE
and MSWEP exhibit superior performance in daily average precipitation that can provide data for
meteorological or hydrological studies at the daily scale in the EBYRB. At the same time, our research
also exposes typical problems with several precipitation products, such as MSWEP’s abnormal
assessment of summer precipitation in certain years and ERA5 and JRA55’s overall overestimation of
precipitation assessment in the study area.

Keywords: multi-source precipitation datasets; multiple time scales; extreme precipitation; extreme
climate indices; endorheic basin

1. Introduction

An endorheic or inland basin is referred to as a landlocked or closed drainage basin
lacking any water outflow to other external rivers or the ocean [1,2]. Endorheic basins,
mostly spatially concurring with arid and semi-arid areas, are water-stressed and ecologi-
cally fragile due to unique landlocked geographical location and climatic characteristics
marked by low precipitation but high potential evaporation [2,3]. Most endorheic basins
worldwide have been suffering from serious problems of shrinking lake water bodies and
ecosystem degradation under the impacts of climate change and intense human activi-
ties [2,4,5]. Precipitation in endorheic basins, although limited, is critical to the healthy
cycle of the basin’s water resources system and ecosystems. Continuous and accurate
precipitation data are the necessary basis for regional hydrological process investigation,
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water resource management, ecological protection, and disaster prevention [6,7], especially
in endorheic basins. However, the general reality of the scarcity and uneven distribution
of meteorological or rainfall stations in endorheic basins poses a great challenge to the
accurate acquisition of precipitation data.

Multi-source precipitation data, including products based on measurement, remote
sensing, and reanalysis, offer potential solutions to this issue [8]. These products each have
their strengths and weaknesses depending on their original data sources or production pro-
cesses. Gauge-based products often provide high single-point accuracy in long sequences,
but they struggle to accurately capture the spatiotemporal distribution and changes in pre-
cipitation in areas with sparse observation stations and uneven spatial distribution [9,10].
Remote sensing-based products generally have high spatiotemporal resolution, but their
data accuracy can be affected by complex terrain [11,12]. Reanalysis products use global
data assimilation systems and comprehensive databases, but the optimal data given are
not necessarily the most realistic [13,14]. By combining the advantages of multi-source
precipitation products, we can provide richer optional precipitation data for application in
areas lacking data. However, before applying these precipitation product data in different
areas, for different research purposes, or at different spatiotemporal scales, it is essential
and fundamental to assess their applicability. Many studies have attempted this work. Sun
et al. [10] evaluated 30 global precipitation datasets and found significant differences in
accuracy among different precipitation products due to the number of ground stations,
inversion algorithms, and assimilation models. Duan Z et al. [15] evaluated eight gridded
precipitation products in the Adige Basin and found that CHIRPS showed the smallest
bias than other products. The study by Zhou et al. [16] proved that reanalysis of precip-
itation products generally overestimates precipitation in mainland China, especially in
dry climate zones. Alijanian et al. [17] showed that MSWEP and PERSIANN-CDR have
good performance in capturing daily precipitation in Iran. For related studies in endorheic
basins such as the ones in North America (United States and Mexico), Ehsani et al. [18]
found that satellite products are less capable of capturing high-intensity precipitation than
capturing interannual variability in precipitation. Yuan et al. [19] found that IMERG-F
and TMPA systematically underestimate extreme precipitation events and under-capture
annual precipitation. According to previous research results and product surveys, we
found that MSWEP, CHIRPS, GPCC, and PERSIANN-CDR perform well in other research
areas [20–23]. APHRODITE and JRA55 are released by Asian institutions and may in-
corporate more local data [13,24]. These are the main reasons why we chose them as
representatives of the above types of grid precipitation products for evaluation. Secondly,
these products have a relatively high spatial and temporal resolution, a long time span and
can be obtained for free. They also represent various advanced assimilation methods and
retrieval algorithms [10,13,24–29].

In terms of evaluation methods, the current research on the applicability of precipi-
tation products has gradually developed from the evaluation of a single type of product
to the comparative evaluation of multi-source products [9,30], from the evaluation of a
single time scale to the comparative evaluation of multiple time scales [31,32], and from
the evaluation of local scale to the evaluation of regional, national and global scales [18,19].
However, in the previous studies, a great deal of work has been still focused on outflow
regions [10,15,33,34], where the population distribution is more concentrated, and the
economy is more developed, while the evaluation of multi-source precipitation products in
endorheic basins is relatively lacking and lagging. In addition, in terms of precipitation
modes, previous studies have focused more on the assessment of mean-state precipita-
tion [9,15,30,32], while attention to extreme-state precipitation, although increasing, is still
insufficient, especially for endorheic basins without sufficient meteorological station data.
The AR6 Working Group I report released by the IPCC points out that the general rise in
global temperature will intensify the hydrological cycle, lead to a stronger regional pre-
sentation of precipitation, as well as an increase in the frequency and intensity of extreme
weather events at regional and global scales [35,36]. Therefore, the focus of precipitation
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research should not only be limited to average precipitation but also focus on extreme
precipitation. Whether high-resolution precipitation data as the basis for studying ex-
treme events can accurately monitor and quantitatively reflect the accuracy of extreme
precipitation will also have to be one of the key points for judging product quality [22,37].

As a typical representative of endorheic basins within the world’s large river basins,
the endorheic basin of the Yellow River Basin (EBYRB) in China plays a very important
role in safeguarding the ecological security of the Yellow River Basin. Two national na-
ture reserves in the EBYRB, namely Erdos Larus Relictus National Nature Reserve and
Hongjiannao National Nature Reserve, provide breeding habitats for endangered species
such as relict gulls (Larus relictus) [38–40]. Due to the limited contribution to the amount
of water resources of the Yellow River, previous hydrological studies on the EBYRB are
relatively insufficient. Previous studies have mainly focused on the definition [41], forma-
tion mechanism [42], river survey [43], lake area change [38–40], groundwater exploitation
and utilization [41,44], as well as land use and vegetation change studies [45]. Continuous
and reliable precipitation data are fundamental to any study of water resources, water
ecology, water environment, and water hazards in the EBYRB. However, there are few me-
teorological observation stations in the EBYRB with uneven spatial distribution. Historical
observation data series are short in time and high-precision and continuous precipitation
data are relatively lacking. There is currently a lack of applicability evaluation of multi-
source precipitation products under multi-time scales and multi-modes in the EBYRB.
Therefore, the motivation of this study is to find precipitation products suitable for various
hydrological application scenarios in order to address the issue of insufficient original
precipitation data in the EBYRB and deepen the understanding of all aspects related to
water in the inland basin. Alternatively, it can be merged with existing rain gauge data
to achieve higher quality than a single dataset and then use the improved precipitation
dataset to provide key basic data for related research such as climate change, extreme
events, hydrological processes, and ecological evolution.

Based on this, this paper uses gridded precipitation data from the China Meteorological
Elements Daily Observation Station dataset after interpolation processing as a reference to
evaluate the seven precipitation products (APHRODITE, GPCC, PERSIANN-CDR, CHIRPS,
ERA5, JRA55, and MSWEP) in the EBYRB. Firstly, by combining three accuracy coefficients
and the Taylor diagram, the accuracy of the average precipitation is evaluated in terms
of time and space at four different time scales: annual, seasonal, monthly, and daily. The
accuracy performance of the extreme precipitation is evaluated at monthly and daily scales.
The results are integrated and compared with the relevant research results of other scholars
on the applicability analysis of precipitation products in the Yellow River Basin (YRB) or
semi-arid northwestern region (ASANR) of China. Then, based on the accuracy evaluation
results of seven precipitation products at different time scales and modes, outlets for the
actual hydrological application of products in the study area are sought. Finally, the errors
and limitations of the study are discussed.

2. Materials and Methods
2.1. Study Area

The endorheic basin in the Yellow River Basin (EBYRB), as shown in Figure 1, is the
study area with a total area of 46,500 km2. It is encircled by the main tributaries of the
Yellow River on the west, north, and east sides, with the Baiyu Mountain and the Loess
Plateau as the borders to the south. The elevation range of EBYRB is from 1174 m to 2033 m,
and the elevation difference (min/max) is 0.57. The EBYRB is in the middle temperate
zone and falls within an arid to semi-arid climate zone. The average temperature of the
basin is 6.5 ◦C, with an average annual precipitation of approximately 300 mm/year and
a potential evaporation of approximately 1000 mm/year, indicating scarce precipitation
and intense evaporation in the study area. Moreover, there are few surface rivers in the
area with sporadic distribution of lakes. The EBYRB, as a typical region with a fragile
ecological environment due to relatively enclosed topography, is sensitive to disturbances
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such as climate change and human activities. Notably, there are several important lakes
(e.g., Bojiang Lake and Hongjian Lake) distributed within the two national nature reserves
(i.e., Erdos Larus relictus National Nature Reserve and Hongjiannao National Nature
Reserve) in the study area, which serve as habitats for endangered species like relict
gulls. Over the past two decades, influenced by climate change and human activities, the
shrinkage of endorheic lakes represented by relict gull lakes has become severe [38–40].
The severe shrinkage of the lake water body and the drastic reduction of the breeding
number of relict gulls highlight the importance of environmental protection and ecological
restoration in the EBYRB in China.
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Figure 1. Location of the endorheic basin in the Yellow River Basin (EBYRB). The small image in the
upper right corner is the three natural regions of China (Zone 1: the Arid and semi-arid northwestern
region; Zone 2: the Tibetan plateau region; and Zone 3: the eastern monsoon region).

2.2. Data
2.2.1. Precipitation Products

This study evaluates the applicability of seven precipitation products in the EBYRB.
These seven precipitation datasets encompass four types of products: measurement-based,
reanalysis-based, remote sensing-based, and multi-source fusion. Specifically, the two
measurement-based precipitation products are APHRODITE (Asian Precipitation-Highly
Resolved Observational Data Integration Towards Evaluation of Water Resources) [24]
and GPCC (Global Precipitation Climatology Centre) [25,46]; the two remote sensing-
based precipitation products are PERSIANN-CDR (Precipitation Estimation from Remotely
Sensed Information using Artificial Neural Networks—Climate Data Record) [27] and
CHIRPS (Climate Hazards Group Infrared Precipitation with Station data) [28]; the two
reanalysis-based precipitation products are ERA5 (ECMWF Reanalysis v5) [26,47] and
JRA55 (the Japanese 55-year Reanalysis) [13,48]; and the multi-source fusion precipitation
product is MSWEP (Multi-Source Weighted-Ensemble Precipitation) [29]. For the seven
precipitation products evaluated in this paper, the individual datasets (APHRODITE,
GPCC, and MSWEP) contain multiple versions. For the study area, we chose the V1101
and V1101EX_R1 of APHRODITE (V1101EX_R1 is an extension of V1101 in time), Full
Data Daily/Monthly Product Version 2022 of GPCC, and the MSWEP_V280 integrated by
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ground observation data. Information and sources of each precipitation product can be
found in Table 1.

Table 1. The information about the seven precipitation products.

Product Types Datasets Time
Range

Time
Resolution

Spatial
Resolution Data Sources

Measurement-
based

APHRODITE 1951–2015 Daily 0.25◦ http://aphrodite.st.hirosaki-u.ac.jp/download/
(accessed on 25 May 2023)

GPCC 1982–2020 Daily/Monthly 1.0◦/0.25◦
https://opendata.dwd.de/climate_environment/GPCC/html/

download_gate.html
(accessed on 25 May 2023)

Reanalysis-based
ERA5 1950–present Daily/Monthly 0.25◦/0.1◦

https://cds.climate.copernicus.eu/cdsapp#!/software/app-c3s-
daily-era5-statistics?tab=app

(accessed on 27 May 2023)

JRA55 1958–present Daily 1.25◦ https://search.diasjp.net/en/dataset/JRA55
(accessed on 29 May 2023)

Remote
sensing-based

CHIRPS 1981–present Daily 0.05◦ https://data.chc.ucsb.edu/products/CHIRPS-2.0/
(accessed on 5 June 2023)

PERSIANN-CDR 1983–present Daily 0.25◦ https://chrsdata.eng.uci.edu/ (accessed on 5 August 2023)
Multi-Source MSWEP 1979–present Daily 0.1◦ https://www.gloh2o.org/mswep/ (accessed on 25 August 2023)

Seven products use various sources of raw observations or satellite remote sensing
data as well as different algorithms and data assimilation methods [13,24–29]. APHRODITE
collects precipitation records from 5000 to 12,000 stations in Asia from the Global Telecom-
munication System (GTS), personal collection data, and existing meteorological station
observation data [24]. GPCC uses the World Meteorological Organization (WMO) and
GTS to build a precipitation dataset from approximately 86,100 rain gauges or stations
worldwide [25]. ERA5 is produced by ECMWF’s Copernicus Climate Change Service (C3S)
and combines observations from around the world [26]. JRA55 uses the most advanced
numerical analysis and weather forecasting (NWP) system to reanalyze long-term past ob-
servations [13]. CHIRPS combines five satellite images, such as TRMM 2B31 and CMORPH,
and station data, such as CHCN and GSOD [28]. PERSIANN-CDR uses artificial neural
network algorithms to generate GridSat-B1 infrared remote sensing data and is corrected
with GPCP [27]. MSWEP is a multi-source fusion precipitation product that combines
10 precipitation products, such as CPC, GPCC, CMORPH, GSMaP, 3B42RT, ERA-Interim,
and JRA55 [29].

2.2.2. Benchmark Precipitation

The benchmark data come from the China Meteorological Elements Daily Observation
Station dataset provided by the Resource Environment Science and Data Center of the
Chinese Academy of Sciences (https://www.resdc.cn/data.aspx?DATAID=230, accessed
on 5 May 2023). The dataset contains daily observation data of pressure, temperature,
precipitation, evaporation, relative humidity, wind direction and speed, sunshine hours,
and 0 cm ground temperature elements from more than 2400 meteorological stations na-
tionwide. These stations have undergone strict quality control by the China Meteorological
Administration. It is currently the meteorological dataset with the most stations and the
longest time series available in China. A total of 31 related weather stations were included
in the buffer zone created with a radius (r = 205.7 km) from the center of the study area to
the farthest distance from the boundary, which is marked in Figure 1. Using the measured
precipitation data from 31 stations after data diagnostics, the ANUSPLIN method [49] is
used in the buffer to interpolate for obtaining grid precipitation with a minimum spatial
resolution of 0.05◦ and a minimum time resolution of daily, and then the data within the
research area are cut out as the benchmark data for evaluation. Therefore, the benchmark
data are simultaneously and primarily constrained by six independent stations in the study
area and multiple surrounding independent stations with good quality.

In order to convert station data into grid data as the benchmark data for subsequent
analysis, we chose the ANUSPLINE method to interpolate the station data through re-
search and comparison (Section 4.3.2). ANUSPLINE is an interpolation tool based on
spline functions developed by the Australian National University, which is often used for

http://aphrodite.st.hirosaki-u.ac.jp/download/
https://opendata.dwd.de/climate_environment/GPCC/html/download_gate.html
https://opendata.dwd.de/climate_environment/GPCC/html/download_gate.html
https://cds.climate.copernicus.eu/cdsapp#!/software/app-c3s-daily-era5-statistics?tab=app
https://cds.climate.copernicus.eu/cdsapp#!/software/app-c3s-daily-era5-statistics?tab=app
https://search.diasjp.net/en/dataset/JRA55
https://data.chc.ucsb.edu/products/CHIRPS-2.0/
https://chrsdata.eng.uci.edu/
https://www.gloh2o.org/mswep/
https://www.resdc.cn/data.aspx?DATAID=230
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spatially continuous interpolation of meteorological elements [49]. ANUSPLIN outputs
spatially distributed standard errors of the spline-fit surfaces and provides a range of
statistical parameters for discriminating the sources of error and diagnosing the quality of
the interpolation [49]. We minimize the errors caused by the interpolation and ensure the
accuracy of the results as much as possible through the quality control and preprocessing
of the station data, as well as the selection of a larger processing area than the actual study
area and the inclusion of elevation.

For the seven precipitation products under evaluation, GPCC and APHRODITE are
generated using station observation data provided by the WMO, the GTS, and the China
Meteorological Administration [24,46]. Other remote sensing and reanalysis precipitation
products also incorporate ground observation data such as GPCC, CHCN, and GPCP for
integration or correction [10]. Therefore, to achieve a scientific evaluation, it is necessary
to verify the independence of the benchmark data, that is, to ensure that a large number
of sites used to create the benchmark data have not been used to create the products
under evaluation [11,15,50]. Most precipitation products provide the number of rain gauge
stations used in each grid. Based on this, we have found that for the grids covering China
during the period from 1986 to 2015, at least 72% of the stations used for the benchmark
precipitation have not been used to create the products under evaluation. Furthermore, for
the 31 stations (marked in Figure 1) within and around the EBYRB that mainly control the
benchmark precipitation, about 58% of them were not used as ground observation data to
create or correct any of the seven products. These prove the independence of the benchmark
data, which is crucial for ensuring the accuracy and reliability of the evaluation results.

2.2.3. Data Processing

In terms of determining the research time range of data, the intersection of periods of
seven precipitation products and benchmark rainfall data is from 1986 to 2015, used as the
research period in this paper.

For assessment at multiple time scales, this paper uses daily or monthly precipitation
data from each precipitation product and benchmark precipitation to calculate monthly,
seasonal, and annual precipitation data using the MATLAB (version R2023b) program.
Such accumulation will transfer or offset the errors inherent in the precipitation amount
under the original time resolution, to a certain extent increasing the uncertainty of the
evaluation data itself under a long-time resolution.

The inconsistency in spatial resolution between the benchmark data and the products
can make it difficult to compute and compare the accuracy assessment coefficients of differ-
ent products. In order to retain the spatial resolution characteristics of data products and
avoid errors introduced by interpolation, this paper does not change the original spatial res-
olution of each precipitation product (Section 4.3.3). To resolve spatial inconsistencies and
minimize related uncertainties as much as possible, the average value of all high-resolution
grids (benchmark) within each coarse-resolution grid (e.g., JRA55, APHRODITE, etc.) was
calculated, and this average value was used as the value of the benchmark data in the
corresponding grid at the coarse resolution. Then, the assessment criteria were calculated
on this common grid.

In calculating basin averages for precipitation and indicator values, we directly utilized
the arithmetic mean of all grid values in the study area as the average for smaller resolution
precipitation products and benchmarks. For JRA55 with larger spatial resolution, the
Thiessen polygon method is used to calculate the average surface of the study area. The
centers of the eight grids (1.25◦ × 1.25◦) contained within the study area were considered as
one rainfall station to create polygons. In this way, different weights controlled by area are
assigned to the grids within the study area to obtain more accurate surface precipitation.

2.3. Method

In this paper, the applicability of seven precipitation products in the EBYRB is evalu-
ated by combining three accuracy coefficients and Taylor diagrams under different modes
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and time scales. At the same time, we discuss the evaluation process and results in three
aspects: comparison, strategy selection, and error and limitations. The flowchart of the
above research content and methodology is shown in Figure 2.
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2.3.1. Extreme Precipitation Evaluation Index

This study assesses the applicability of various precipitation products in monitoring
extreme precipitation on daily and monthly scales. According to the recommendation of
the WMO, we refer to the extreme climate indices defined by the Expert Team on Climate
Change Detection and Indices (ETCCDI) [51]. On the daily scale of extreme precipitation,
we select two extreme precipitation indices: max 1-day precipitation amount (Rx1day) and
annual total wet-day precipitation, RR > 95th percentile (R95pday). On the monthly scale
of extreme precipitation, we use two monthly scale indices: max 1-month precipitation
amount (Rx1mon) and annual total wet-month precipitation, RR > 95th percentile (R95pmon).
Based on the established definitions, the indices for monitoring extreme precipitation on a
daily or monthly scale can be categorized into two types: extremum and extreme threshold
value. Detailed information about these categories, along with their respective calculation
formulas, are presented in Table 2.

Table 2. Introduction to extreme precipitation evaluation indexes.

Type of Indexes Indexes Definition Unit Equation

Extremum
Rx1day Max 1-day precipitation amount mm max(RRiD)
Rx1mon Max 1-month precipitation amount mm max(RRiM)

Extreme
threshold value

R95pday Annual total wet-day precipitation mm W
∑

w=1
RRwDwhere RRwD > RRwnD95

R95pmon Annual total wet-month precipitation mm W
∑

w=1
RRwMwhere RRwM > RRwnM95

RRiD is the daily precipitation amount on day i in a year, RRiM is the monthly precipitation amount on month
i in a year, RRwD is the daily precipitation amount on a wet day (RRiD ≥ 1.0 mm) in a year, RRwM is the
monthly precipitation amount on a wet month (RRiM ≥ 1.0 mm) in a year, RRwnD95 is the 95th percentile of daily
precipitation on wet days in the study period, and RRwnM95 is the 95th percentile of monthly precipitation on wet
months in the study period.
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2.3.2. Accuracy Evaluation Coefficients

This study uses three accuracy evaluation coefficients: Pearson correlation coeffi-
cient R [52], root-mean-square error RMSE [53], and Kling–Gupta efficiency coefficient
KGE [54], combined with the standard Taylor diagram [55], to comprehensively evaluate
the applicability of the seven precipitation products. The standardized Taylor diagram is a
two-dimensional diagram that concentrates on three coefficients: correlation coefficient,
standard deviation divided by reference value, and de-centralized root-mean-square er-
ror. The Taylor diagram can more intuitively and comprehensively assist in judging the
accuracy of various precipitation products and compare their performance at different
time scales. The combined simultaneous use of R, RMSE, and KGE helps to provide us
with a comprehensive understanding of the performance of each product under different
temporal and modal couplings. R represents the degree of linear correlation (direction
and intensity), RMSE characterizes the magnitude of the error, and KGE characterizes the
model performance in a more comprehensive manner. The formulas and explanations for
these three coefficients are detailed below.

R is a measure of the linear relationship and correlation direction between the esti-
mated value of precipitation products and the benchmark precipitation. The range of R is
from −1 to 1. The larger the absolute value of R, the stronger the linear correlation between
the two data sequences. The equation used to fit the R is given below.

R =
n∑ xiyi − ∑ xi∑ yi√

n∑ x2
i − (∑ xi)

2
√

n∑ y2
i − (∑ yi)

2
(1)

where xi and yi represent the simulated data and the benchmark data, respectively, while
n is the capacity of the sequence sample.

RMSE is a metric used to evaluate the level of error between estimated and observed
values, with lower values indicating closer approximations to the actual observations. The
equation used to fit the RMSE is given below.

RMSE =

√
∑n

i=1(xi − yi)
2

n
(2)

where, xi and yi represent the simulated data and the benchmark data, respectively, while
n is the capacity of the sequence sample.

KGE is a comprehensive evaluation coefficient used to measure the overall goodness
of fit between estimated and observed values. When KGE is greater than 0, it indicates that
the estimated value is better than a random estimate, and the closer it is to 1, the better the
quality of the model simulation and the higher its credibility. When KGE is less than 0, it
indicates poor model performance. The equation used to fit the KGE is given below.

KGE = 1 −
√
(1 − R)2 + (1 − α)2 + (1 − β)2, α =

σs

σo
, β =

µs

µo
(3)

where µs and µo are the mean values of the simulated data sequence and the observed data
sequence, respectively. σs and σo represent the standard deviations of the simulated and
observed data sequences.

3. Results
3.1. Comparison of Precipitation Product Accuracy across Different Time Scales
3.1.1. Evaluation of Annual Precipitation

The temporal changes and accuracy coefficients in the annual average precipitation
of each precipitation product are shown in Figure 3 and Table 3. Overall, precipitation
products based on measurements and remote sensing are more accurate than other types
of products, and both can reflect the interannual variation in precipitation well. Analyzing
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each precipitation product separately, GPCC performs best on an annual scale. Compared
with the benchmark precipitation, R, RMSE, and KGE of GPCC are 0.96, 20.2 mm and
0.93, respectively. All three accuracy coefficients of GPCC are higher than those of other
precipitation products, and GPCC has the highest overlap with the benchmark precipitation
in terms of time series. The multi-year average annual precipitation of GPCC from 1986
to 2015 is 279.9 mm, which is 4.73% different from that of the benchmark precipitation.
Next in line for high accuracy are APHRODITE and remote sensing-based PERSIANN-
CDR and CHIRPS. These three precipitation products also show good applicability in
terms of annual scale precipitation, with the KGE all greater than 0.80. In contrast, two
reanalysis data, ERA5 and JRA55, and multi-source ensemble data MSWEP perform poorly,
all generally higher than the benchmark precipitation. Notably, MSWEP also has a problem
with significantly overestimated values in certain years, such as 1992, which severely affects
overall accuracy.
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Table 3. The accuracy evaluation results of the annual precipitation series of seven precipitation
products from 1986 to 2015 in the EBYRB.

Precipitation
Products

Evaluation Coefficients Multi-Year Average Value

R RMSE KGE Datasets Benchmark
(mm) (mm) (mm)

APHRODITE 0.96 38.3 0.81 259.5

293.8

GPCC 0.96 20.2 0.93 279.9
ERA5 0.78 88.3 0.54 370.2
JRA55 0.83 65.1 0.74 350.3

CHIRPS 0.79 35.8 0.71 280.8
PERSIANN-CDR 0.93 33.5 0.87 266.9

MSWEP 0.76 62.6 0.48 329.5
The bold markings indicate the best values for each evaluation coefficient.

Figure 4 presents the spatial distribution of multi-year average annual precipitation for
seven precipitation products and the benchmark precipitation in the study area. Compared
with the benchmark precipitation, the multi-year average precipitation intensity of the seven
precipitation products exhibits a similar spatial distribution, all of which can essentially
represent the spatial pattern of annual precipitation. The spatial distribution of annual
precipitation shows a gradual increase trend from northwest to southeast. Specifically,
the northwestern part receives less annual precipitation of approximately 200.0 mm; the
southern and eastern parts receive more annual precipitation of approximately 400.0 mm.
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3.1.2. Evaluation of Seasonal Precipitation

The accuracy of each precipitation product varies in different seasons (Figure 5 and
Table 4), generally showing higher accuracy in spring, summer, and autumn and lower
accuracy in winter. As far as the measurement-based precipitation products, GPCC has
higher accuracy than other precipitation products in all four seasons, with a correlation
coefficient R greater than 0.95 and KGE close to 1.00. APHRODITE has higher accuracy
in spring and autumn but slightly lower accuracy in winter and summer. The average
precipitation in summer is significantly less than the benchmark, with a relative error of
17.30%. The remote sensing-based precipitation products, CHIRPS and PERSIANN-CDR,
perform best in summer, followed by spring and autumn, but have relatively low accuracy
in winter. At the same time, PERSIANN-CDR performs slightly better than CHIRPS in all
four seasons. For the reanalysis of precipitation products (ERA5 and JRA55), their multi-
year average precipitation in all four seasons is higher than the benchmark precipitation.
ERA5 and JRA55 have lower accuracy than other precipitation products, especially in
winter, when the KGE is less than 0.00. The accuracy of JRA55 is higher than that of ERA5
in all four seasons, especially in summer; the accuracy of JRA55 is relatively high, with a
KGE of 0.79. For MSWEP, the accuracy is higher in spring and autumn, with a KGE of about
0.80 and R higher than 0.90, but its accuracy in summer and winter is worse. Combined
with the abnormal values in the annual precipitation statistics of MSWEP in 1989 and
1992, it is speculated that MSWEP has a large error in the summer precipitation in these
individual years when the precipitation is generally higher.

Table 4. The accuracy evaluation results of the seasonal precipitation series of seven precipitation
products from 1986 to 2015 in the EBYRB.

Season Precipitation
Products

Evaluation Coefficients Multi-Year Average
Value

R RMSE KGE Datasets Benchmark
(mm) (mm) (mm)

Spring

APHRODITE 0.97 8.8 0.84 42.0

47.7

GPCC 1.00 3.8 0.93 45.3
ERA5 0.96 24.2 0.39 67.4
JRA55 0.95 20.1 0.61 65.7

CHIRPS 0.94 13.6 0.54 43.7
PERSIANN-CDR 0.96 11.2 0.78 39.1

MSWEP 0.97 11.3 0.73 54.7
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Table 4. Cont.

Season Precipitation
Products

Evaluation Coefficients Multi-Year Average
Value

R RMSE KGE Datasets Benchmark
(mm) (mm) (mm)

Summer

APHRODITE 0.87 38.2 0.71 146.8

177.4

GPCC 0.96 16.1 0.93 169.0
ERA5 0.87 41.5 0.54 201.8
JRA55 0.85 30.4 0.79 191.5

CHIRPS 0.86 23.5 0.83 173.3
PERSIANN-CDR 0.94 21.9 0.89 161.8

MSWEP 0.81 45.5 0.45 195.3

Autumn

APHRODITE 0.88 16.6 0.80 72.0

62.7

GPCC 0.98 6.7 0.95 59.6
ERA5 0.89 28.1 0.59 87.8
JRA55 0.89 31.5 0.70 80.1

CHIRPS 0.92 14.1 0.62 57.2
PERSIANN-CDR 0.97 7.8 0.87 59.4

MSWEP 0.92 14.3 0.81 70.8

Winter

APHRODITE 0.73 2.9 0.58 6.4

6.2

GPCC 0.95 1.0 0.94 6.0
ERA5 0.77 8.0 −0.41 13.2
JRA55 0.78 7.6 −0.30 13.0

CHIRPS 0.64 2.8 0.17 6.6
PERSIANN-CDR 0.70 2.8 0.63 5.7

MSWEP 0.68 5.1 −0.01 8.7
The bold markings indicate the best values for each evaluation coefficient.
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Figure 5. Histogram and Taylor diagram of the mean seasonal precipitation for the seven products
and the benchmark dataset from 1986 to 2015 in the EBYRB. For this Taylor diagram, different colored
markers represent the different seasons, with spring represented by green, summer by red, autumn
by yellow, and winter by blue.
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3.1.3. Evaluation of Monthly Precipitation

Figure 6 presents the scatter plot and the accuracy evaluation of average monthly
areal precipitation between the seven products versus the benchmark dataset from 1986
to 2015. Overall, the accuracy of monthly precipitation evaluation is higher than that of
annual and daily scales, with the R greater than 0.90 and KGE greater than 0.50, indicating
that all precipitation products have a good correlation with the benchmark precipitation
on a monthly scale. For the evaluation of monthly precipitation, GPCC has the highest
accuracy (R = 0.99, RMSE = 55.0 mm, and KGE = 0.94) among all products. CHIRPS
and PERSIANN-CDR also have high accuracy. In contrast, the accuracy of the other four
precipitation products is lower. The scatter distribution of APHRODITE is more dispersed,
indicating that the correlation with the benchmark precipitation is worse, while the monthly
precipitation data points of ERA5, JRA55, and MSWEP are mostly distributed above the
1:1 line, indicating that these three products often overestimate the monthly precipitation.
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Figure 6. Scatter plot of average monthly areal precipitation between the seven products versus the
benchmark precipitation from 1986 to 2015 in the EBYRB.

Further, an analysis of the multi-year average monthly precipitation distribution from
1986 to 2015 (Figure 7) and the accuracy evaluation (Figure 8) was conducted. APHRODITE
has noticeably lower accuracy in July, August, September, October, and December, espe-
cially in October and December, compared to other months and precipitation products.
ERA5 and JRA55 perform similarly in terms of accuracy for each month, and both exhibit
a bias towards higher monthly precipitation as well as a decrease in accuracy during the
winter months. The main issue with MSWEP is the sharp drop in precipitation accuracy in
February and August, caused by abnormal deviations in monthly precipitation in individ-
ual years. For example, the precipitation in the summer of 1992 (June–August), according
to MSWEP, was 436.9 mm, while the benchmark precipitation was 222.8 mm, which is
96.10% higher in comparison.
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3.1.4. Evaluation of Daily Precipitation 

Figure 8. Evaluation results of the mean monthly precipitation for the seven products from 1986 to
2015 in the EBYRB: (a) R—Pearson correlation coefficient; (b) RMSE—root-mean-square error; and
(c) KGE—Kling–Gupta efficiency.

3.1.4. Evaluation of Daily Precipitation

Figure 9 shows the scatter plot and accuracy evaluation of daily precipitation for each
precipitation product. Overall, the accuracy of daily precipitation for each product has
decreased compared to the accuracy of monthly precipitation. APHRODITE has the best
accuracy, with R = 0.84 and KGE = 0.74, both higher than other precipitation products.
GPCC has slightly lower accuracy on a daily scale compared to the accuracy on an annual
and monthly scale, with R = 0.65 and KGE = 0.64; MSWEP, which performs poorly on an
annual and monthly scale, has relatively improved accuracy on a daily scale, with R = 0.67
and KGE = 0.62. Through the scatter distribution, we can still observe a statistically high
bias in the precipitation estimation of ERA5 and JRA55. CHIRPS and PERSIANN-CDR
perform the worst, with R and KGE less than 0.50.
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3.2. Evaluation of Precipitation Products for Extreme Precipitation
3.2.1. Evaluation of Extreme Precipitation on a Monthly Scale

As shown in Figure 10 and Table 5, for Rx1mon, the highest accuracy is still GPCC
(R = 0.94, KGE = 0.92), and the multi-year average Rx1mon of GPCC is 84.2 mm, which is a
2.56% relative error compared to that of the benchmark precipitation about 86.4 mm. Next,
CHIRPS, PERSIANN-CDR, and JRA55 also have relatively high accuracy, with R around
0.80, KGE all greater than 0.75, and multi-year average Rx1mon of 85.0 mm, 78.5 mm, and
92.5 mm, respectively. Among them, JRA55 still shows a phenomenon of overall bias towards
higher than the benchmark precipitation. The accuracy of APHRDITE is slightly lower in
comparison, with a multi-year average Rx1mon of 78.6 mm. Combined with the annual change
curve of Rx1mon, it can be seen that APHRODITE is generally lower than the benchmark
precipitation in displaying extreme precipitation, especially in 1987, 1989, and 1995. ERA5
and MSWEP are worse in Rx1mon, with KGE of 0.55 and 0.40, respectively. ERA5 is generally
biased towards higher for extreme mode, with Rx1mon of ERA significantly higher than the
benchmark precipitation, especially in 1995, 2001, and 2004. The abnormality of MSWEP still
appears in individual years such as 1989 and 1992. For example, Rx1mon of MSWEP in 1992
was 222.3 mm, which occurred in August, with a relative bias of 172.09% compared to Rx1mon
of the benchmark precipitation of 81.7 mm in 1992.

For R95pmon, we can find that the accuracy of R95pmon for each precipitation product is
slightly lower than Rx1mon from the Taylor diagram. Like the assessment results of Rx1mon,
R95pmon also indicates GPCC, JRA55, and PERSIANN-CDR have better performance,
while ERA5 and MSWEP have poorer performance in the evaluation of monthly extreme
precipitation. We also observe that there are many years with a value of 0.0 or a high value
of precipitation in the annual R95pmon series, which can, respectively, reflect the drought
or abundance characteristics of different years.

The spatial distribution patterns of the monthly scale extreme precipitation (Rx1mon
and R95pmon) for the seven precipitation products and benchmark precipitation are very
similar (Figures 11 and 12), and they can basically reflect the trend of extreme precipitation
increasing from northwest to southeast on a monthly scale. For the spatial distribution of
the Rx1mon, the precipitation in the northwest of the study area is less, with the Rx1mon
about 70.0 mm, and the precipitation in the south and east is more, with the Rx1mon about
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110.0 mm. Specifically, APHRODITE and GPCC overestimate the east of the study area,
while CHIRPS underestimates the south of the study area. ERA5, PERSAINN-CDR, and
MSWEP can accurately display the distribution of extreme precipitation. The R95pmon
has similar spatial distribution characteristics to the Rx1mon, but the value is lower. The
R95pmon in the northwest of the study area is about 50.0 mm, and the R95pmon in the
southeast is about 85.0 mm.
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Table 5. The accuracy evaluation results of the monthly scale extreme precipitation series of seven
precipitation products from 1986 to 2015 in the EBYRB.

Extreme
Precipitation

Index

Precipitation
Products

Evaluation Coefficients Multi-Year Average
Value

R RMSE KGE Datasets Benchmark
(mm) (mm) (mm)

Rx1mon

APHRODITE 0.72 19.3 0.70 78.6

86.4

GPCC 0.94 8.7 0.92 84.2
ERA5 0.84 24.2 0.55 101.5
JRA55 0.77 17.1 0.75 92.5

CHIRPS 0.83 14.9 0.82 85.0
PERSIANN-CDR 0.86 14.9 0.78 78.5

MSWEP 0.68 29.2 0.40 97.9

R95pmon

APHRODITE 0.70 53.5 0.60 56.6

62.6

GPCC 0.85 39.6 0.81 60.5
ERA5 0.79 65.2 0.51 76.2
JRA55 0.71 57.2 0.70 64.9

CHIRPS 0.58 64.1 0.56 60.8
PERSIANN-CDR 0.69 56.7 0.66 55.6

MSWEP 0.57 80.0 0.47 74.7
The bold markings indicate the best values for each evaluation coefficient.
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3.2.2. Evaluation of Extreme Precipitation on a Daily Scale

As shown in Figure 13 and Table 6, it can be intuitively seen that the accuracy of
R95pday is generally higher than that of Rx1day. Based on the combined evaluation of
Rx1day and R95pday, it suggests that GPCC has the highest accuracy. The multi-year average
Rx1day and R95pday estimated by GPCC are 30.1 mm and 202.1 mm, which are closest to the
benchmark precipitation, with relative errors of 5.58% and 1.36%, respectively. For Rx1day,
GPCC, APHRODITE, and MSWEP perform well, with KGE greater than 0.50, followed
by ERA5 and PERSIANN-CDR, while CHIRPS and JRA55 perform the worst. Through
the time series curve (Figure 13), we can see the response and problems of these products.
APHROHDITE and PERSIANN-CDR generally underestimate Rx1day obviously. MSWEP’s
problem is still the appearance of high values significantly different from the benchmark
precipitation and other precipitation products in certain years, which lowers the overall
accuracy. JRA55 is not sensitive enough to monitor Rx1day. CHIRPS overall overestimates
the Rx1day series. For R95pday, the highest accuracy is still GPCC, with R = 0.93 and
KGE = 0.71. Next, JRA55 and APHRODITE also perform relatively well. The KGE of the
remaining precipitation products are all less than 0.70, which is specifically manifested
as CHIRPS and ERA5’s overall overestimation of R95pday, PERSIANN-CDR’s overall
underestimation, and MSWEP’s significant abnormal high values in some individual years.
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Table 6. The accuracy evaluation results of the daily scale extreme precipitation series of seven
precipitation products from 1986 to 2015 in the EBYRB.

Extreme
Precipitation

Index

Precipitation
Products

Evaluation Coefficients Multi-Year Average
Value

R RMSE KGE Datasets Benchmark
(mm) (mm) (mm)

Rx1day

APHRODITE 0.78 10.5 0.52 23.2

31.9

GPCC 0.67 7.3 0.64 30.1
ERA5 0.56 11.7 0.49 39.0
JRA55 0.25 9.8 0.09 28.9

CHIRPS 0.63 22.9 0.16 52.5
PERSIANN-CDR 0.58 12.5 0.45 22.2

MSWEP 0.61 10.0 0.54 35.8

R95pday

APHRODITE 0.95 42.7 0.71 166.0

204.9

GPCC 0.93 18.2 0.92 202.1
ERA5 0.76 64.7 0.50 251.9
JRA55 0.76 38.8 0.75 222.5

CHIRPS 0.81 51.7 0.69 247.4
PERSIANN-CDR 0.87 65.2 0.68 144.9

MSWEP 0.74 59.1 0.40 233.9
The bold markings indicate the best values for each evaluation coefficient.

The spatial distribution of Rx1day and R95pday from 1986 to 2015 are shown in
Figures 14 and 15. For Rx1day, the benchmark precipitation shows an increasing trend
from northwest to southeast, and the other precipitation products can also roughly show
a similar spatial distribution situation. However, it is worth noting that GPCC has not
been able to accurately reflect the spatial distribution of Rx1day with a phenomenon of
local underestimation in the middle part of the study area. Both APHRODITE and MSWEP
assessed Rx1day in the southern part of the study area as high. JRA55 is a significant
underestimate of Rx1day in the southern part of the EBYRB compared to the benchmark.
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For R95pday, the benchmark precipitation and the seven precipitation products all show a
trend of increasing from about 140.0 mm in the northwest to 260.0 mm in the southeast.
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4. Discussion
4.1. Comparison with Previous Research Findings

To validate the above research results, we wish to compare them with the relevant
research conclusions of other scholars. However, at present, there is still a relative lack of
research on the applicability evaluation of precipitation products in the EBYRB. For this
reason, it is considered to compare and discuss the relevant research of the Yellow River
Basin (YRB) or the arid and semi-arid northwestern region (ASANR) of China with the
research results of this article. The two zones were selected because of their similarity to the
study area in terms of climatic conditions, as evidenced by strong evaporation and large
seasonal differences in temperature and precipitation. The geographical locations of them
are defined on the map (Figure 1).

Through the applicability evaluation of the seven precipitation products in the EBYRB,
we found that although MSWEP can basically capture the temporal and spatial changes
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and spatial patterns of precipitation, it has the problem of individual monitoring values
showing a high degree of deviation. This is consistent with the conclusion of Xu et al. [56]
on the applicability evaluation of MSWEP precipitation products in the Yellow River basin.
He also cited the typical year 1992 as an example to illustrate the phenomenon of over-
estimating the peak value of precipitation. Han et al. [57] analyzed the applicability of
APHRODITE in different divisions of the Chinese mainland. By calculating the annual
total precipitation of different grades of precipitation days in each region, they concluded
that APHRODITE overestimated light rain precipitation and underestimated heavy rain
and storm precipitation in the eastern and western arid zones. In our study, APHRODITE
is 27.27% and 18.98% lower than the benchmark precipitation for Rx1day and R95pday,
respectively, indicating that APHRODITE underestimates heavy rain and storms, which
can be mutually verified with the conclusion of Han. In response to this phenomenon,
considering the characteristics of precipitation products based on measurements, we hy-
pothesize that during extreme precipitation events, there is often a situation of high wind
force, which leads to significant errors in in-situ measurement results. At the same time,
the limited capacity of the rain gauge and the restrictions on the monitoring record time
interval pose challenges to accurately measuring short-term heavy rainfall events [58].
For remote sensing products, we found that CHIRPS and PERSIANN-CDR both perform
best in the warm season, as evidenced by the ordering of their precipitation accuracy
assessment in different seasons: summer > autumn > spring > winter, which is consistent
with the research conclusions of Yu et al. [59], Liu et al. [60], and Gao et al. [61]. During
cold months when snow and ice are present at lower temperatures, microwave signals
from radar systems are scattered by the millimeter-scale ice crystals that make up the snow,
which will increase the difficulty and error of satellite precipitation inversions, while the
difference between snowflakes and liquid precipitation further complicates the weaker
signal-to-noise ratio [15,62]. Cold weather also affects in-situ and other observational mea-
surements, which is why other types of precipitation products show reduced performance
in winter. In addition, Miao et al. [63] evaluated PERSIANN-CDR in extreme precipitation
events in China and found that PERSIANN-CDR has poor consistency with the benchmark
ground dataset in the northwest arid region and underestimates the value of extremely
heavy precipitation, which is similar to the results of ours.

Comparing two different geographical zones, the YRB and the ASANR, we found
that the results evaluated in the EBYRB are more similar to the results of the applicability
assessment in the ASANR [12,63,64], but at the same time, there are differences depending
on the geographic location (topography, climatic conditions), the choice of the products, the
time scale, and the selection of the assessment objectives, methods, and coefficients [65]. For
example, Yang et al. [53] evaluated five gridded precipitation products, MSWEP, CMORPH,
GSMaP, TRMM, and PERSIANN in the YRB, and found that MSWEP was in the best
agreement with the observed data, whereas we found that there was an overestimation
of heavy precipitation capture by MSWEP. Therefore, an evaluation of the suitability of
multiple precipitation products for the EBYRB over multiple times and modes is necessary
to avoid masking the distribution of errors at the basin or regional scales and neglecting
the limitation of considering single-mode evaluations carried out only for a specific type of
hydrological application target and thus to better capture the performance characteristics
of each product in the EBYRB.

4.2. Strategy for Selecting Precipitation Products for Different Application Scenarios

In this section, according to the results of the applicability accuracy of precipitation in
the endorheic basin of the Yellow River Basin in China, we discussed how to select suitable
precipitation products for long-term relevant hydrological applications under average
conditions, short-term relevant hydrological applications under average conditions, and
the relevant hydrological applications under the extreme state. The selection strategies for
the different scenarios are summarized in Table 7.
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Table 7. Strategy for selecting precipitation products for different application scenarios.

Time Mode Application Scenarios Recommended Products

Long-term or
seasonal Average Water resource management, agricultural production, reservoir

scheduling, water conservancy construction, water ecology protection GPCC

Short-term
Average Flood forecasting, drought management, water quality testing,

operation of reservoirs and hydropower stations APHRODITE, MSWEP

Extreme Extreme precipitation forecasting, flood and drought management GPCC

Quasi-real-
time

Average Hydrological forecasting, urban drainage system management,
water disaster prevention and control MSWEP

Extreme Debris flow and landslide disaster warning and control CHIRPS, PERSIANN-CDR

For precipitation applications related to long-term or seasonal water resource man-
agement using annual or seasonal scale precipitation as a variable for studies or inputs,
according to the applicability evaluation results of average precipitation in the EBYRB,
it is recommended to use GPCC precipitation products with the highest accuracy at the
three-time scales of annual, seasonal, and monthly average precipitation. At the same
time, GPCC not only has good performance and a wide time range, but the platform also
provides a variety of time and spatial resolution GPCC series products. Researchers can
choose the suitable product version according to their research direction and the size of
the research basin as the precipitation variable input to drive the corresponding model to
provide data support for practical applications aimed at long-term water resources, water
environment, and water ecological management and decision-making.

For application outlets related to short-term or quasi-real-time precipitation demand,
reanalysis products, remote sensing products, and multi-source fusion products can all
provide recent precipitation data. For the study area, we recommend using MSWEP, which
performs better in daily average precipitation in this circumstance. Then, we also suggest
using the precipitation product APHRODITE, which has the highest accuracy in daily
precipitation, for quality correction. According to product attributes, MSWEP is a multi-
source fusion precipitation product based on remote sensing satellites, which can provide
near-real-time three-hour global high-resolution precipitation data. MSWEP can be used as
a dynamic input project for the hydrological and water resource circulation system of the
research basin, and it is of great significance for time-critical application projects.

For the application outlet of extreme water disasters, it is necessary to consider the
key features that trigger disasters like floods, such as the magnitude and frequency of
extreme precipitation. In terms of the applicability evaluation of extreme precipitation,
by comprehensively evaluating the accuracy of the extreme precipitation indexes at the
monthly and daily scales in the study area, it is found that GPCC, CHIRPS, and PERSIANN-
CDR can accurately monitor the occurrence of extreme precipitation in time and can also
reflect the distribution pattern of extreme precipitation intensity in space. Therefore, for
the study of extreme events in the study area under the influence of climate change and
human activities, as well as the historical analysis of short-term extreme events such as
floods, landslides, mountain floods, and mudslides, it is recommended to use the GPCC
series of daily precipitation products as input or auxiliary correction data. If recent data
are needed for research, remote sensing products such as CHIRPS or PERSIANN-CDR can
also be selected as input to provide near-real-time precipitation data, thereby carrying out
relevant research on flood disaster warning and water disaster prevention and control in
the EBYRB.

It is worth noting that the discussion in this section is based on the assumption that
each precipitation product is optimally accurate when considering different times and
modal couplings, and corresponding application outlets are proposed in combination
with product characteristics. However, it is currently unclear whether a product’s good
estimation of precipitation represents its ability to accurately express hydrological processes,
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forecast hydrological situations, and detect extreme events such as floods or droughts. Some
studies have shown that there are differences in the performance of precipitation products
in precipitation assessment and other water-related applications [66–68]. At the same time,
the choice of assessment indicators will also affect the assessment results, and this paper
synthesizes the overall situation of the three accuracy coefficients for evaluation. However,
it is worth noting that for further applications of precipitation, this evaluation is not always
applicable, but rather a certain indicator will be decisive for a more accurate assessment.
For example, Camici et al. [66] found that RMSE and relative bias were more suitable
indicators for selecting the best rainfall products for hydrological modeling compared to R
and the KGE. Therefore, the results of the discussion have certain limitations. Although
they can provide some support and suggestions for decision-makers, it is necessary to
carry out a special evaluation using the corresponding hydrological model or index for a
specific target before applying it in practice. Moreover, the results of this study are only
for EBYRB and arid and semi-arid areas with a climate similar to that of the study area
and were not evaluated for the humid zone. Some studies have shown differences in the
performance of precipitation products in humid and arid regions, with the products being
more consistent in humid regions [10,69,70]. This may be attributed to factors such as
the number of observation sites, satellite orbit and sensor performance, and precipitation
type and intensity. Therefore, further specific assessments are needed to understand the
performance and impact mechanisms of the seven precipitation products in the humid zone.

4.3. Errors and Limitations
4.3.1. Limitations of the In-Situ Weather Stations Precipitation Measurements

Although we considered more good quality stations for interpolation to control for
spatial and temporal precipitation in the study area and made efforts in interpolation
method selection to minimize errors in the benchmark precipitation. There is no way
to avoid the fact that the current study area contains only six sparse stations that are
unevenly distributed, with a relative lack of them, especially in the central part of the
study area. Although there are several stations around the study area to assist in the
production of benchmark precipitation, there are still some limitations and uncertainties.
The 31 observation stations in the buffer zone are used as inputs to construct the benchmark
data. The average spacing between their neighbors is 36.9 km, which basically meets the
interpolation requirements for a grid resolution of 0.25 (25 km) but is slightly insufficient
for the highest spatial resolution of 0.05◦ (5 km). Therefore, the benchmark precipitation
may not be accurate enough to assess the performance of CHIRPS (spatial resolution of
0.05◦) and MSWEP (spatial resolution of 0.1◦). Therefore, a comparison of the results of
this paper with regional results for similar climatic conditions is necessary (Section 4.1).
In addition to this, it also indicates that it is necessary to look for potential alternatives
to traditional rainfall monitoring methods to correct or replace in-situ station-observed
precipitation in the EBYRB, where stations are sparsely and unevenly distributed.

4.3.2. Selection of Interpolation Methods for Generating Benchmark Precipitation

The choice of interpolation method has a great impact on the accuracy of the bench-
mark data. Inverse-distance weighted (IDW), kriging, and spline are some of the most
commonly used interpolation methods [71,72]. It is essential to evaluate the interpolation
accuracy of several interpolation methods in the study area and select the most appropri-
ate one for data creation. At the same time, the elevation variable was considered to be
included in the interpolation process because there is a significant correlation (R = 0.53)
between precipitation and elevation in the study area and within the buffer zone. Based
on this, an attempt was made to interpolate and comparatively evaluate the annual mean
precipitation at 31 relevant stations using four interpolation methods: IDW, ordinary krig-
ing (OK), co-kriging, and ANUSPLIN. Co-kriging and ANUSPLIN take into account the
effect of elevation as a covariate using 90m DEM. Cross-validation method to check their
accuracy combining the two accuracy metrics: mean error (ME) and RSEM. The accuracy of
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different interpolation methods is shown in Table 8. The results show that the inclusion of
elevation improves the accuracy of interpolation, with the RMSE and ME of co-kriging and
ANUSPLIN lower than those of IDW and OK. Compared to the other three interpolation
methods, ANUSPLIN has the best performance in terms of accuracy, so we chose it to
interpolate the station data to obtain the benchmark gridded precipitation.

Table 8. Impact of different interpolation method choices on benchmark precipitation accuracy.

Interpolation
Method

ME
(mm)

RMSE
(mm)

Average Multi-Year
Precipitation (mm)

IDW −4.6 25.4 283.5
OK −0.8 16.0 283.8

Co-kriging 0.2 9.2 282.1
ANUSPLIN 0.2 4.7 293.8

4.3.3. Comparison and Selection between Different Spatial Resolutions

Before making an accurate comparison, we need to decide on the spatial resolution
of the product. Two options were tried: one was to standardize the spatial and temporal
resolution of each product, but may introduce errors due to interpolation; another approach
was to retain the original resolution of the product, but it increases the workload when
comparing the accuracy with the benchmark and is not intuitive enough for spatial analysis
presentation and comparison. Therefore, we compared the accuracy performance of the
annual mean precipitation series of three precipitation products, CHIRPS, APHRODITE,
and JRA55, before and after resampling (bilinear interpolation), which correspond to the
three cases of the finest, medium, and coarsest resolution, respectively, and the results are
shown in Table 9.

Table 9. The accuracy evaluation results of the annual precipitation of precipitation products at
different spatial resolutions from 1986 to 2015 in the EBYRB.

Precipitation Products APHRODITE CHIRPS JRA55

Spatial Resolution
Original Post-

Interpolation Original Post-
Interpolation Original Post-

Interpolation

0.25◦ 0.1◦ 0.05◦ 0.1◦ 1.25◦ 0.1◦

R 0.96 0.96 0.79 0.79 0.83 0.83
RMSE (mm) 38.3 39.0 35.8 36.1 65.1 61.4

KGE 0.81 0.80 0.71 0.71 0.74 0.75
Average multi-year
precipitation (mm) 259.9 259.9 280.8 281.6 350.3 347.2

The results show that the change in resolution has a small effect on the accuracy,
with the multi-year average annual precipitation varying by no more than 1.0% for each
of the three precipitation products and with R essentially unchanged. For APHRODITE
and CHIRPS, RMSE increased slightly after interpolation, KGE was slightly less, and the
overall presentation accuracy was slightly reduced. For JRA55, the accuracy is relatively
improved after interpolation, as shown by a 5.6% decrease in RMSE and a 1.4% increase in
KGE. Taken together, an increase in resolution will improve product performance, and a
decrease in resolution will decrease product performance. Therefore, we choose to retain
the resolution of the product itself for accuracy analysis so as not to introduce errors due
to the interpolation process of each product to change the resolution, which affects the
characteristics and performance comparison of the product itself.

4.3.4. Exploration of Error

Every effort is made to minimize the errors generated, transmitted, and accumu-
lated in each of the above data processing steps (Section 2.2.3). Fortunately, compared to
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the inherent differences between precipitation products, these errors do not change the
conclusions too much. However, it is unavoidable that uncertainty is introduced by the
interpolation of benchmark, cumulative calculations of annual and seasonal precipitation,
and change in spatial resolution of benchmark for accuracy assessment. It is important
to recognize that the study of uncertainty in this paper is relatively underdeveloped and
needs to be explored more thoroughly and comprehensively in order to explore or innovate
more precise assessments.

5. Conclusions

In this paper, we evaluate the regional applicability of seven multi-grid precipitation
products (APHRODITE, GPCC, PERSIANN-CDR, CHIRPS, ERA5, JRA55, and MSWEP) at
different time scales and modes (yearly/seasonally/monthly/daily average precipitation
and monthly/daily extreme precipitation) in the EBYRB, and then compare with previous
research findings, discuss the actual application outlets of these products and explore the
errors and limitations. The main conclusions are as follows:

• In the average state, the seven precipitation products have similar spatial distribution
patterns of annual precipitation, but there are large differences in accuracy on the
time series. On the monthly, seasonal, and annual scales, the highest accuracy is
GPCC, followed by APHRODITE, JRA55, and PERSIANN-CDR, while ERA5 and
MSWEP have the weakest consistency with the benchmark precipitation. Among
them, ERA5 and JRA55 generally overestimate precipitation, and MSWEP significantly
overestimates individual years or months. On the daily scale, the accuracy of each
precipitation product decreases slightly, with the highest accuracy being APHRODITE,
followed by MSWEP and GPCC, while the reanalysis and remote sensing precipitation
products perform worse.

• In the extreme state, GPCC has the highest overall accuracy, followed by CHIRPS and
PERSIANN-CDR. Each precipitation product has different degrees and characteris-
tics of deviation: ERA5 and CHIRPS generally overestimate extreme precipitation,
APHRODITE and PERSIANN-CDR generally underestimate, JRA55 is not sensitive
enough to the Rx1day index, and the anomaly of MSWEP is reflected in the high degree
of deviation of individual monitoring values. In space, each precipitation product
can basically show the precipitation distribution pattern from the northwest to the
southeast of the study area. Although GPCC has the highest accuracy on the time
series, it underestimates the extreme precipitation value in the middle and lower parts
of the study area in the spatial distribution of Rx1day.

• Based on the excellent performance of GPCC in average and extreme precipitation,
GPCC series products basically meet the application needs of water resource man-
agement, water ecological improvement, water environment monitoring, and water
disaster prevention and control in the study area, and have the potential to replace
ground rainfall observation stations. Remote sensing precipitation products can be
used as dynamic input variables in real-time or short-term precipitation scenarios.
MSWEP performs excellently in predicting daily average precipitation, while CHIRPS
and PERSIANN-CDR stand out in predicting extreme precipitation events. It is recom-
mended to use them in combination with real-time precipitation forecasting or early
warning of extreme disaster events.

In conclusion, the research results of this paper will provide better decision-making
for the precipitation product selection for the endorheic basin of the Yellow River Basin.
At the same time, it can also provide new research ideas and scientific references for the
evaluation of precipitation products at multiple time scales and multiple mode scales in the
world’s inland river basins or arid and semi-arid areas, as well as the specific application of
precipitation data in hydrology and climatology.
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