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Abstract: Identifying urban buildings in high-resolution RGB images presents challenges, mainly
due to the absence of near-infrared bands in UAVs and Google Earth imagery and the diversity
in building attributes. Deep learning (DL) methods, especially Convolutional Neural Networks
(CNNs), are widely used for building extraction but are primarily pixel-based. Geographic Object-
Based Image Analysis (GEOBIA) has emerged as an essential approach for high-resolution imagery.
However, integrating GEOBIA with DL models presents challenges, including adapting DL models
for irregular-shaped segments and effectively merging DL outputs with object-based features. Recent
developments include tabular DL models that align well with GEOBIA. GEOBIA stores various
features for image segments in a tabular format, yet the effectiveness of these tabular DL models for
building extraction still needs to be explored. It also needs to clarify which features are crucial for
distinguishing buildings from other land-cover types. Typically, GEOBIA employs shallow learning
(SL) classifiers. Thus, this study evaluates SL and tabular DL classifiers for their ability to differentiate
buildings from non-building features. Furthermore, these classifiers are assessed for their capacity
to handle roof heterogeneity caused by sun exposure and roof materials. This study concludes that
some SL classifiers perform similarly to their DL counterparts, and it identifies critical features for
building extraction.

Keywords: building extraction; GEOBIA; deep learning; tabular model; SVM; RF; XGB

1. Introduction

Anthropogenic land covers are generally concentrated in a small area in an urban space.
Thus, finer spatial resolution images are required for mapping urban features [1]. Therefore,
aerial photographs have been used for decades to map urban land covers. However, there
was a move from aerial photographs to satellite images after the advent of satellites such as
IKONOS, QuickBird, and WorldView1, which provide high-spatial-resolution images. In
addition, Unmanned Aerial Vehicles (UAVs) provide even higher-spatial-resolution images
and are also used for mapping urban land covers. Unlike satellite images, UAV and aerial
images typically only have visible bands (RGB). Even though researchers have extracted
buildings from RGB images, including a near-infrared band can assist in distinguishing
buildings from different land covers, such as shadows, vegetation, and water [2].

Automatic extraction of artificial objects, such as buildings and roads, in urban areas
is a growing interest in remote sensing and photogrammetry communities [3]. Building
extraction is more complex and challenging than other urban land-cover types as it displays
various intensity values [4]. Although building extraction has been studied for decades,
it still faces many challenges for successful implementation [5]. Developing a simple and
uniform model is difficult due to buildings’ diverse shapes and spectral characteristics, the
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disturbances created by other land-cover types such as tree canopies, roads, and shadows,
and the occlusion of an entire building or part of it due to other nearby buildings [2]. In
addition, in gable, hip, and complex roofs, the spectral properties of individual roof patches
vary significantly due to the sun’s orientation during image acquisition. This variation also
arises from the use of contrasting materials in different roof sections. Thus, the extraction
of buildings from high-resolution images warrants different approaches than other feature
extraction methods.

So far, a variety of building extraction methods have been proposed in the remote-
sensing literature, including line- or edge-based methods [6,7], template matching [3,8], and
knowledge-based [9,10], auxiliary data-based [11–13], and morphological operations [14,15].
However, these methods have limitations, as noted in [16]. Most of those methods rely
on pixel-based image analysis techniques developed for analyzing low- and moderate-
resolution images. Despite the drawbacks of pixel-based methods, such as creating a
salt-and-pepper effect, producing inaccurate boundaries, and needing high computational
power [17], they remain the preferred approach for most building extraction algorithms. On
the other hand, Geographic Object-Based Image Analysis (GEOBIA) [18] has emerged for
analyzing high-spatial-resolution images, and a considerable number of GEOBIA studies
are available in the literature [19–21]. However, only a few of these studies have utilized
this approach to extract buildings.

The steps in GEOBIA involve image segmentation, feature extraction, classification,
and post-classification analysis. Image segmentation is the first step in GEOBIA, and hun-
dreds of algorithms are available for this purpose [22]. Even so, achieving perfect segmen-
tation is unattainable, and over-segmentation is preferred over under-segmentation [16].
In over-segmentation, the dissection of individual land covers, such as buildings, occurs
in two or more segments. These fragments can later be amalgamated if they fall under
the same land-cover category in a classified map, ultimately reconstructing the complete
representation of the building. Conversely, under-segmentation occurs when two or more
distinct land covers are encapsulated within a single segment, leading to a compromised
level of accuracy in the classification process [23]. After segmentation, the next step in
GEOBIA is to extract features from each image object. Features can be within-object in-
formation (such as spectral, textural, and shape) or between-object information (such as
connectivity, contiguity, distance, and direction) [24], which can be calculated from images
such as spectral, elevation, principal component, vegetation index, etc. Tons of features are
extracted and utilized in the literature for classifying image objects. Ghanea et al. [2] con-
ducted a literature review and identified various indices used to distinguish buildings from
other features. Their review revealed that near-infrared-based indices were predominantly
utilized for this purpose. However, to the best of our knowledge, there is no clear indication
in the literature regarding which RGB features or indices are significant in differentiating
buildings from other objects [25].

Broadly, two methods are used for classification in GEOBIA: the rules-based approach
and the supervised approach [26]. From 2010 onwards, supervised classification has
been mainly practiced in GEOBIA for land-cover classification [27]. Sampling design and
classification are the two fundamental processes in supervised classification [26]. The
sampling design determines the minimal per-class sample size and the locations for the
training and validation samples. A class imbalance can result in the under-prediction of
less common classes and the over-prediction of more common classes; hence, it is optimal
to have an equal number of samples for each class [28]. Researchers frequently encounter
class imbalances when attempting to extract buildings of various colors from an area, as
it is improbable to find an equal number of buildings of each color in any given location.
Chawla et al. [29] introduced the Synthetic Minority Over-Sampling Technique (SMOTE)
to synthetically balance over- and under-samples to reduce over- and under-prediction.
Researchers have reported mixed impacts [30–33] of using SMOTE in remote-sensing data.
To create sample locations, probabilistic techniques, including simple random, stratified random,
and systematic sampling, are utilized; however, creating random points on the image is not
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advised because it favors larger image objects. The list-frame method, which involves making a
list of image objects, randomizing the list, and then choosing the first n image objects as samples,
was advised by Kucharczyk et al. [26] for object-based classification.

Shallow learning (SL) classifiers such as Support Vector Machines (SVMs), Random
Forests (RFs), Maximum Likelihood Classification (MLC), and Decision Trees (DTs) are
primarily used as supervised classifiers in the GEOBIA literature. Ma et al. [27] reported
that RF classification provides the highest overall accuracy, followed in descending order
by SVM, DT, and MLC. Shallow classifiers used for building extraction under the GEOBIA
framework resulted in lower accuracy than pixel-based methods. However, none of the
previous research has attempted to analyze which shallow classifiers perform poorly. All
previous GEOBIA building extraction research has utilized the multiclass classification
technique; thus, it is challenging to comprehend which non-building objects are hard to
differentiate from buildings.

In recent years, Convolutional Neural Networks (CNNs) based on Artificial Neural
Networks (ANNs) have gained widespread popularity in computer vision. CNNs are
a Deep Learning (DL) model that works with data arrays, such as one-dimensional au-
dio signals or two-dimensional image bands. They have been used for semantic image
segmentation [26]. As shown in Figure 1, CNNs take an image patch as an input, utilize
convolution for feature extraction, pooling operation to reduce parameters and boost se-
mantic information, and prediction to assign a specific class to each pixel. CNNs can train
on large datasets (even millions of samples) with high generalization capabilities. There
are numerous CNN algorithms available for implementation.
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CNNs use the per-pixel classification method, which labels each pixel [26]. Even
though those algorithms have been reported to have the highest accuracy, they often
generate a salt-and-pepper effect. The pooling operations used in these methods to enhance
semantic information create blurred boundaries [16] in classification. By witnessing the
success of CNNs, several researchers integrated CNNs with GEOBIA. Those studies utilized
CNNs to extract deep features and GEOBIA to extract spectral and spatial information.
However, this faced two-folded issues [34]: learning deep features for irregularly shaped
objects and integrating the output of CNNs with object-based features. In their study,
Jozdani et al. [32] implemented a CNN for GEOBIA urban land-cover classification and
concluded that the CNN did not provide better accuracy than shallow classifiers.

Many DL models for tabular data have also been introduced [35]. As depicted in
Figure 2, those models take a completely different approach when compared with CNNs.
For instance, the input for those models is a table (could be a table of features extracted
for each segment), and the output is a class label for each row (each segment). Tabular
DL models can be divided into differentiable trees and attention-based models [36]. The
DT ensembles that exhibit robust performance with tabular data inspire differentiable tree
models. DTs, however, do not support gradient optimization and are not differentiable. The
smooth decision function and differentiable tree routine have been proposed in multiple
studies [37,38]. Newer attention-based models [39–41] use inter- and intra-sample attention
to account for the interaction between the properties of a particular sample and data
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points. Compared to shallow classifiers, outcomes from DL models are superior for tabular
data [37,39,42]. Even though those tabular models align with the GEOBIA workflow, their
effectiveness in extracting buildings using the GEOBIA framework has not yet been studied.
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The major challenge of extracting buildings from high-resolution RGB images is retrieving
spectral detail and improving the discrimination of buildings from other non-building objects.
Although hundreds of features can be extracted for each segment based on their spectral, geo-
metric, and textural properties, there is no clear indication of which RGB features are important
for differentiating buildings from other objects. Classifiers used in the GEOBIA method take
features that are a statistical summary of all pixels in a segment as input. However, as inter-
segment homogeneity and intra-segment heterogeneity are usually high in high-resolution
images, segment-level summaries exaggerate these characteristics and lead to misclassifica-
tion [43] when using the shallow classifier. None of the previous studies have examined how
well DL tabular models handle segment-level summaries when extracting features.

To address the challenges mentioned above and to evaluate the performance of dif-
ferent classifiers’ building extraction accuracy, this study utilized both SL and tabular DL
classifiers simultaneously to examine their effectiveness in extracting buildings under the
GEOBIA framework. The objective of this article was to conduct a detailed evaluation
of the effectiveness of DL tabular models in the differentiation of buildings from diverse
land covers. The article outlines the challenges faced by different classifiers during this
differentiation process. Additionally, it emphasizes situations where SL classifiers demon-
strated performance comparable to their DL counterparts. As a result, this study presents
its findings separately to offer a thorough comprehension, opting not to amalgamate them
into a final classification map.

First, the image was segmented using a hybrid segmentation method, and then spec-
tral, textural, and geometrical features were extracted and stored in tabular format for each
segment. Following the guideline of Ghanea et al. [2], buildings were identified from non-
buildings such as shadows, vegetation, soil, and roads using different SL and tabular DL
classifiers. The remaining sections of this paper are organized as follows: Section 2 presents
the methodological framework, which includes image segmentation, feature extraction,
classifiers, and accuracy assessment measures. Section 3 describes the study area and data
used in this research. Section 4 presents the performance of the classifiers in distinguishing
buildings from other non-building features, as well as heterogeneity within a roof. Section 5
offers a discussion based on the results obtained in the previous section. Finally, Section 6
presents the conclusions and future work.
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2. Methodological Framework
2.1. Image Segmentation

Image segmentation in GEOBIA involves dividing an image into disjointed regions
and grouping pixels into image objects. There are four main categories of image segmenta-
tion: pixel-based, edge-based, region-based, and hybrid [22]. Pixel-based methods involve
thresholding and segmentation in the feature space, while edge-based segmentation in-
volves identifying edges between regions and determining the segments within these
edges. Region-based segmentation starts within an object and expands outward until it
reaches its boundaries. Hybrid methods attempt to combine the strengths of edge- and
region-based methods to improve results. This study employed a hybrid segmentation
algorithm proposed by Hossain and Chen [16], which combines both edge-based and
region-based methods. Initially, segments were generated using an edge-based approach,
and subsequently merged using a region-based method. The watershed transformation was
applied to the gradient image derived from RGB images to produce over-segmented initial
segments. Following this, a region adjacency graph (RAG) was employed to delineate the
adjacent relationships between segments.

To determine the suitability of merging, various metrics, including homogeneity, hetero-
geneity, illumination difference, rectangularity, and compactness between neighboring segments,
were computed. Sample buildings were introduced to establish the threshold value for segment
merging. Segments meeting the threshold and compactness criteria were merged, with the
process iterated in loops. Each loop involved the utilization of reference buildings to ascertain
the merging threshold. In cases where no segments met the merging criteria and a segment had
only an encompassing neighbor, it was merged with said neighbor, disregarding the threshold.
Unlike conventional segmentation algorithms, this approach utilized reference buildings to
derive merging criteria, thus requiring minimal user input. Notably, the algorithm demonstrated
the ability to segment buildings with minimal under-segmentation, despite the presence of
over-segmentation, as depicted in Figure 3.
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2.2. Object-Based Feature Extraction

The image segments were analyzed using object-based features considering spectral,
geometric, and contextual characteristics. A previous study [27] found that spectral features
are the most important in analyzing UAV images using the GEOBIA framework and that
shape features should receive more attention. The GLCM (gray-level co-occurrence matrix)
measures of homogeneity, angular second moment, and mean were found to be important
in various scales. Another study [44] also utilized spectral, geometric, and textural features
in their GEOCNN (geographic convolutional neural network) for object classification. This
approach extracted the image objects’ spectral, geometric, and textural features according
to these guidelines. The equation and its components for the selected object features are
represented in Table 1. As in UAV images, there was no infrared band; this study calculated
many indices available in the literature to differentiate buildings from other image objects.
This study did not apply any feature reduction techniques; instead, it used all the features
for object classification in GEOBIA. However, essential features for extracting differently
colored buildings and other objects were identified using the variable/feature importance
option in the classifiers.

Table 1. Features extracted for GEOBIA classification.

Feature Attribute Mathematical Formulation

Spectral

Brightness [44]
B = 1

nvis

nvis
∑

i=1
bi(vis)

where B is an object’s average brightness, bi(vis) is its average brightness in the visible bands,
and nvis is its band count

Mean band [44] Ck(v) = Ck(Pv) =
1

#Pv
∑

(x, y, z)ϵPv

Ck(x, y, z)
[
Cmin

k , Cmax
k
]

Standard
deviation [44]

σk(v) = σk(Pv)

√√√√ 1
#Pv

(
∑

(x, y, z)ϵPv

C2
k (x, y, z)− 1

#Pv
( ∑
(x, y, z)ϵPv

C2
k (x, y, z)2)

)[
0, 1

2 Crange
k

]
where σk(v) represents the standard deviation of the intensity values for image layer k of all pixels
that form an image object v; the set of pixels that belong to the image object v is denoted by Pv; the
total number of pixels in Pv is represented by #Pv; the pixel coordinates are presented
by (x, y, z) and the image layer intensity value at each pixel is represented by Ck(x, y, z);
and Crange

k is the data range of image layer k, with Crange
k = Cmax

k − Cmin
k

ExG [45]

ExGv = 2 ∗ CG(v)− CR(v)− CB(v)
where ExGv is the ExG value of a segment v, CG(v) is the mean green band’s value for the segment
v, CR(v) is the mean red band’s value for the segment v, and CB(v) is the mean blue band’s value
for the segment v

VIgreen [45]

VIgreenv = CG(v)
CG(v)

a∗ CB(v)
1−a

where VIgreenv is the vegetation index of a segment v, CG(v) is the mean green band’s value for
the segment v, and CB(v) is the mean blue band’s value for the segment v. a is a constant with a
reference value of 0.667

MGRVI [46]
MGRVIv = CG(v)

2−CR(v)
2

CG(v)
2−CR(v)

2

where MGRVIv is the modified green–red vegetation indices of a segment v, CG(v) is the mean
green band’s value for the segment v, and CR(v) is the mean red band’s value for the segment v.

CIVE [45]

CIVEv = 0.441 CR(v)− 0.881 CG(v) + 0.385 CB(v) + 18.78745
where CIVEv is the color index of vegetation of a segment v, CR(v) is the mean red band’s value
for the segment v, CG(v) is the mean green band’s value for the segment v, and CB(v) is the mean
blue band’s value for the segment v.
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Table 1. Cont.

Feature Attribute Mathematical Formulation

Spectral

SAVI [45]
SAVIv =

1.5∗(CG(v)−CR(v))
CG(v)+ CR(v)+0.5

where SAVIv is the soil adjusted vegetation index of a segment v, CR(v) is the mean red band’s
value for the segment v, and CG(v) is the mean green band’s value for the segment v.

ExGR [45]

ExGRv = ExGv −
(
1.4 CR(v)− CG(v)

)
where ExGRv is the excess green minus excess red index of a segment v, ExGv is the excessive
green for the segment v, CR(v) is the mean red band’s value for the segment v, and CG(v) is the
mean green band’s value for the segment v.

NGRDI [45]
NGRDIv = CG(v)−CR(v)

CG(v)+ CR(v)

where NGRDIv is the normalized green–red difference index of a segment v, CR(v) is the mean red
band’s value for the segment v, and CG(v) is the mean green band’s value for the segment v.

NGBDI [46]
NGBDIv = CG(v)−CB(v)

CG(v)+ CB(v)

where NGBDIv is the normalized green–blue difference index of a segment v, CB(v) is the mean
blue band’s value for the segment v, and CG(v) is the mean green band’s value for the segment v.

DSBI [47]
DSBIv = 0.5 ∗ (CB(v)− CR(v)) + 0.5 ∗ (CB(v)− CG(v))
where DSBIv is the difference spectral building index of a segment v, CB(v) is the mean blue
band’s value for the segment v, and CG(v) is the mean green band’s value for the segment v.

Geometric

Length/width [44]
length
width

where length denotes the length of the segment; width represents the width of the segment

Asymmetry [44] 1 − λmin
λmax

where λmin is the minimal eigenvalue; λmax is the maximum eigenvalue

Rectangularity [44] area
minimum bounding rectange

Shape index [44]
Bv

4√#Vv

where Bv is the segment’s border length; 4
√

#Vv is the border of the square with the area of #Pv

SI [48]
SIv = P(v)

4∗
√

A(v)
where SIv is the shape index of a segment v, P(v) is the perimeter, and A(v) is the area of the
segment v.

Perimeter Perimeter of a segment

Textural

Contrast [44]

∑N−1
i,j=0 Pi,j(i − j)2

In the context of textural measures, the notation, i represents the row number; j represents the
column number; N is the total number of rows or columns; and Pi,j denotes the probability value
derived from the GLCM. It is important to note that these notations can also be applied to other
textural measures described below.

Correlation [44] ∑N−1
i,j=0 Pi,j

[
(i−µi)(j−µi)√
(σ2

i )
(

σ2
j

)
]

where σ is the GLCM standard deviation; µi is the GLCM mean

Entropy [44] ∑N−1
i,j=0 Pi,j log Pi,j

Homogeneity [44] ∑N−1
i,j=0

Pi,j
1+|i−j|

Angular second
moment [44] ∑N−1

i,j=0

(
Pi,j
)2

Mean [44] µi = ∑N−1
i,j=0 i

(
Pi,j
)
, µj = ∑N−1

i,j=0 j
(

Pi,j
)

Standard
deviation [44] σi

2 = ∑N−1
i,j=0 Pi,j(i − µi)

2, σj
2 = ∑N−1

i,j=0 Pi,j(j − µi)
2

2.3. SL Classifiers

Ensemble methods are a type of machine learning that combine several weak classifiers
to create a single strong classifier. The DT classifier [49], widely used in GEOBIA, is a
common weak learner often included in ensembles to improve classification performance.
The RF [50] algorithm randomly selects a subset of features to use for classifying each DT
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and has the ability to detect mislabeled examples in the training data before predicting
unlabeled samples. Two hyperparameters must be set to train an RF model: the number of
features (Mtry) used for splitting at each node and the number of trees (Ntree) in the model.
According to Ma et al. [23], reasonable accuracy can be achieved on various datasets when
Mtry is set to log2(M) + 1, where M is the number of variables. In addition, Belgiu and
Drǎguţ [51] used as large an Ntree value as possible, but Lawrence et al. [52] found that
an Ntree of 500 or more provides unbiased error estimates. This study’s hyperparameters
were fine-tuned using grid search and cross-validation on the training samples.

Boosting algorithms are a popular choice in remote sensing [32] as they involve
training DTs sequentially, resulting in a lower error rate. AdaBoost (Adaptive Boosting)
was developed to improve the accuracy of DTs [53]. This approach was later improved
upon with the introduction of Gradient Boosting (GB), which fits an additive model to the
gradient residual of the loss function. Another DT model used in remote sensing is the
Classification and Regression Tree (CART), which divides the training dataset into subsets
by applying a splitting rule to a single feature and uses the Gini Index and homogeneity
criteria to maximize subset purity [54]. Extensive gradient boosting (XGB) is popular
in the remote-sensing community [32,55,56]. Like RF, the XGB model identifies feature
importance and divides the complex dataset into smaller subsets. The XGB method was
also fine-tuned using grid search and cross-validation on the training samples.

An SVM is an SL classifier that has been shown to produce excellent results in classify-
ing remote-sensing images [57]. SVM is a binary classifier that finds a linear hyperplane
to separate two classes and aims to maximize the distance between the hyperplanes to
reduce generalization error. Different kernel functions, such as the polynomial kernel,
sigmoid kernel, radial basis function, and linear kernel, can be used in an SVM, and the
choice of kernel function can significantly impact performance. SVMs also incorporate
a penalty parameter to consider misclassification errors [54]. This classifier effectively
handles continuous and categorical variables, as well as non-linear, complex, and noisy
data with outliers, and helps prevent overfitting in the model. An SVM has two parameters
that need to be tuned: C (the penalty parameter for the error term) and ε (the margin of
tolerance). These parameters were selected using cross-validation and grid-search on the
training samples.

2.4. DL Classifiers

The DL algorithm TabNet [39,58] was created for classification and regression tasks
involving tabular data. The main principle of TabNet is to learn which elements of the
input data to focus on at each level of the neural network by using attention processes. A
subset of the input features is chosen for each decision step in the TabNet algorithm and
is then processed by a neural network. Afterward, the results of various decision-making
processes are pooled to provide a final prediction. In several tabular data classification and
regression tasks, TabNet has been demonstrated to achieve state-of-the-art performance
while also providing interpretable feature relevance scores. This algorithm offers several
parameters, such as the size of the decision embedding space, the size of the attention
embedding space, the number of decision steps, and the initial learning rate to tune up.
TabNet’s capacity to learn interpretable feature importance ratings is one of its unique
characteristics.

Combining feature tokenization with transformer-based models forms the foundation
of the feature tokenizer + transformer (FTT) architecture [36]. By encoding categorical and
numerical characteristics into a collection of fixed-length vectors, feature tokenization can
be used to generate inputs for a transformer model. The transformer model’s deep learning
architecture uses attention processes to discover connections between input features. It
comprises numerous feedforward and self-attention neural network layers, allowing the
model to recognize intricate correlations between variables and produce precise predic-
tions [59]. FTT has several advantages over more conventional methods. It can process
input features with large dimensions and non-linearity and automatically learn how fea-
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tures interact without the need for manual feature engineering. This makes it an effective
tool for regression, classification, and predictive modeling projects.

A typical machine learning approach used for both tabular classification and regression
issues is the Gated Additive Tree Ensemble (GATE) [42]. It is built on the idea of assembling
many DTs, which are then joined using a gating mechanism to increase the model’s overall
accuracy. The gating method enables the model to evaluate the contribution of each
tree and make more informed decisions about the final forecast. Since the algorithm is
additive, additional trees can be added to the ensemble at any time to enhance performance.
This makes it adaptable and scalable to handling various data formats and application
domains. The number of trees, tree depth, number of splits, learning rate, etc., are the main
parameters to tune up in the GATE model. This algorithm has been shown to be highly
effective in many real-world applications.

DTs and NNs are combined in a type of neural network architecture called a Neural
Oblivious Decision Ensemble (NODE) [37]. They are appropriate for a variety of machine
learning applications since they are made to offer both high accuracy and interpretability.
The neural network in the NODE functions as an ensemble, combining the predictions of
various DTs [36]. Each DT forms independent forecasts while unaware of the other trees.
As a result, NODEs can handle both tabular and non-tabular data with ease and can grow
to massive datasets. The interpretability of the NODE is one of its main benefits. The
model’s decision-making process is simple because each DT operates independently [60].
The number of DTs, the depth of each tree, and the total number of neurons in the neural
network are the primary hyperparameters for NODEs. The number of DTs determines the
ensemble size, which can be set to a high value to improve model precision. Each tree’s
depth can be changed to regulate the decision boundaries’ level of complexity and guard
against overfitting.

2.5. Object Classification

This study employed the Python programming language to implement all classifiers. It
also utilized PyTorch Tabular [35] to implement the deep learning classifiers. This research
used an Nvidia Quadro P2000 GPU to develop the networks because PyTorch supports
building deep learning networks on GPUs, significantly decreasing the execution time
during training. An SVM and RF were implemented on scikit-learn, the most popular
Python machine learning module. For the XGB classifier, the Python XGBoost module was
used, and parameters were tuned using grid search and cross-tabulation on training data.
Choosing a stopping criterion while training a neural network model is crucial since it
helps prevent overfitting. This terminates the training process after a specific number of
iterations. In this study, 500 iterations of training were used for all DL models. The Adam
optimizer was used to minimize the loss function, and the learning rate was set at 0.001.

2.6. Accuracy Assessment

Precision (Equation (1)), recall/sensitivity (Equation (2)), overall accuracy (Equation
(3)), and F1 score (Equation (4)) are commonly used evaluation matrices. They are defined
as follows:

precision =
TP

TP + FP
(1)

recall or sensitivity =
TP

TP + FN
(2)

overall accuracy =
TP + TN

TP + TN + FP + FN
(3)

F1 =
2 × precision × recall

precision + recall
(4)

where TP, TN, FP, and FN indicate the number of true positives, true negatives, false
positives, and false negatives, respectively. The number of segments accurately classified as
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buildings is referred to as TP, while TN denotes the number of segments correctly classified
as non-buildings. On the other hand, the number of pixels that were incorrectly classified is
represented by FP and FN. Precision is a measure that evaluates the ratio of the number of
images accurately predicted as positive samples to all images predicted as positive samples.
Recall, also known as sensitivity, calculates the proportion of positive samples that were
correctly identified among all positive samples. The F1 score is a metric that takes into
account both precision and recall. However, Silva et al. [61] stated that precision is not a
reliable indicator of classification accuracy for building footprints because the non-building
class has a more significant impact than the building class. They recommended specificity
(Equation (5)) to determine true non-buildings that were correctly classified. Furthermore,
they used the geometric mean (Equation (6)) to combine specificity and sensitivity measures,
which helps to balance performance between positive and negative classes. This study also
calculated both specificity and geometric mean measures.

speci f icity =
TN

TN + FP
(5)

geometric mean =
√

speci f icity x sensitivity (6)

3. Study Area and Data

For this research project, the city of Kingston, Ontario, Canada, was chosen as the study
area (Figure 4). The training/validation utilized a UAV image with a spatial resolution of
0.20 m, consisting of three visible bands: red, green, and blue. As portrayed in Figure 4,
this area contained various buildings of different sizes, shapes, and colors commonly
found in urban areas. The study area included four types of roofs: gable (Figure 5a–c),
hip (Figure 5d–f), complex (Figure 5g), and flat (Figure 5h), and there were some obstacles
caused by nearby trees (Figure 5c,f) and building shadows (Figure 5b,e,g). Additionally,
the footprint map was digitized by an image analyst, and a strict quality-control process
was enforced to ensure that the digitized reference polygons were valid and accurate.
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This study collected statistically independent and nonadjacent training and validat-
ing data (training/validating segments) using a list-frame approach to achieve unbiased
analyses and outcomes. A total of 13,956 segments covering five distinct land-cover
types—buildings (3645 samples), roads (2419 samples), soil (3148 samples), vegetation
(2691 samples), and shadows (2053 samples)—were gathered for training the classifiers. The
same samples were used in all classifiers for training. A total of 15,822 segments—buildings
(3701 samples), roads (3000 samples), soil (3962 samples), vegetation (2659 samples), and
shadows (2500 samples)—were used for the testing set.

4. Results

To accurately extract buildings from images, it is essential to distinguish and eliminate
non-building objects that may result in errors of commission or omission. Commission
errors happen when non-building features are mistakenly identified as buildings, whereas
omission errors occur when buildings are not detected due to non-building features in
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the images. Thus, it is valuable to identify which non-building objects, such as shadows,
vegetation, and soil, are difficult to differentiate from buildings.

4.1. Buildings versus Shadows

Initially, the classifiers were used to differentiate buildings from shadows. During
the accuracy assessment, only two classes, namely shadows and building, were taken into
account to determine which classifiers could better distinguish between the two and which
features were essential to achieve this outcome. As shown in Table 2, GATE had the highest
overall accuracy and F1 score. On the other hand, RF had lower precision and overall
accuracy than other classifiers. As depicted in Figure 6, RF employed many features to
achieve this result. In contrast, XGB relied heavily on the mean green band, mean RGB, and
GLCM standard deviation and provided accuracy similar to other DL classifiers. Although
the classifiers did an excellent job of segregating shadow from buildings, as illustrated in
Figure 7 (in the dotted yellow box), except for GATE, all other classifiers classified a part
or a full patch of the building as a shadow due to its spectral signature. Interestingly, as
depicted in the third row of Figure 7, none of the classifiers could detect part of the building
behind the shadow. In Figure 7, the red hatched area indicates the shadow, and the blue
hatched area indicates non-shadow.

Table 2. Accuracy measures for building vs. shadow classification for various classifiers.

Method Precision/User
Accuracy

Recall/Sensitivity/
Producer Accuracy Overall Specificity Geometric

Mean F1

SVM 0.93 0.96 0.93 0.94 0.95 0.94

RF 0.96 0.98 0.97 0.97 0.97 0.97

XGB 0.97 0.99 0.98 0.98 0.98 0.98

TabNet 0.97 0.97 0.97 0.96 0.96 0.97

FTT 0.98 0.99 0.98 0.98 0.98 0.98

GATE 0.99 0.99 0.99 0.99 0.99 0.99

NODE 0.97 0.99 0.98 0.99 0.99 0.98
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4.2. Buildings Versus Vegetation

The UAV images used in this study were acquired in the spring. Thus, the lawns
and backyards were still not fully green. The second step aimed to differentiate buildings
from vegetation. During the accuracy assessment, only two classes, namely vegetation
and buildings, were considered for determining which classifiers could better distinguish
between the two and which features were crucial for achieving this objective. As shown
in Table 3, SVM and RF provided excellent results. On the other hand, TabNet had lower
precision and overall accuracy compared to the other different classifiers. Interestingly, the
shallow classifiers performed exceptionally well in this scenario. As depicted in Figure 8,
XGB relied heavily on ExG to achieve this result. On the other hand, RF utilized ExG,
NGBDI, and CIVE to classify objects. Although these classifiers successfully segregated
vegetation from buildings, as shown in Figure 9 (in the dotted yellow box), RF, XGB,
and TabNet classified part of the building as vegetation due to its spectral signature. In
Figure 9, the green hatched area indicates vegetation, and the blue dashed area indicates
non-vegetation.

Table 3. Accuracy measures for building vs. vegetation classification for various classifiers.

Method Precision/User
Accuracy

Recall/Sensitivity/
Producer Accuracy Overall Specificity Geometric

Mean F1

SVM 0.97 0.99 0.98 0.99 0.99 0.98

RF 0.97 0.98 0.97 0.98 0.98 0.97

XGB 0.95 0.98 0.96 0.98 0.98 0.96

TabNet 0.91 0.98 0.93 0.97 0.97 0.94

FTT 0.98 0.99 0.98 0.99 0.99 0.98

GATE 0.97 0.99 0.98 0.98 0.98 0.98

NODE 0.99 0.99 0.99 0.98 0.98 0.99
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Remote Sens. 2024, 16, 878 16 of 26

4.3. Buildings versus Soil

Due to the season, most of the deciduous shrubs in the study area had no leaves at
all. The exposed branches and soil underneath made a unique spectral characteristic and
covered a significant amount of the study area. After shadow and vegetation classification,
the next target was to differentiate buildings from soil. During the accuracy assessment,
only two classes, namely soil and buildings, were considered to determine which classifiers
could better distinguish between the two and which features were crucial for achieving
this objective. As shown in Table 4, SVM and GATE had the highest overall accuracy and
F1 score. On the other hand, TabNet had lower precision and overall accuracy compared
to other classifiers. Interestingly, SVM performed exceptionally well in this scenario. As
depicted in Figure 10, both RF and XGB relied heavily on homogeneity, angular second
moment, and NGBDI to achieve this result. Although the classifiers successfully segregated
the soil from the buildings, as shown in the dotted light green box in Figure 11, all classifiers
classified part of the soil as non-soil due to its spectral signature. In Figure 11, the yellow
hatched area indicates soil, and the blue hatched area indicates non-soil.

Table 4. Accuracy measures for building vs. soil classification with various classifiers.

Method Precision/User
Accuracy

Recall/Sensitivity/
Producer Accuracy Overall Specificity Geometric

Mean F1

SVM 0.99 0.97 0.99 0.97 0.97 0.98

RF 0.85 0.99 0.91 0.99 0.99 0.91

XGB 0.69 0.99 0.77 0.99 0.99 0.81

TabNet 0.57 0.99 0.63 0.96 0.97 0.72

FTT 0.92 0.99 0.95 0.99 0.99 0.95

GATE 0.99 0.99 0.99 0.99 0.99 0.99

NODE 0.78 0.99 0.86 0.99 0.99 0.87
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4.4. Buildings versus Other Impervious Surfaces

The next step was to examine the classifiers’ performance in segregating other imper-
vious surfaces, such as roads, driveways, parking lots, etc., from the buildings. During the
accuracy assessment, only two classes, namely other impervious surfaces and buildings,
were considered to determine which classifiers could better distinguish between the two
and which features were crucial for achieving this objective. As shown in Table 5, all of the
shallow and DL model classifiers performed poorly at this level. As depicted in Figure 12,
both RF and XGB relied on the NGBDI, mean green band, DSBI, angular second moment,
and ExG to achieve this result. NODE and GATE provided the highest overall accuracy
and F1 score. As shown in the dotted yellow box in Figure 13, except NODE and GATE, RF,
SVM, XGB, TabNet, and FTT either classified buildings as roads or roads as buildings due
to their spectral signature. In Figure 13, the red hatched area indicates impervious surfaces,
and the blue hatched area shows buildings and permeable surfaces.

Table 5. Accuracy measures for building vs. other impervious surface classification by various classifiers.

Method Precision/User
Accuracy

Recall/Sensitivity/
Producer Accuracy Overall Specificity Geometric

Mean F1

SVM 0.63 0.91 0.66 0.76 0.83 0.74

RF 0.55 0.95 0.54 0.37 0.59 0.70

XGB 0.54 0.96 0.54 0.26 0.50 0.69

TabNet 0.54 0.97 0.54 0.23 0.47 0.69

FTT 0.99 0.44 0.69 0.59 0.51 0.61

GATE 0.99 0.70 0.84 0.73 0.71 0.82

NODE 0.93 0.88 0.89 0.86 0.87 0.90
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4.5. Heterogeneity within a Building

Due to sun exposure, materials, and weather effects, individual building roofs dis-
played very different spectral properties and, thus, created two different segments for a
building. In the next step, the flexibility of the classifiers to accommodate such variation
was tested. This time, all of the non-building features were treated as a single class. This
strategy was important as it provided a guideline for the post-classification analysis. As
indicated in Figure 14, NGBDI, mean green band, angular second moment, ExG, correlation,
and SI were used to classify segments. As shown in Figure 15, FTT classified part of the
same building as a non-building. On the contrary, TabNet entirely missed that building
and classified it all as a non-building.

Remote Sens. 2024, 16, x FOR PEER REVIEW 21 of 27 
 

 

4.5. Heterogeneity within a Building 
Due to sun exposure, materials, and weather effects, individual building roofs dis-

played very different spectral properties and, thus, created two different segments for a 
building. In the next step, the flexibility of the classifiers to accommodate such variation 
was tested. This time, all of the non-building features were treated as a single class. This 
strategy was important as it provided a guideline for the post-classification analysis. As 
indicated in Figure 14, NGBDI, mean green band, angular second moment, ExG, correla-
tion, and SI were used to classify segments. As shown in Figure 15, FTT classified part of 
the same building as a non-building. On the contrary, TabNet entirely missed that build-
ing and classified it all as a non-building. 

 
Figure 14. Feature importance provided by RF (top) and XGB (bottom) to extract heterogeneous 
roof type. 

    
UAV image SVM RF XGB 

    
TabNet FTT GATE NODE 

Figure 15. Performance comparison of classifiers in extracting heterogeneous roof types. The purple 
hatched area indicates a non-building, and the blue hatched area shows a building. 

Figure 14. Feature importance provided by RF (top) and XGB (bottom) to extract heterogeneous roof type.

Remote Sens. 2024, 16, x FOR PEER REVIEW 21 of 27 
 

 

4.5. Heterogeneity within a Building 
Due to sun exposure, materials, and weather effects, individual building roofs dis-

played very different spectral properties and, thus, created two different segments for a 
building. In the next step, the flexibility of the classifiers to accommodate such variation 
was tested. This time, all of the non-building features were treated as a single class. This 
strategy was important as it provided a guideline for the post-classification analysis. As 
indicated in Figure 14, NGBDI, mean green band, angular second moment, ExG, correla-
tion, and SI were used to classify segments. As shown in Figure 15, FTT classified part of 
the same building as a non-building. On the contrary, TabNet entirely missed that build-
ing and classified it all as a non-building. 

 
Figure 14. Feature importance provided by RF (top) and XGB (bottom) to extract heterogeneous 
roof type. 

    
UAV image SVM RF XGB 

    
TabNet FTT GATE NODE 

Figure 15. Performance comparison of classifiers in extracting heterogeneous roof types. The purple 
hatched area indicates a non-building, and the blue hatched area shows a building. 
Figure 15. Performance comparison of classifiers in extracting heterogeneous roof types. The purple
hatched area indicates a non-building, and the blue hatched area shows a building.



Remote Sens. 2024, 16, 878 21 of 26

5. Discussion

Automatic building extraction from remote-sensing images is important for urban
planning, utility management, disaster management, resource allocation, and the produc-
tion of topographic maps. Even though building extraction has received much attention
over the years, it is still challenging as buildings show varied reflectance in spectral bands.
Due to the complexity of building structures, the background in remote-sensing images, and
similarity with other categories, building extraction results depend on the artificial feature
design and adjustment. This can result in bias and poor generalization [62]. Researchers
have recently proposed different pixel, length, edge, texture, semantic, and shadow-based
building extraction methods. However, apart from the algorithms, their accuracy depends
on the scale, image resolution, and image quality. Decimeter-level resolution achieved
by UAV images enhances intra-class and reduces inter-class variance. Thus, manually
designing classification features becomes challenging, and traditional recognition methods
are unsuitable for building extraction.

Hossain and Chen [16] undertook a comparative analysis of building extraction
methodologies, revealing that GEOBIA approaches yielded the least accuracy. Never-
theless, previous research efforts have failed to delve deeply into the factors contributing
to this discrepancy, nor have they explored the potential impact of employing tabular DL
classifiers. Notably, within GEOBIA methodologies, the manual extraction of features
assumes a pivotal role. The literature abounds with the utilization of myriad features for
object identification and classification. Previous studies have not thoroughly investigated
the crucial features for distinguishing buildings from other objects, nor have they identified
which non-building objects pose the greatest challenges for differentiation, especially for
RGB images. In contrast, this research takes a comprehensive approach by extracting
buildings based on their spectral signatures while also considering their differentiation
from various land-cover types. To accomplish this, the study employed four DL models
specifically designed for extracting buildings from images alongside three SL classifiers that
have previously demonstrated satisfactory performance in GEOBIA research. Although the
SL classifiers yielded acceptable results, their precision in identifying the buildings was not
optimal. However, this study revealed that DL methods surpassed shallow classifiers in
accurately identifying buildings, aligning with earlier research on tabular data classification.
It is worth noting that not all DL models produced equivalent outcomes. GATE and NODE
outperformed the others and consistently delivered superior results.

In the GEOBIA framework, the first and most important issue was image segmentation
for extracting buildings. Although many algorithms are available for this purpose, none can
produce perfect segments, meaning that a single image object, such as a building, is only
placed under one segment [16]. Over-segmentation usually exists, and individual buildings
are segmented into two or more segments, leading to a two-fold problem. First, each class
requires more samples; secondly, individual buildings are classified as two different classes
in some cases. As shown in the dotted yellow box in Figure 16, a part of the same roof was
classified as two different land covers, whereas in Figure 17, due to under-segmentation,
another land cover was merged with a roof and classified as a building. In this study area,
residential buildings were dominant, and samples were mostly chosen from that category
during image segmentation. As a result, commercial and educational buildings were
over-segmented. Therefore, this study recommends different segmentation approaches for
different land-cover types.
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Individual segments can have numerous features extracted based on spectral, spatial,
and textural properties. GEOBIA utilizes shallow classifiers, which perform differently
across various studies and land-cover types. Unfortunately, most DL classifiers do not
provide feature importance information. In this study, 31 features were extracted for each
segment, and based on Tables 2–4, it was observed that RF and XGB utilized these features
differently to identify different objects. Ma et al. [23] reported that feature reduction
contributes differently to various classifiers. This study identified which features are
essential in differentiating buildings from other land-cover types. Nevertheless, further
analysis is required to examine and validate such results in different image settings. In the
remote-sensing community, there is no consensus on which features provide the highest
accuracy in most cases, nor is there a universal feature reduction technique.

In the literature, SL classifiers mostly used in GEOBIA performed poorly when extract-
ing buildings from images, and different studies found contradictory results regarding their
performance compared to each other. But the best part of these classifiers, especially RF
and XGB, is that they provide feature importance, which guides future researchers when
extracting features for classification. In addition, they require few parameter tunings. Even
though the magnitude of feature importance varied between RF and XGB, this research
observed a trend between them. Those classifiers performed well (like DL-based models)
in differentiating buildings from shadows and vegetation. However, they failed to identify
features such as soil and roads. Interestingly, those shallow classifiers performed even
better than the DL TabNet model. This finding will guide future research in deciding
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whether or not they need to implement DL tabular models to differentiate buildings from
shadow and vegetation.

Unlike SL classifiers, DL tabular models are still being developed, as all of the clas-
sifiers used in this study have been developed in the last few years. Not all DL models
performed similarly in this study; for instance, TabNet performed poorly in most cases.
Overall, TabNet performed poorly in all testing scenarios, while GATE and NODE per-
formed better in all cases. However, they all struggled to differentiate roads and driveways
from buildings. The spectral signatures and other features, such as rectangularity and
different indices, are similar for all those land covers. This is the first study in which all
of these DL models were used to identify buildings from RGB images. Shwartz-Ziv and
Armon [60] pointed out that very few comparative studies have been conducted so far to
identify the best classifiers. The reason behind this was the lack of standard benchmarks
and the lack of open-source implementation for some models.

It is true that deep learning models typically have more complex architectures than
shallow classifiers, necessitating more parameter adjustment during training. This is due to
the fact that deep learning models have a large number of additional layers and parameters
that must be optimized to obtain high accuracy. However, a GPU simplifies evaluating
different parameter settings and can considerably speed up the training process. Transfer
learning is an effective method for requiring less training data and optimizing weights
with fewer iterations. It is possible to begin training a new model on a different dataset by
using pre-trained models. This can speed up the process and increase accuracy. Previous
studies, including the one by Novelli et al. [63], have demonstrated the effectiveness of
using pre-trained models. As a result, this is a potential strategy for enhancing DL models’
accuracy in diverse applications. A hub or platform for model sharing could be established
to facilitate the sharing of DL models in the remote-sensing community. This hub would
allow researchers to easily access and utilize pre-trained models and share their models
with others. Such a platform could help accelerate progress in the field of remote sensing
and lead to better results.

6. Conclusions

Buildings are the most common locations and elements for human socio-economic
activities. The characteristics of building types and their configuration in urban settlements
can indicate the living population and implications for the placement of public services
and the need for them. Due to their broad and frequent coverage, remote-sensing images
have been widely used to detect urban land-use structures and buildings. Many building
extraction methods have been developed for different remotely sensed data. The GEOBIA
method has provided a better alternative to pixel-based methods for high-spatial-resolution
images. However, building extraction from images using the GEOBIA framework is still
a challenge. This study compared traditional shallow classifiers to recently proposed
DL models and identified their effectiveness. Overall, the shallow classifiers performed
poorly compared to the DL models. However, they provided similar performance in
differentiating buildings from shadow and vegetation. Among the DL models, GATE and
NODE offered superior performance. This is the first study where all of these classifiers
were employed simultaneously to extract buildings from RGB images. Even though the
DL models performed better than the shallow classifiers, they also could not differentiate
buildings from other impervious surfaces in some cases.

The complexity of the image, insufficient cue extraction, and reliance on sensors are
only a few of the difficulties that arise when automatically extracting buildings from image
data [64]. It is difficult to identify buildings from other land covers in urban environments
by using only spectral and textural features. Accurate building extraction must be achieved
by combining spatial information with additional attributes to overcome these challenges.
Various agencies are interested in the important information that differently colored roofs
possess. Therefore, a practical strategy that may improve the classification accuracy of
buildings based on their color is urgently needed. In order to compare different models,
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this study used crisp class labels provided by the classifiers and did not remove any object
at each step. We are formulating a methodology for precisely extracting buildings based on
the insights gained from this study. This involves employing deep learning tabular models,
allowing for immediately classifying images for the entire area. This ongoing development
reflects our commitment to enhancing the accuracy of and streamlining the remote-sensing
process through advanced techniques.
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