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Abstract: Numerous analytical radar-scattering laws have been published through the past decades
to interpret planetary radar observations, such as Hagfors’ law, which has been commonly used for
the Moon, and the cosine law, which is commonly used in the shape modeling of asteroids. Many of
the laws have not been numerically validated in terms of their interpretation and limitations. This
paper evaluates radar-scattering laws for self-affine fractal surfaces using a numerical approach.
Traditionally, the autocorrelation function and, more recently, the Hurst exponent, which describes the
self-affinity, have been used to quantify the height correlation. Here, hundreds of three-dimensional
synthetic surfaces parameterized using a root-mean-square (rms) height and a Hurst exponent were
generated, and their backscattering coefficient functions were computed to evaluate their consistency
with selected analytical models. The numerical results were also compared to empirical models
for roughness and radar-scattering measurements of Hawaii lava flows and found consistent. The
Gaussian law performed best at predicting the rms slope regardless of the Hurst exponent. Consistent
with the literature, it was found to be the most reliable radar-scattering law for the inverse modeling
of the rms slopes and the Fresnel reflection coefficient from the quasi-specular backscattering peak,
when homogeneous statistical properties and a ray-optics approach can be assumed. The contribution
of multiple scattering in the backscattered power increases as a function of rms slope up to about 20%
of the backscattered power at normal incidence when the rms slope angle is 46◦.

Keywords: radar; microwave scattering; fractal surfaces; planetary science

1. Introduction

The characterization of planetary surfaces relies dominantly on remote-sensing tech-
niques due to the high cost of in situ measurement opportunities provided by spacecraft
missions. Visual and near-infrared (VNIR) observations can be utilized for photometric,
polarimetric, and spectroscopic characterization of the physical properties from the mineral-
ogy of regolith to convex-hull shape estimates of SSOs. The grain sizes can be estimated as
well, but the estimates are constrained by the size scale of the utilized wavelength. In order
to characterize the planetary surfaces on a larger scale, such as the topography and regolith
particles on a centimeter-to-meter scale, radar observations are arguably the best remote-
sensing tool for the purpose. In typical radar observations, a high-power microwave signal
is transmitted, and the scattered echo is received using the same (monostatic) or a different
antenna (bistatic). The comparison of the received signal properties to those of the trans-
mitted signal in terms of the expected echo power, wavelength, and polarization provides
various ways for the characterization of the regolith as well as the target as a whole. In
fact, the radar delay-Doppler images provide the finest mapping resolution for Earth-based
observations of SSOs: the echo power mapped as a function of the round-trip time (delay)
measured in fractions of microseconds, and thus providing a range resolution as fine as a
few meters, and the Doppler frequency, which arises from the rotation of the object. For the
Moon, fully spatial synthetic aperture radar (SAR) images are an option; for example, the
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Lunar Reconnaissance Orbiter’s Mini-RF instrument has observed numerous regions of
the Moon using the SAR technique, e.g., [1]), and more recently, also the dual-frequency
L-band and S-band synthetic aperture radar (DFSAR) instrument on Chandrayaan-2 has
contributed a wealth of data [2].

This article is focused on the characterization methods of the topographic properties
of planetary surfaces dominated by fine-grained regolith (grain sizes much smaller than the
wavelength). The first analytical radar backscattering laws for this purpose were derived
in the 1950s and 1960s and inspired by the first radar observations of the Moon and Venus
(e.g., [3,4]). Radar scattering laws refer to the backscattering coefficient (BSC) functions
as a function of the incidence angle, i.e., the angular distribution of the area-normalized
backscattering reflection coefficient as a function of the angle between the direction of
the incident illumination and the normal of a surface element. The planetary surfaces
have been traditionally parameterized using the root-mean-square (rms) height and the
autocorrelation length, which is the average vertical offset between any two arbitrary points
on the surface separated by a horizontal distance (lag) at which the height correlation has
decreased to e−1 (about 37%).

The first analytical laws assumed the Gaussian height probability density function
and height autocorrelation function because of mathematical convenience [5]. Hagfors [3]
showed that a Gaussian height autocorrelation function did not provide a good fit to the
Lunar radar data but that an exponential function provided a better fit. Thus, Hagfors’
law (see Section 2) became the most commonly used radar scattering law since 1964, as it
provided the best fit to the data; however, not without controversy, because the exponential
height autocorrelation function is non-physical, as the law does not conserve energy. Also,
Hagfors’ law was not a good fit for many asteroids’ radar-scattering profiles. For example,
Mitchell et al. [6] used only the Gaussian law, cosine law [7,8], and a “flat law” [9], for
attempts to fit radar scattering by (1) Ceres, (2) Pallas, and (4) Vesta. The cosine law remains
the most used scattering law option in the shape modeling of asteroids based on radar data
(e.g., [10–13]); however, the physical interpretation of the fit parameters of the cosine law is
not well constrained as will be discussed further below.

Close to the year 2000, several radar scattering laws based on self-affine fractal surface
properties emerged [14–16]. Self-affine fractal and Brownian surfaces are physically more
realistic than surfaces described by a single, specific height autocorrelation function. Instead
of the autocorrelation length, the height elements’ correlation in self-affine fractal surfaces
is better described using the Hurst exponent, H, which is related to the fractal dimension
D = 3 − H, so that H = 1 represents an ideally fractal topography, z(x, y) [17]. For a
two-dimensional surface profile, z(x), the Hurst exponent is H = 2 − D. Turcotte [17]
defined the Hurst exponent as the power-law index for the increase of the height standard
deviation (traditionally called the rms height) as a function of the sample length, L:

h(L) = h0

(
L
L0

)H
, (1)

where h0 is measured for a sample length L0. As the equation makes clear, h(L) does
not remain stationary through the sample but depends on the selected length; therefore,
no single value of h can uniquely describe the surface roughness. A similar equivalence
can be found for the rms (Allan) deviation as a function of the sampling interval, ∆r,
(hereafter, lag):

ν(∆r) = ν0

(
∆r
∆r0

)H
. (2)

The rms slope s(∆r) = ν(∆r)(∆r)−1 and is thus proportional to (∆r)H−1. It is related to the
slope angle so that θs = arctan(s).

Optionally, the topography can be characterized using the power spectrum, which
is related to the Fourier transform of the topography profile so that the power spectrum
defines the amplitude of a given spatial frequency [17,18]. The two methods of characteriza-
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tion do not, however, always provide consistent results. Austin et al. [19] reported that the
fractal dimensions derived using the power-spectrum method are biased toward greater
Hurst exponents (lower fractal dimension), attributing it to spectral leakage toward higher
frequencies, and further suggesting that filtering out the highest frequencies (Hanning filter)
may improve the results. According to Shepard et al. [18], the deviogram (a logarithmic
graph of the rms deviation as a function of lag) does not require filtering and is less noisy
than the power spectrum, so characterizing the topography using the deviogram is often
preferred. However, generating synthetic surfaces using the power spectrum can be faster
and more consistent (free from artifacts) than spatial methods ([18] and references therein).

Furthermore, it is important to remember that no physically realistic surface is in-
finitely fractal due to structural limitations, but the length-scale limits of the self-affinity
depend on, for example, the mineralogical composition or the formation mechanisms. A
length-scale limit of self-affinity in the power spectrum is typically called a roll-off fre-
quency or wavevector; it appears as a change of gradient in the power spectrum, or even
a plateau. Similarly, it changes the gradient of a deviogram. The fractality has a lower
limit determined by the grain size for particular surfaces or the mineralogical structure
for solid materials, and also the roughness below the Rayleigh limit is dominated by the
wavelength scale and larger height undulations in terms of contribution to the echo power,
so the roughness larger than the Rayleigh limit is more relevant to the scattering profile.
For polarization studies, the wavelength-scale and sub-wavelength-scale roughness play
a greater role than they do for the intensity of the echo. In the larger size scales, there is
periodicity beyond the upper size scale; however, a finite measurement length can also have
a similar effect, as will be discussed in detail in this paper. Similarly, in numerical models,
the discretized surfaces are always limited by a discretization parameter (i.e., the size of
the element) and a finite size of the topography model. The mathematical consequence of
this fact is that although integration of the power spectra or the autocorrelation functions
through the range of scales may converge from zero to infinity, and thus be analytically
convenient, it is not physically correct and thus risks the realism of the models.

In order to evaluate the scattering laws, I conducted numerical simulations of the
BSC functions of rough surfaces using different levels of self-affinity and evaluated to
what extent the analytically derived scattering laws are able to predict the rms slopes.
The benefit of the numerical approach is the ability to compare the consistency between
the analytical and numerical models, to investigate possible constraints in each approach,
and to quantify the effects of shadowing and multiple scattering, which are challenging
analytical problems, especially for a three-dimensional surface. Shepard and Campbell [20]
have investigated comprehensively shadowing models for self-affine fractal surfaces, which
is why shadowing effects are addressed here only briefly. This work takes a step forward
from the existing numerical models by, for example, Ulaby et al. [21], who have provided a
variety of numerical methods to simulate microwave scattering; however, their methods
are limited to the autocorrelation function approach and a length-independent rms height.
Although the numerical models have shown to provide good fits to measured data, they
cannot provide a straightforward model of the BSC functions when the surface statistics are
measured and described using the Hurst exponent instead of the autocorrelation function.
For example, Campbell [22] measured the topographic properties and the microwave
backscattering coefficients of Hawaii lava flows, which can be considered analogous to all
basaltic planetary surfaces. Only empirical modeling was presented in [22] with a call for
numerical computations as future work.

2. Methods
2.1. The Generation of the Synthetic Surfaces

I generated synthetic rough surfaces using a Python translation of the Matlab code
“Surface generator: artificial randomly rough surfaces”, which is based on theory presented
by Persson [23], and freely available through MathWorks (https://www.mathworks.com/
matlabcentral/fileexchange/60817-surface-generator-artificial-randomly-rough-surfaces;

https://www.mathworks.com/matlabcentral/fileexchange/60817-surface-generator-artificial-randomly-rough-surfaces
https://www.mathworks.com/matlabcentral/fileexchange/60817-surface-generator-artificial-randomly-rough-surfaces
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accessed on 16 June 2023). The algorithm is described in detail in Appendix A. The surface
model is defined using a Hurst exponent, an edge length (Le), an rms height (hL), a number
of elements per edge (m), and a roll-off wavevector index (qr), which defines the roll-off
wavevector (to be explained in further detail in Section 2.3). The physical interpretation of
the roll-off length is to quantify the spatial wavelength limit where the self-affinity proper-
ties of the surface change. The rms height is equal to the height standard deviation of the
whole topography model. The number of elements could be different for each side but here
I use only square areas discretized to m elements per side. The element size is then defined
as de = Lem−1, which can be set to be, for example, the wavelength of the measurements.
Also, an electric permittivity, ϵ, is required for computing the scattering properties.

After, the vertex coordinates were generated so that their height correlation with
respect to the horizontal scale was consistent with the given Hurst exponent, the vertices
were connected into triangular facets (as common in 3D models), and could be saved in
a wavefront file format when needed. The facet size has to be at least one wavelength
wide for the ray-optics scattering regime, and thus, for the Fresnel scattering to remain
physically valid. A second requirement for physical validity—especially relevant to self-
affine fractal surfaces with low Hurst exponents—is the rms height within each element: if
the element-scale rms height is below the Rayleigh limit, i.e., h < λ(8 cos θi)

−1, the element
can be considered electromagnetically “smooth”, whereas if the rms height is much greater
than the Rayleigh limit, the validity of Fresnel scattering becomes questionable. This fact
will be considered in the analysis where relevant in the evaluation of the scattering laws.

It is also important to note that because the generation of the sample surfaces has
stochastic elements, individual topography models are not necessarily fully isotropic, but
an ensemble average over several sample surfaces is required. Figure 1 visualizes example
surfaces using different surface-roughness parameters. Once generated, the topography
statistics (total and projected area and the statistical roughness properties) of the surface
models were recorded and analyzed.

H	=	0.8,	hL	=	0.2	m

H	=	0.5,	hL	=	0.2	m

H	=	0.2,	hL	=	0.2	m

H	=	0.5,	hL	=	0.3	m

H	=	0.5,	hL	=	0.1	m

Figure 1. A compilation of the artificial surface realizations using the labeled Hurst exponents and
root-mean-square (rms) heights.

2.2. Scattering Properties

For the scattering properties, two different algorithms were used: (1) a simplified but
fast algorithm to simply sum together the reflected power by all illuminated and visible
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triangles but shadowing omitted, available online under the name “surface-scattering”, and
(2) a full ray-tracer that keeps account of shadowing, multiple bounces, and the polarization
of the rays, available online as Ray-optics for self-affine fractal surfaces (ROSAS). Both
codes are open source and available online; see the Data Availability Statement.

In the first algorithm, the relative Fresnel reflection powers of each triangular element
of the shape model were summed together, but each element’s local incidence angle, θ0,i
(the triangles facing away from the incident direction were thus fully excluded), and the
relative power to the corresponding phase angle (α) bin, was recorded so that α = 2θ0.
Then, I rotated the incident direction by 2◦ around the y-axis while keeping the topography
model’s mean-height plane parallel to the xy-plane and repeated the process up to θ0 = 80◦.
The algorithm does not take into account elements that shadow other elements or multiple
scattering but considers that if a ray reflects from an element near the edge downward
outside the area of the synthetic surface, the reflection is excluded. In other words, only
the reflected vectors with a positive z-component in the shape model reference frame are
included.

In ROSAS, I used a ray-tracing algorithm to track which triangle a ray intersects first
and whether it intersects another triangle after the reflection, and if so, how many times,
and in which direction the ray eventually emits. The algorithm reads or generates the
surface topography model, generates rays that hit a random (but illuminated) location at
the surface, and tracks their propagation during the interaction with the surface, keeping
account of the number of reflections that take place and the polarization of the rays. The
user can select the incidence angle, the number of rays, the number of azimuth angles for
ensemble averaging, the number of phase angle bins, the refractive properties, and the
wavelength. Here, the reflectivity was investigated as a function of incidence angle using
30,000 rays for five different surface realizations (i.e., 150,000 rays in total) for incidence
angles from 0◦ to 60◦ with 10◦ intervals. The manual for the ROSAS code is included in the
online repository for the code and includes a more detailed description of its functionality.
The effect of multiple scattering is small and will be discussed in more detail in Section 3.

In both algorithms, the total scattering efficiency was obtained by normalizing the
total scattered power by the incident power, in this case, represented by the number of rays.
The phase function (the first element of the scattering phase matrix as a function of the
phase angle) was normalized so that the integral of the phase function over the full space
angle is equal to 4π. Mathematically dressed:∫ 2π

0

∫ π

0
P1,1(α, θ0) sin αdαdϕ = 4π. (3)

The BSC function was then derived by multiplying the phase function value at the phase
angle of 0◦ by the scattering efficiency (qsca) for each incidence angle:

σ0(θ0) = qsca(θ0)P1,1(0◦, θ0) cos θ0. (4)

The scattering efficiency increases as a function of incidence angle as the average of the
Fresnel reflection coefficients increases. At normal incidence,

RF =

[√
ϵ − 1√
ϵ + 1

]2

. (5)

Finally, the scattering laws were fit to the computed BSC functions using SciPy’s curve_fit
function, and the results were recorded and evaluated. For each law, the fit parameter
C was assumed s−2 and compared to the rms slope (s = tan θs) so that the slope angle
is obtained from the vertical component of unit normal vectors of the surface elements:
θs = arccos(n̂z).
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2.3. Statistical Properties of the Surfaces

The statistical properties include the rms height h, rms deviation, ν, and its square, the
rms variance, the rms slope, and the autocorrelation function. The definitions follow those
presented in [24]. Let us begin with the square of the rms height as a function of the sample
length, or rather, the standard deviation of the heights around the mean height:

h2(L) =
1

N − 1

N

∑
i=1

[z(ri)− zav,L]
2, (6)

where zav,L is the average of all N height points z(ri) included in the sample length L. The
square of the rms height as a function of step size, ∆r, is:

h2(∆r) =
1

2N

N

∑
i=1

z(ri)
2 + z(ri + ∆r)2, (7)

The rms height is constant as a function of step size but increases as a function of sample
length, L, whereas the rms deviation and rms slope are constant as functions of sample
length but change as a function of step size, as shown, for example, in [25]. The rms
variance as a function of step size is:

ν2(∆r) =
1
N

N

∑
i=1

[z(ri)− z(ri + ∆r)]2 (8)

where N is the number of pairs of points separated by a lag, ∆r. The rms slope is:

s(∆r) =
ν(∆r)

∆r
, ∆r > 0. (9)

The rms slope for a two-dimensional (2D) surface profile, z(x), is denoted using a subscript
p. The adirectional rms slope for a 3D surface, z(x, y), denoted using a subscript A, is
related to the 2D rms slope so that sA =

√
2sp. Here, the 2D rms slope is calculated as

shown above for each individual line and column of the synthetic surfaces, and the 3D rms
slope using the vertical component of the normals, n̂z, of the topography model’s individual
elements: sA = ⟨tan(arccos(n̂z))⟩, where the chevrons indicate an ensemble average. The
numerical results were compared at different values of H for possible variations from

√
2

but the ratio was always consistently
√

2.
The rms-height-normalized autocorrelation function is defined as:

ρ(∆r) =
⟨z(ri)z(ri + ∆r)⟩

⟨z2(ri)⟩
. (10)

The autocorrelation functions are typically given as:

ρ(∆r) = exp

[
−
(

∆r
l

)b
]

, (11)

so that b = 1 for the exponential and 2 for the Gaussian autocorrelation function and
l is the autocorrelation length. Also, other options such as x-exponential and x-power
correlation functions have been presented (e.g., [21]) but are significantly less used in
planetary science applications. For stationary surfaces, the rms slope can be derived
from the second derivative of the autocorrelation function (s2 = −h2ρ′′(0)), i.e., at a small
enough step, the local slope can be found. On the contrary, in fractal surfaces, the roughness
depends on the scale as defined by the fractal dimension (or the related Hurst exponent), so
the given relation is not valid. Here, the synthetic surfaces are generated using the power
spectrum (the Fourier transform of the autocorrelation function), and autocorrelation
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functions are derived from the generated surfaces to understand how the autocorrelation at
the wavelength-scale sampling is related to the Hurst exponent. Examples of the obtained
autocorrelation functions are further discussed and visualized in Section 3.

For stationary surface profiles, the autocorrelation function is related to the rms
variance so that

ν2(∆r) = ⟨[z(ri)− z(ri + ∆r)]2⟩ = 2h2⟨1 − ρ(∆r)⟩, (12)

but this relation may depend on the self-affinity of the surface [18], which will be considered
in the analysis.

The roughness characteristics can also be derived from the power spectrum:

W(q) = W0

(
q
q0

)−2(H+1)
(13)

Here, W is in units of m4 and the wavevectors q and q0 are in units of m−1 for three-
dimensional (hereafter 3D) surfaces. Note that units of m3 and a power of −(2H + 1)
would be used for the power spectrum of a two-dimensional (hereafter 2D) surface profile.
The values of q0 and q1 depend on the choice of the integration limits and coordinate
system. For an analytical solution that ensures isotropic characteristics with respect to any
reference point, integration in a polar coordinate system is more convenient. If q0 = πL−1

for a 2D surface profile, in a 3D case, the surface area remains equal only if L2 = πL2
p,

where Lp is the radius of the circular sample area. Therefore, if Lp = 0.5Le, q0 = 2
√

πL−1
e .

The upper limit of the wavevectors, q1, is constrained by the sampling interval (i.e., the
element size) so that q1 = q0m−1 = 2

√
πd−1

e .
Using the power spectrum, the square of the rms height over an isotropic self-affine

fractal surface area with an edge length of Le and a sampling interval of de is

h2(q1, q0) = 2π
∫ q1

q0

qW(q)dq, (14)

and the square of the rms slope is given as

s2(q1, q0) = 2π
∫ q1

q0

q3W(q)dq (15)

as shown in [26]. When 0 < H < 1, the rms slope as a function of the rms height and the
Hurst exponent is then (as shown in more detail in Appendix B):

s(q1, q0) = hLq0

√
H

1 − H

√√√√ ( q1
q0
)2(1−H) − 1

1 − ( q1
q0
)−2H

. (16)

Here, hL = h(de, Le). When q1 ≫ q0, the wavelength-scale rms slope can be approxi-
mated as:

s(q1, q0) = hLq0

(
q1

q0

)1−H√
H

1 − H
. (17)

For the end case of H = 0:

s(q1, q0) =
hLq1√

2ln
(

q1
q0

) , q1 ≫ q0, (18)

and for H = 1:

s(q1, q0) = hLq0

√
2ln

(
q1

q0

)
, q1 ≫ q0. (19)
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The equations above assume that the power spectrum follows the q−2(H+1) relation
through all included wavevectors from q0 to q1 (Lr = 0.5Le). If Lr < 0.5Le, the low-
frequency components of the surface profile are cut, and the power spectrum has a constant
value of W(q) ∝ (πqr/Le)−2(H+1) when q < q0. In this case, the roll-off wavevector index
has to be set to 2 < qr < m, and s requires an additional factor of (0.5qr)H .

Because of the discretization, small differences in the analytical solutions may occur
in the numerical surface model realizations. A confidence test of the Hurst exponent was
conducted by computing the adirectional rms slopes for synthetic surfaces generated using
two different values of m and Le but equal de and hL for different values of H. A selection of
m = 64 and 128, and, respectively, Le = 8.0 and 16.0, keeps de = 0.125. In this case, the ratio
of the rms slopes should only depend on the Hurst exponent and the ratio of either m or Le
so that sA(Le = 8)/sA(Le = 16) = 2H . The derived H was found to be about 0.1 + 0.8Hin,
where Hin denotes the value used for generating the surface. Therefore, some error in the
derived self-affinity can be expected for the synthetic surfaces that are generated using
values of H not equal to 0.5 with decreasing confidence toward 0 and 1; whereas surfaces
with H = 0.5, have a high level of confidence.

To verify the power-spectrum reference value q0, I generated synthetic surfaces of
Le = 8.0 and m = 64 (de = 0.125) and Le = 16.0 and m = 128 using hL ∈ [0.01, 0.3] and
H = 0, 0.3, 0.5, 0.8, or 1, and recorded the adirectional rms slopes, then solved for q0
(assuming that q1 = q0m). For values of H ∈ [0.3, 0.8], I found q0Le to be in the range
from 3.33 to 3.67, with a positive correlation with H and small differences due to the
discretization. This range for intermediate values of H is consistent with

√
4π ≈ 3.54,

which is consistent with the analytical solution as described above. For H = 0 and H = 1, I
found q0Le ≈ 3.0, and ∼ 4.3 for the synthetic surfaces, respectively; however, the confidence
for the statistical properties when using the end values of H is low because of the bias
towards H = 0.5.

For surface profiles, the corresponding wavevectors would be q0 ≈
√

2πL−1
e and

q1 ≈
√

2πd−1
e . The discretization plays a small role, which will be addressed in more detail

in Sections 3 and 4. When using the limiting wavevectors given above, Equation (17) takes
the form

s(de, Le) =
2hL
Le

m1−H
√

πH
1 − H

=
2hL
de

m−H
√

πH
1 − H

. (20)

Note that here, hL = hλmH , when using Equation (1), and the step size is equal to the
wavelength: de = λ. Because sλλ = νλ,

νλ = hλ

√
4πH
1 − H

(21)

If written as a ratio of the rms variance to the square of the same-scale rms height, a simple
form can be found:

ν2
λ

h2(L = λ)
≈ 4πH

1 − H
(22)

for surface areas, whereas for surface profiles:

ν2
λ

h2(L = λ)
≈ 2πH

1 − H
. (23)

2.4. The Radar Scattering Laws

The BSC function, also known as a differential or area-normalized radar cross section,
is defined as σ0(θ0) = dσ(θ0)

dA(θ0)
. It quantifies the backscattering reflectivity of a surface as

a function of incidence angle, i.e., the angle between the source of illumination and the
normal of a surface element. The presented laws are only valid for the backscattered power
of the quasi-specular reflection, which is the same-sense polarization as the transmitted
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signal when using linear polarization, typically denoted as HH for horizontal-to-horizontal
or VV for vertical-to-vertical, or the opposite-circular (OC) when using circular polarization.

The Gaussian law is mathematically the most convenient one because it is based on a
Gaussian height distribution and a Gaussian autocorrelation function; the fit parameters
directly describe the statistical properties of the surface so that RG = RF. It is defined as

σG(θ0) =
RGCG

cos4 θ0
exp(−CG tan2 θ0), CG =

2h2
0

l2 , (24)

where l is the autocorrelation length, and h0 is the rms height. The Gaussian law can also be
derived using only the slope probability density function (p.d.f.), assuming that it follows a
Gaussian form. For example, Simpson and Tyler [27] presented a compilation of some of
the legacy radar-scattering laws and how they were derived.

Hagfors’ law [3] assumes the height distribution to be Gaussian and the autocorrelation
function to be exponential. It is traditionally presented in the form:

σH(θ0) =
RHCH

2
(cos4 θ0 + CH sin2 θ0)

−3/2, CH =
λ2l2

16π2h4
0

, (25)

where RH is described as the Fresnel power reflection coefficient at normal incidence, and
CH is a (wavelength-scale) roughness parameter, and λ is the wavelength. It is useful to
highlight the difference in the definitions of CH and CG, as both are often simply C in the
literature and are described to be related to the “slope” or “surface roughness”; however,
the definition of C differs between the laws.

Mitchell et al. [6] chose three different scattering laws for evaluating the radar scatter-
ing profiles of the dwarf planets (1) Ceres, (2) Pallas, and (4) Vesta: the Gaussian law, the
cosine law, and the flat law.It should be noted that the scattering profiles in this study were
Doppler-only echo spectra rather than BSC functions. The flat law is omitted here as it was
found to be a bad fit for most radar profiles and is thus not used widely. The cosine law is
defined as

σC(θ0) = Rc(Cc + 1) cos2Cc θ0. (26)

This law was selected as part of the study because it is the default radar scattering law in
the shape-modeling software Shape (version 2; for more details, see, e.g., [10,28]). The users
of the software typically fix Rc to an arbitrary value and let Cc float through the multitude
of iterations that the numerical sculpting of the model requires. As the shape model reaches
its final shape, Rc can be allowed to vary with the purpose of constraining it using the
Doppler-echo-power spectra; however, this step is often skipped and the scattering-law fit
parameters left unpublished, or only Cc is included. Therefore, I selected the cosine law
here as one scattering law for our analysis, so that a more robust interpretation for the fit
parameters can be provided using the better-established laws as a reference, and thus help
inform Shape users. Analytically, cos x ≈ exp(− tan x) when x is small, so for small slopes,
the cosine law can be expected to be comparable to the Gaussian law.

Shepard and Campbell [14] presented near-nadir scattering laws for self-affine fractal
surfaces that are defined using the Hurst exponent (H) and a slope (s) that depends on
the scale (so that the Hurst exponent defines the scaling, as described in detail in [24]).
They derived the BSC function in the near-nadir regime for cases H = 0.5, H = 1.0, and
a general case using the wavelength-scale slope (sλ). I adopt the case of H = 0.5 as one
of our scattering laws to fit by using their ρ, which they define as the Fresnel reflection
coefficient, and sλ as the fitting parameters RS and sS, respectively:

σS(θ0, H = 0.5) =
RSπs4

S cos4 θ0

16(π2s4
S cos4 θ0 + sin2 θ0)3

, (27)



Remote Sens. 2024, 16, 890 10 of 30

They note that the term πs2
S appears analogous to 1/

√
CH when compared to the Hagfors’

scattering law but do not attach any further physical interpretation to the parameters.
When H = 1.0, they define the BSC function as:

σS(θ0, H = 1.0) =
ρ

4πs4
λ cos4 θ0

exp(−2s−2
λ tan2 θ0). (28)

This form using H = 1.0 is evidently similar to the form of the Gaussian law (Equation (24))
with a difference of the (incorrect) factor of 4π. The general form is omitted here because it
is complicated to use for fitting, and is incorrect, as will be discussed in Section 4.

Another widely used set of more comprehensive models for microwave scattering is
the integral equation method (IEM) [29,30] and the improved integral equation method
(I2EM) [21]. Similar to the models presented above, IEM and I2EM are based on a given
autocorrelation function, an autocorrelation length, and a stationary rms height. The
benefit of these models is that the reflection coefficients take into account both horizontal
and vertical polarizations and I2EM also includes diffuse scattering, which improves the
modeling of the polarization properties [21], but makes inverse-problem solutions more
challenging. The comparison to these models is not provided in this paper due to the
complexity of the fitting in a large parameter space that is not analytically derived for
self-affine fractal surfaces.

Figure 2 demonstrates the forms of the selected radar scattering laws when using a
fixed rms slope of 15◦ and assuming that Cc = CG = CH = s−2

S . Similarly, all R-parameters
as equal to the normal-incidence Fresnel reflection coefficient of a plane interface with an
electric permittivity of 5.0. Several other radar scattering models exist in the literature;
however, as stated, only those in wider use and not restricted to rms slopes below 10◦ are
included. As is evident in the graph, the Gaussian and cosine laws are very similar to each
other, whereas Hagfors’ and Shepard’s laws have σ0(0◦) approximately one-half of that
of the Gaussian and cosine laws. Also, Hagfors’ law has a distinct tail, whereas the other
functions decrease to zero more steeply.

Figure 2. An example illustration of the radar scattering laws selected for the analysis when using
θs = 15◦, which is equal to s = 0.26 and C = 14.8 when C = s−2.

In addition, one empirical law was selected to compare analytical laws to measured
data with surface statistics and radar-scattering properties validated numerically. Camp-
bell [22] modeled the backscattering coefficients measured from the Hawaii lava flows
empirically, and found that σHH = σVV , and that the left-to-right (LR), or more generally
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the OC, polarization component follows a similar form but with a difference of a constant
factor:

σHH = 1.11σOC = 0.16[1 − exp(−70.372s2
λ exp(−0.0644θ0))], (29)

the ratio of the cross-polarization component σHV to σVV is

σHV
σVV

=
θ0

270
[1 − exp(−4.5sλ)], (30)

and the ratio of σHV to the left-to-left (LL) polarized component, more commonly notated
as the same-circular (SC) polarization, is

σHV
σLL

= 0.3 + 0.2[1 − exp(−4.5sλ)]. (31)

The total BSC function computed for the synthetic surfaces is σHH + σHV using the linear
polarization components and σLR + σLL using the circular polarization components. From
these equations, also the circular-polarization ratio, i.e., the ratio of the echo power in
the LL or SC polarization to that in the LR or OC polarization can be easily derived. The
measurements were conducted using incidence angles from 35◦ to 60◦, so the model can
be considered valid only within this range of incidence angles. The surface statistics and
the measured backscattering coefficients were averaged over surface profiles covering
50–100 m per side as shown in [22].

I selected three cases out of the ten sample surfaces presented by Campbell [22,25],
hereafter referred to as Test cases.

1. h1 = 0.017, sλ,p = 0.076, and H = 0.63;
2. h1 = 0.046, sλ,p = 0.225, and H = 0.49;
3. h1 = 0.120, sλ,p = 0.705, and H = 0.26.

The corresponding rms slope angles in degrees are 4.3◦, 12.7◦, and 35.2◦. For the
surface models, the edge length is assumed to be Le = 9 m, because the spatial resolution of
the images used for deriving the empirical equations was within the range of 5–10 m (Bruce
Campbell, personal communication), and using a number in the high end of the range is
beneficial for statistical reasons due to the greater number of elements per sample surface.
Furthermore, when using 25 cm as the sampling interval, following the reported surface
statistics, the discretization number is m = 36. The wavelength of the BSC measurements
was 24 cm (L-band). For using the values above in the model, two other issues must
be considered: first, the rms heights and slopes were measured for surface profiles, and
second, the Hurst exponent’s dependence on the size scale either due to different surface
formation mechanisms [25], which can be considered mathematically as the roll-off length
(as described earlier). As described in more detail in [25], the Hurst exponent of these
sample surfaces does not remain constant at all measured length scales, which could be a
sign of the proximity of the roll-off length to the measurement scales. Also concerning Test
Case 3, the wavelength-scale rms height significantly exceeds the Rayleigh limit of 3.1 cm
at normal incidence; this fact is included in the discussion.

In Section 2.3, an equation for the slope was shown for the case, where the length scale
extended from the wavelength scale to the roll-off length. Here, assuming that the roll-off
length is a lot greater than 1 m, but the rms heights are reported only up to a length scale of
1 m, the result of integration from the wavelength scale to an arbitrary integer factor of the
wavelength, x = mxλ (λ < x < Lr) is (as described in more detail in Appendix B):

s(de = λ) = h1qx

√
H

1 − H

√
m2

x − m2H
x

m2H
x − 1

. (32)

In this case, x = 1 and mx = 4 because the length scale for the rms height is four times
the wavelength. Also here, a factor of

√
2 is accounted for in qx =

√
2πx−1 (profiles) vs.
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qx =
√

4πx−1 (areas). The same equation can also be used to derive the rms height at any
value of x (within the limits stated above) so that

h(x) =
sλ

qx

√
1 − H

H

√
m2H

x − 1
m2

x − m2H
x

, (33)

which gives h(9) = 0.06 m for Test Case 1, 0.13 m for Test Case 2, and 0.28 m for Test
Case 3. The values for Test Cases 1 and 2 are comparable to using Equation (1), in this
case, h(9) = h19H , which gives, respectively, 0.07 and 0.14. For Test Case 3, Equation (1)
gives h(9) = 0.21 m—significantly below 0.28 m—possibly because of a roll-off length
Lr < 4.5 m, while Equation (1) would require a much greater value of Lr to apply, as the
next section discusses in more detail.

3. Results

The results are presented in four parts: first, how consistent the surface statistics of the
synthetic surfaces are with the theory, which is a fundamental part of validating the further
results; second, the evaluation of the consistency of the selected analytical scattering laws
with the computed BSC functions; third, the evaluation of the consistency of an empirical
scattering law that models the measured BSC functions of Hawaii lava flows with the
analytical scattering laws validated numerically; and fourth, the contribution of multiple
scattering, which quantifies the validity of single-scattering assumptions of analytical
scattering laws. The contribution of multiple scattering by a three-dimensional undulating
surface is challenging to derive analytically and is thus better to compute numerically.

3.1. Surface Statistics

First, the statistical properties of the surfaces are shown so that sample profiles are
extracted from the individual rows and columns of several surface realizations, and the
properties are averaged. The autocorrelation function, the rms heights, and the rms devia-
tions and slopes are shown. The code for computing the surface statistics is included in the
same online repository as the codes introduced in Section 2; see the Data Availability State-
ment.

The autocorrelation function at a specific length scale for the synthetic surfaces was
derived to quantify how it is related to the Hurst parameter (at low values of lag):

ρ(∆r) = exp

[
−Kc

(
∆r
Lr

)y(H)
]

, (34)

where a linear relation of y(H) can be found for the exponent (to be discussed below) and
Kc ≈ 3.1 ± 0.5 when H ∈ [0.3, 0.9], but 4.0 ± 0.2 at H = 0.1. Figure 3 illustrates the change
in the shape of the autocorrelation functions when H = 0.5, hL = 0.1 m, Le = 16 m, m = 64,
and qr = 8 (Lr = 2 m). The fitting is limited to the values of lag up to 1 m.

Figure 4 shows the rms height as a function of profile length (2de < L < Le) based on
Equation (6), with a linear fit to the data points at ∆r < Lr, and the rms height as a function
of step size based on Equation (7). The fit to the average of ten surface realizations gave
a linear relation h(L) = 0.07(LL−1

r )0.51, which is nearly exactly as expected for the given
input characteristics for the sample surfaces. The power of 0.51 is consistent with the value
of H used for generating the surface, i.e., 0.5. The factor 0.07 is, here, the value of h(Lr)
and thus depends on qr, which defines Lr. Beyond Lr, the power was found to be up to
about 60% of the input H for H > 0.5, comparable at H ≈ 0.3, but greater than zero even
for H = 0.
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Figure 3. The power spectrum (on the left) and the autocorrelation function (on the right) when
H = 0.5, hL = 0.1 m, Le = 16 m, m = 64, and qr = 8 (Lr = 2 m, depicted as a vertical blue dotted
line). In the power spectrum, the transition point is at qrπL−1

e = 0.5π, and the power-law gradient
is proportional to q−2H−2 = q−3. The black horizontal line depicts 1/e, i.e., the correlation length is
here the value of lag where the line crosses the autocorrelation function (at ∆r ≈ 0.8 m).

Figure 4. The root-mean-square (rms) height as a function of step size (cyan) and profile length
(magenta) when H = 0.5, hL = 0.1 m, Le = 32 m, m = 128, and qr = 8 (Lr = 4 m, depicted as a
vertical blue dotted line), where each data set is an average of 10 surface realizations. The fit to the
rms height as a function of profile length (L) is shown as a red dashed line, and the horizontal black
dashed line depicts hL given as input to define the surface.

Figure 5 illustrates the rms deviation and slope of a surface profile as functions of lag.
Here, the roll-off length appears as a plateau in the function ν(∆r) at ∆r > Lr. Consequently,
the Allan (rms) deviation follows

ν(∆r) ≈
√

2hL[1 − exp(−Kν

(
∆r
Lr

)y(H)

)], (35)

where Kν and y(H) were found to be nearly equal to those for the autocorrelation function
above: Kν ≈ 3.2 ± 0.3 when H ∈ [0.3, 0.9] and Kν ≈ 4.4 ± 0.3 at H = 0.1, and y(H) is
discussed below mutually for all cases. The respective rms slope as a function of lag is
s = ν(∆r)−1, for which Ks ≈ 3.3 ± 0.3 when H ∈ [0.3, 0.9] and Ks ≈ 4.6 ± 0.3 at H = 0.1.
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Figure 5. The surface properties as functions of lag when H = 0.6, hL = 0.1 m, Le = 64 m, m = 256,
and qr = 4 (Lr = 16 m, depicted as a vertical blue dotted line). (a) The root-mean-square (rms)
deviation for surface profiles sampled from synthetic surfaces (black circles) and a fitted model
(Equation (35); red solid line at ∆r < Lr), and ν(∆r > Lr) =

√
2hL (horizontal green dashed line at

∆r ≥ Lr). The power-law model (Equation (2)) fitted to only small values of ∆r is added for reference
(red dotted lines). (b) The rms slope (black circles) and the fitted model (with the same line styles as
in panel (a)). (c) The ratio of the rms deviation model’s values to the data values as a function of lag
(the solid and dotted line corresponding to the red lines of the same style). (d) The ratio of the rms
slope model’s values to the data values as a function of lag (with the same line styles as in panel (c)).

Similar to the rms height, when the rms deviation increases exponentially, it appears
linear in the log scale at low values of lag, i.e., if measurements are conducted only at low
values of lag with respect to the roll-off length, only this part may be visible. However,
when approaching the roll-off length, the gradient of the deviogram decreases. When the
lag is longer than the roll-off length, the rms deviation remains approximately stationary
at

√
2hL, whereas the slope continues to decrease as (∆r)−1. In the numerical approach,

when qr ≤ 2, the function ν(∆r) has excessive downward curving at higher values of
lag, so for modeling purposes, using qr > 2, provides more realistic results when the lag
extends beyond Lr. Likely due to the same reason, the equation for ν(∆r), as shown above,
was not as good a fit for qr ≤ 2 as for greater values of qr. Equation (17) was found to
be a good approximation for

√
2s(de) for H ∈ [0.3, 0.9] (the square root added due to the

difference in dimensions—3D for the analytical equation but 2D for the surface-statistics
data computed here).

As for y(H), the values from fits to the autocorrelation function, rms deviation, and
rms slope as functions of lag produced similar trends: y(H) ≈ 0.83(H + 1). The value of
y(H = 0.5) was consistently about 1.25 ≈

√
0.5π and at y(H = 1),≈ 1.65. In none of the

tested cases y(H = 1) > 1.7, likely due to the bias in the self-affinity, as was discussed earlier.
Nevertheless, the form of the slope p.d.f. of the surface is similar to a Rayleigh distribution
(consistent with [18]) regardless of the wavelength-scale autocorrelation function when
the rms θs ∈ [2◦, 30◦] (s ∈ [0.03, 0.6]), whereas the slope angle p.d.f. is nearly Gaussian at
moderate slopes. For significantly greater rms slopes, the Gaussian distribution cannot
model the skew toward greater angles (see Figure A1 in Appendix D for histograms of the
slope angle p.d.f.); however, a combination of two or more Gaussian distributions could be
more successful.

The surface statistics theory presented so far can be tested on the surface-profile
statistics presented by Campbell [22]. Figure 6 depicts the 2D wavelength-scale rms slopes
for surface profiles obtained for the Hawaii lava flows versus the rms slope model following
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Equation (32). The surface profile with the greatest slope has the highest residual value
possibly due to a shorter roll-off length than the other cases. The power spectral density
function for the specific case in question is presented in [25] (Figure 3.13). The spectrum
shows more variation in the slope of the function for the lowest Hurst exponent than those
of the other two profiles with greater Hurst exponents, which could be indicative of a
roll-off length near the measurement scale. A lower Hurst exponent would provide a better
fit to the model for the case in question.

Figure 6. The root-mean-square (rms) slopes measured for Hawaii lava flow surface profiles [22]
compared to a model following Equation (32) using mx = 4. The black dashed line has been added as
a visual reference of an optimal fit. The values are listed in Table A1 in Appendix C.

Campbell [22] found the following empirical model for the rms deviation for a step
size ∆r and rms height of profile length (∆r):

ν(∆r) =
√

2h∆r exp (2H), (36)

which is intriguingly similar to Equation (21) when ∆r = λ and H ∈ [0.26, 0.63], that is,
for all their sample surfaces. Also, computing ν2h−2 for the surface statistics data shown
in Figures 4 and 5 suggests that Equation (23) is a good analytical solution for the ratio,
although there was a lot of variation for individual surfaces at H = 0.5 (from 3 to 15, while
the expected value was 2π). The evaluation of the consistency of the synthetic surfaces’
statistical properties with the analytical solutions for 3D surfaces (e.g., Equation (17)) was
found, in general, to be challenging due to the significant variance.

3.2. Evaluation of Radar Backscatter Functions

First, the laws based on autocorrelation functions, the Gaussian law, Hagfors’ law, and
the cosine law are evaluated. In the examples below, the wavelength-scale element dis-
cretization is kept at 25 cm, while varying hL and H. The Rayleigh limit for the wavelength-
scale hλ is then 0.031 m at zero incidence. The electric permittivity is 5.0.
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Figures 7 and 8 demonstrate the quality of the different laws in modeling the BSC
functions of the synthetic surfaces computed using the simplified surface-scattering algo-
rithm. Each curve in Figure 7 is an ensemble average of 40 surfaces and 4 azimuth angles.
Despite the ensemble- and orientation-averaged results, there is a significant deviation
in the phase function at low phase angles when hL = 0.5 m due to the steep slopes of
individual elements. The error in the first phase angle bin is mitigated by using the mean of
the first three phase-angle bins for the BSC functions. For hL = 0.1 m, hλ = 0.008 m, which
is well below the Rayleigh limit. For hL = 0.3 m, hλ = 0.031, which is at the Rayleigh limit
at the zero incidence, but not through all local incidence angles of the individual elements.
For hL = 0.5 m, hλ = 0.040 m, which is significantly above the Rayleigh limit, and therefore
the result should be considered with caution. Figure 7 also shows the change in the shape
of the phase function as the incidence angle increases. The phase functions are useful for
verifying that the distributions of the surface reflections are correct, but also have practical
use when modeling scenarios where the source of illumination and the observer are not at
the same location.

Figure 7. The backscattering coefficients as a function of incidence angle (the left-side panels (a,c,e))
and the scattering phase matrix P1,1 element as a function of the phase angle (the right-side panels
(b,d,f)) for H = 0.8, Le = 9 m, m = 36, and qr = 2, when hL = 0.1 m (a,b), hL = 0.3 m (c,d), and
hL = 0.5 m (e,f). The scattering models based on the cosine (magenta), Gaussian (cyan), and Hagfors’
laws (green) were fitted to the computed BSC functions at incidence angles from 0 to 80◦. In the phase
curves on the right, the normal incidence is shown as a black line, and each consecutive incidence
angle at 4◦ intervals in a lightening shade of gray.
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Figure 8. (a) The comparison of the model-predicted (fitted) root-mean-square (rms) slope versus the
true (expected) rms slope of the synthetic surface when using the cosine (magenta), the Gaussian
(cyan), and the Hagfors’ law (green) depicted with the reference for an ideal fit (the dashed line);
and (b) the same comparison for the Fresnel normal-incidence reflectivity coefficient with the ideal
fit at 0.146 (the black cross). Here, H = 0.8 and hL varies from 0.01 m to 0.5 m with steps of
0.1 m (respectively, the markers from the lower left to the upper right corner in panel (a), and the
corresponding colors on the right).

In Figure 8, the rms slopes derived from the BSC functions using the Gaussian law
are the most consistent with the rms slopes computed geometrically using the vertical
component of the normal of each element. The rms slopes derived using the cosine law
were increasingly over the true rms slope as the rms slope increased (up to a factor of 1.19
at s = 0.62), while the Fresnel reflection coefficient was close to the expected value. The
rms slopes derived using Hagfors’ law were increasingly below the true rms slope (down
to a factor of 0.77 at s = 0.62), while the Fresnel reflection coefficient was consistently above
the true value by a factor of 1.42–1.92 with a negative correlation to the rms slope. Here,
I assumed that C = s−2, which is not analytically correct for an exponential correlation
function that the Hagfors’ law is based on, but this result can be useful information for
estimating the uncertainty of results that have been previously derived using Hagfors’ law.
For the Gaussian and cosine scattering laws (Equations (24) and (26)), the accuracy of the fit
parameter R was 5% up to an rms slope of 0.467 (θs = 25◦). It should be noted that although
the autocorrelation function at the wavelength scale was not found to have a Gaussian
form at any value of H within the range [0, 1], the Gaussian scattering law still provides the
best fit to the synthetic BSC functions. The accuracy of the Gaussian law deteriorated below
rms slope angles of 3◦ as well as above 40◦. One reason is the slope angle p.d.f: at very low
and very high rms slopes, the slope angle p.d.f. skews from a Gaussian shape, as the slopes
of the elements increase but cannot reach 90◦ (Appendix D). This is an important note for
the assumption of a gently undulating surface. As the slopes approach 0◦, the reflections
are more accurately described by simple Fresnel equations for planar surfaces.

The cosine law was performed to equal accuracy only up to slopes of about 15◦, and
increasingly overestimated the steeper rms slopes. Hagfors’ law performed in a similar
quality to the cosine law but underestimated the rms slopes close to a comparable extent to
what the cosine law overestimated them. The distinct ”tail” at high incidence angles was
not observed to occur in any of the simulations regardless of whether multiple scattering
was included or not.

The Shepard’s model for H = 0.5 fits the computed BSC functions at higher incidence
angles better than the cosine law but no better than the Gaussian law. Despite the similarity
to Hagfors’ law, there is no distinct tail visible at high incidence angles. The simulations
showed that RS is not equal to RF as claimed in [14], but a correction factor that depends
on the slope and the Hurst exponent is required. Shepard’s model for H = 0.5 was able
to predict the rms slope with any value of H when s ≈ 2.7s2.2

S . The Fresnel reflection
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coefficient also requires a non-trivial term that depends on the rms slope to correctly predict
the reflection coefficient.

One reason for the discrepancies is a misplaced factor of 4π. Also, the integration to
infinity used in many analytical approaches can be questioned in physical applications.
It is mathematically convenient in the analytical derivation of the models; however, the
statistical properties are, in reality, limited to specific length scales. When modeling radar
imaging data, the integration is ideally done through the area covered by each pixel or a
set of pixels, i.e., the area that contributes to the pixel. Because the rms height depends on
the horizontal scale, as given by the Hurst exponent, the measured, finite area might play a
role that should not be omitted.

3.3. Backscatter Functions of Hawaii Lava Flows

The consistency of the analytical and numerical solutions with measured data is a
crucial part of evaluating their validity. Campbell [22,25] reported surface statistics for ten
surface profiles of lava flows at Kilauea, Hawaii. The measured rms slopes are available
in both the wavelength scale of 25 cm (sλ) and a unit scale of 1 m, the rms heights are
measured over 1-m profile lengths (h1), the Hurst exponents are available in the unit scale of
1 m for all ten profiles, and some additional information available for a few profiles (Hurst
exponent when using a different step size, deviograms, and power spectral density plots).

Figure 9 illustrates the scattering law fits for the three test cases (Section 2.4), with
the empirical model for the data presented in Campbell [22] included at the incidence
angle range from 35◦ to 60◦. The shown BSC functions for the synthetic surfaces are
ensemble-averaged for 30 sample surfaces and orientation-averaged for 4 different azimuth
orientations. The electric permittivity was set here to 4.5 + 0.042i. For Test Cases 1 and 2,
qr = 2, and for Test Case 3, qr = 3. The fits include the Gaussian, cosine, and Hagfors’ laws.
The surface model was able to reproduce a comparable rms slope using the rms height
and Hurst exponent for all test cases to an accuracy of 97% (with the dimension factor of√

2 considered).

Figure 9. Cont.
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Figure 9. The backscattering coefficient (BSC) functions for Test Case 1 (top), Test Case 2 (middle),
and Test Case 3 (bottom). The scattering models based on the cosine, Gaussian, and Hagfors’ laws
were fit to the computed BSC functions at incidence angles from 0◦ to 78◦. Campbell’s empirical
model (the sum of Equations (29) and (30)) for backscattering coefficients is depicted in blue “x”
markers for the wavelength-scale root-mean-square (rms) slope for the synthetic surface.

3.4. Contribution of Multiple Scattering

In order to quantify the contribution of multiple scattering in the synthetic surfaces
selected for the study, I used the more elaborate ray-tracing algorithm ROSAS described in
Section 2. For the computations presented here, the number of rays was 20,000, and the
refractive index was set to 2.12 + 0.01i (electric permittivity of 4.5 + 0.042i). The scattering
properties were averaged over four azimuth angles for a synthetic surface with Le = 9 m
and m = 36.

For Test Case 1, no multiple scattering took place. For Test Case 2, multiple scattering
took place at a level of 1–2 per 600 rays, but the contribution of multiple scattering is
negligible in the total echo power, particularly at backscattering. For Test Case 3, it was not
clear what the value of hL should be for an edge length of 9 m because, as discussed earlier,
there are indications that the roll-off length is less than 4.5 m, and the same wavelength-
scale rms slope could be reproduced with different combinations of hL and qr. Also, it
is interesting to look at two different examples, where multiple bounces take place: one
where the peak contribution is visible for double and triple bounces at about 2θ0 (Figure 10
panels a and b, θs = 36.7◦, H = 0.26, hL = 0.212 m, and qr = 2.5), and a second one where
the phase function for the double and triple bounces decreases (panels c and d; θs = 45.8◦,
H = 0.26, hL = 0.27 m, and qr = 3.0). In the first example, the power contribution of the
double bounce was, at most, about 10% of the power contribution of single scattering and
that of the triple bounce, at most, about 1%, the maxima for the double bounce occurring at
about 2θ0 at both incidence angles and also for the triple bounce at θ0 = 40◦. In the second
example, the maxima for all numbers of bounces are at zero phase angle for both incidence
angles, 0◦ and 40◦, and the power contribution of double bounces was up to ∼ 20% of the
total at backscattering while remaining at 1% for triple bounces.
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Figure 10. The contribution of multiple scattering. The phase function with a breakdown of the
contribution of first-order reflection in green, double bounce depicted in magenta, and that of triple
reflections in cyan, when the incidence angle is (a) 0◦ and (b) 40◦, when s = 0.745 (θs = 36.7◦), and
(c) 0◦ and (d) 40◦, when s = 1.027 (θs = 45.8◦).

Figure 11 shows that for Test Case 3, the backscattered echo power decreases in both
polarization states as the incidence angle increases from 0◦ to 60◦. The BSC function is
(as given in Equation (4) σ0 = qscaP1,1(0◦, θ0) cos θ0, whereas σOC = 0.5σ0(1 − P4,4P−1

1,1 )

and σSC = 0.5σ0(1 + P4,4P−1
1,1 ). The BSC function for the total and the OC polarization

follows the empirical model for the lava flows well. The difference between the simplified
surface-scattering code and the ROSAS code can be attributed to the improved tracking
of multiple scattering in ROSAS. The electric permittivity of the lava flows was not well
constrained in [22], which is one factor in the difference to the empirical model. I used an
electric permittivity of 4.5 (real part); although a lower value down to 4.0 could further
improve the fit at an incidence angles of 30◦–40◦, it could produce a worse fit at θ0 ≥ 50◦.
The SC polarization of the BSC function decreases as a function of incidence angle more
steeply as the empirical function, as is visualized in Figure 11; this finding is contrary
to observations, which demonstrates the well-known inadequacy of ray-optics models
in simulating depolarization effects even when second- and third-order scattering are
included. As Fa et al. [31] showed, simulating the SC polarization component so that it is
consistent with measurements is difficult even when volume scattering by wavelength-scale
ellipsoids is included in the model. On the other hand, in their surface model, which is
based on IEM and uses an exponential autocorrelation function for the surface statistics, the
circular-polarization ratio increases as a function of incidence angle, which suggests that the
ROSAS code could be developed further by incorporating relevant field coefficients [29,30].
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Figure 11. The backscattering coefficients and circular polarization components as a function of
incidence angle for Test Case 3 computed using ROSAS (here, H = 0.26, hL = 0.27, qr = 3.0).
(a) The total BSC function, (b) the opposite-circular-polarization component, (c) the same-circular-
polarization component, and (d) the circular-polarization ratio. The errorbars were derived using
the one-sigma uncertainty of the zero-phase-angle intercept for a line fit to the phase angles from
0◦ to 20◦ of the P1,1 and P4,4 elements using a linear regression fit (the functions are sufficiently
linear in this range of angles). The blue crosses depict the empirical models for the measurements by
Campbell [22] (using Equations (29)–(31) and their combinations), and the cyan dashed line depicts
the Gaussian fit using the simplified surface-scattering algorithm.

4. Discussion

First, it is important to discuss how well the artificial surface generation algorithm
performed with respect to the existing analytically derived statistical properties for self-
affine surfaces. The discretization of the artificial surface is a good analog to empirical
measurements, where the topographic height distribution is derived using sampling at
regular intervals. However, differences to mathematically ideal surfaces are possible due to
the discretization, and therefore the analytical solution could be, to some extent, different
from the generated surface despite ensemble averaging. The algorithm was created based
on the theory presented in [23], and the numerical evaluation revealed that the surface
properties were quite consistent with the theory. The consistency was the best near H = 0.5
and degraded towards the end values H = 0 and H = 1. Specifically, the low values of
H caused issues. For artificial surfaces that were generated using Hurst exponents near
the end values, the algorithm tended to generate surfaces with their self-affinity biased
toward H = 0.5. Considering applications, Campbell’s measurements [22,25] showed that
natural rocky and grain surfaces have Hurst exponents typically below H = 0.65 but above
H = 0.15. Therefore, the surface generation algorithm can be considered a good analog
when the Hurst exponent of the surface is measured at H ∈ [0.3, 0.8], which applies to the
majority of natural surfaces. The issues related to the low values of H could be related to
the fact that the surface slopes should be larger than the discretization can reproduce.



Remote Sens. 2024, 16, 890 22 of 30

The modeling of the measured Hawaii lava flows was successful; the synthetic surfaces
were able to reproduce the measured rms slopes when generated using the measured rms
height and Hurst exponent as input parameters. For Test Case 3, the fit was the most
challenging one but surprisingly good considering that no diffuse component was included
while simultaneously the rms height within a wavelength scale was greater than the
Rayleigh limit.

The presented exponential form for the rms deviation (Equation (35)) is analytically
sensible and considers the roll-off length better than a simple power-law function. The
downward curvature is consistent with the empirical deviograms presented in [24] Figure 3.
An increased consideration of the roll-off length was also a key to being able to reproduce
the rms slope of Test Case 3.

The main scope of the paper is to evaluate how well the various radar scattering laws
are able to model the rms slope. The surface slope p.d.f. is the main factor of a rough surface
that determines how the scattered power distributes in space. The simulations showed
that although the synthetic surfaces did not have a Gaussian autocorrelation function
at the wavelength scale nor the slope or the slope angle p.d.f were precisely Gaussian
(a combination of two Gaussian laws could be a better fit), the Gaussian law performed the
best at modeling the rms slopes at 95% accuracy at all adirectional wavelength-scale rms
slopes from 2◦ to 40◦. At s < 2◦, the surface can be assumed planar, and regular Fresnel
reflection coefficients are a decent approximation.

The cosine law performed to equal accuracy with the Gaussian law only up to slopes
of about 15◦, and increasingly overestimated the steeper rms slopes, when the slope was
derived from the scattering profile. Hagfors’ law (Equation (25)) also fits well at low slopes
but was found to underestimate the rms slopes close to an equal amount to what cosine law
overestimates them. Also, RH was inconsistent with the true Fresnel reflection coefficient,
whereas RG and RC provided better fits. The distinct diffuse scattering ”tail” of Hagfors’
law at high incidence angles did not fit well using a ray-optics model even when multiple
scattering was included in the model. In fact, the tail was not observed to occur in any of the
simulations regardless of the inclusion of multiple scattering. Therefore, it is questionable
whether such a feature can be produced when only Fresnel scattering is included, which
is consistent with Hagfors’ own suspicion that “an entirely different type of reflection
mechanism should be sought to describe the tail of the echo” due to an observation of
depolarization of the radar echo [3]. For example, wavelength-scale particles on the
surface could reproduce the tail, because there is always a non-zero backscattering intensity
component and a non-zero depolarization component for non-spheroidal, asymmetric
particles in the resonance-scattering regime (e.g., [32]).

In conclusion, the Gaussian law can be recommended as the most reliable radar-
scattering law for all natural surfaces for the inverse modeling of the rms slopes and the
Fresnel reflection coefficient from the quasi-specular backscattering peak in disk functions.
If diffuse scattering is observed, a separate law that considers the physical properties of
wavelength-scale scatterers rather than rms slopes could be a more realistic approach.
For large objects such as planets and moons, also considering a realistic distribution of
roughness parameters could be an improvement to assuming homogeneous roughness
characteristics for the whole object.

Shadowing models for self-affine surfaces have been comprehensively investigated
by Shepard and Campbell [20]. The shadowing produced by the artificial surface model
presented here was found to be consistent with the numerical shadowing models for up to
moderate slopes. This result is expected for the shadowing models that presume a Gaussian
slope p.d.f. For the test case with the steepest slopes, the analytical model of Smith [33] was
valid with an uncertainty of 85%, which is a relatively good performance as well for such
complex topographies. Also here, it is useful to remember that the model is derived for
an undulating surface without wavelength-scale particles on the surface. The shadowing
function for a surface covered with wavelength-scale particles would increasingly differ
as a function of the incidence angle, because the resonance-regime scattering functions of
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particles with various shapes, sizes, and orientations are much more complicated than the
Fresnel scattering functions in the ray-optics regime, and their relative contribution to the
total backscattering is greater at higher incidence angles.

Campbell [34] showed that double reflections by dihedral corners may increase the
SC polarization component significantly; however, the probability density function of
the favorable angles with respect to the full measured area is a complex question, and
only 2D surface profiles were considered. In this paper, the ray-tracing computations for
multiple scattering revealed that for very rough surfaces (rms slope angle above 30◦), the
contribution of each increasing order of scattering is about one order of magnitude less than
the previous, i.e., the second and third-order contributions are, respectively, about one-tenth
and one-hundredth of the contribution of the first-order reflection (Figure 10). The reflected
double-bounce phase function’s maximum is centered at 2θ0, whereas for a single reflection,
the phase function remains at a stationary level up to 2θ0 before decreasing. The SC
polarization component was up to 33% of the OC polarization component when multiple
scattering was included and the roughest Test Case 3 was used as the surface model. The
circular-polarization ratio decreased as a function of incidence angle, which is contrary
to what measurements suggest. Ray-optics approximation is known to be insufficient for
modeling polarization, which is highly sensitive to the scatterer’s morphology and may
also require the wave-interference effects to be taken into account. In Test Case 3, also
the element-scale rms height significantly exceeding the Rayleigh limit likely plays a role.
Finer discretization would improve the accuracy of the true morphology, but element sizes
smaller than the wavelength make the use of ray-optics approximation questionable.

A discrete dipole approximation approach such as that presented in Riskilä et al. [35]
(and the references therein) would allow including sub-wavelength-scale roughness, so it
was also evaluated as a modeling approach, but it did not produce results that would be
more consistent; in fact, the backscattering functions were much less consistent with the
lava flow measurements due to a strong diffraction peak (visible in Figures 8–20 in [35]).
Separating the diffraction peak from the incoherent scattering field would require additional
computations that are out of the scope of this paper but, as future work, could potentially
help resolve discrepancies. The same issue prevents the use of other scattering software
based on volumetric discretization of the medium.

Applications to Planetary Surfaces

The Hawaii lava flows are a good example of natural surfaces for which the Hurst
exponents, rms heights, and slopes have been measured. I found a relatively good con-
sistency between the synthetic surfaces in this study and the radar measurements for the
flows. The consistency validates the synthetic surfaces as realistic and provides a further
interpretation of the lava flows; for example, the electric permittivity based on the mod-
eling in this paper was found to be 4.5 (or slightly less) in contrast to the estimate of 6 by
Campbell [22]. The porosity of the lava flows could thus be higher than originally expected.
There was, however, some discrepancy in the rate of decrease of the BSC function for rough
surfaces, which the ray-optics models were not able to model. For the smoother surfaces,
the simulations provided an excellent fit to the measurements, but there was measurement
data available only at incidence angles where BSC is close to zero, so the most relevant
information on the specular enhancement is lacking.

Furthermore, the surfaces of the atmosphereless solar-system objects (SSOs) are mostly
composed of regolith. Depending on the object, the size-frequency distribution of regolith
varies from fine-grained micrometer-scale particles to multi-meter-scale boulders. The
surfaces of the atmosphereless terrestrial planets and their moons are dominated by the
fine-grained regolith as the Moon landings and numerous spacecraft missions have shown.
Helfenstein and Shepard [36] reported an average Hurst exponent of about H = 0.69 ± 0.06
for the Moon, which was considered consistent with other literature. In contrast, while
fine-grained regolith is common on asteroids as well, some asteroids have been found to be
lacking the fine-grained regolith and are composed primarily of centimeter-scale and larger
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particles, possibly deep into the subsurface and even into the core, for example, the Origins,
Spectral Interpretation, Resource Identification, Security, Regolith Explorer (OSIRIS-REx)
mission revealed for asteroid (101955) Bennu [37], and Hayabusa2 for asteroid (162173)
Ryugu [38]. Harmon and Ostro [39] estimated that 25% of the lunar echo power is con-
tributed by diffuse scattering by decimeter-scale particles and an even greater fraction of
more than 40% for Mars. When a surface is dominantly composed of wavelength-scale
particles, ray optics is not a sufficient scattering mechanism. Also, rms slopes above 40◦

are unphysical for a regolith surface because regolith particles would likely not retain
such high-angled slopes over large areas for a long time due to dynamical and weathering
processes. The scattering by wavelength-scale particles using particle shapes characteristic
to the surface in question is thus crucial to realistically simulate the SC polarization com-
ponent [32,40]. So far, the radar-scattering simulations have focused on particles in free
space or near a smooth, Fresnel-scattering interface. Recently, there have also been useful
developments in understanding the scattering in dense random media of irregular particles
(e.g., [41]). The next key step is understanding the scattering interactions by irregular,
wavelength-scale particles and the rough surface of a medium of fine-grained regolith.

Although this paper focuses on applications at microwave wavelengths, the results
can be useful at visual and near-infrared wavelengths as well. For planetary surfaces
composed of larger grains (greater than a millimeter), the scattering by the particles can
be modeled more precisely when a rough surface is assumed instead of an ideal ellipsoid.
Statistical treatment of the surface roughness could enhance the effectiveness of simulations.
Furthermore, there are significant opportunities for other light-scattering applications
using synthetic surfaces. There are both easy and challenging opportunities for software
development; although the focus is here on incidence angles, the presented codes also
compute phase functions, which can be used for modeling visual observations, when
ray optics can be considered a valid approximation. An example of a more challenging
task would be to add a diffuse scattering component that is not simply empirical but has
physical meaning. Moreover, the observed self-affinity bias towards H = 0.5 requires
further consideration.

5. Conclusions

In summary, this paper presents a set of open-source Python codes for generating
synthetic self-affine fractal surfaces and computing their phase and BSC functions, which
were used to evaluate radar scattering laws. The codes can provide a useful tool for
the scientific communities from various applications of physics from remote sensing and
modeling of electromagnetic radiation to material sciences. The synthetic surfaces were
shown to be able to reproduce measured rms slopes for a real-life example, lava flows,
which gives significant confidence to the validity of the model. Some challenges were also
encountered, the most significant of which is the self-affinity bias of the generated synthetic
surfaces towards H = 0.5. This issue is fortunately not a major constraint for most natural
surfaces. Moreover, the roll-off length (i.e., the frequency limits of the undulations) of
the self-affine fractal surfaces has been given little consideration in the existing analytical
solutions for the surface-roughness characteristics, although it plays a clear role. Here, the
wavelength-scale rms slope was derived using the power spectrum with different options
of roll-off length (low-frequency limit; Equations (17) and (32)).

The Gaussian law was confirmed to be the optimal scattering model for surfaces for
predicting rms slope angles up to 40◦ when the volumes below and above the interface are
homogeneous (free from scatterers larger than the Rayleigh limit), which is consistent with
the literature (e.g., [18]). The Gaussian law reproduced measured rms slopes well, even
when the rms height within a wavelength-scale sample length was above the Rayleigh limit;
however, the produced BSC function could be less accurate. A Gaussian autocorrelation
function or a Gaussian slope p.d.f. are not required for the Gaussian law to be valid for
self-affine fractal surfaces. The evaluation of other widely used radar scattering laws
showed that the cosine law can predict the rms slope when the slope is below 15◦ but
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overestimates the larger slopes. Neither the Gaussian nor cosine models should be used
when the rms slopes are below 1◦, but Fresnel reflection functions for a planar surface can
be used as a valid approximation. Hagfors’ model has been shown to be an empirically
well-fitting model for regolith surfaces; however, the model underestimates large rms
slopes and overestimates the Fresnel reflectivity. Hagfors’ law is distinct from the other
laws due to the diffuse-scattering tail at high incidence angles. The tail was not visible in
the computed BSC functions at any value of the Hurst exponent or rms height, but a diffuse
scattering component such as wavelength-scale structures or particles on the surface or
as volume scatterers below the surface would be required to reproduce it. The scattering
models presented in Shepard and Campbell [14] were incorrect; the fitted parameters
require additional correction functions.

The ROSAS code was used to quantify multiple scattering, which is complex to
quantify analytically. When the rms slope of the 3D surface was 0.745 (0.527 for a surface
profile), the double-bounce contribution of the backscattered power was up to 10% of
the total at normal incidence and the peak of the phase function appeared near 2θ0 for
any incidence angle, whereas for a greater rms slope of 1.027 (0.726 for a profile), the
backscattered power was up to 20% of the total and the peak of the phase function was at 0◦.
Deriving further empirical or analytical solutions for the multiple-scattering contributions
is not in the scope of the paper, but the code provides a concrete tool for the estimation of
the multiple scattering for any relevant applications and paves the way for further work.

Further modeling work is also needed to understand the interactions of wavelength-
scale particles in contact with the self-affine fractal surfaces. A large number of elaborate
scattering modeling applications exist, some are optimized for modeling volume scattering
by buried inclusions, and some for individual objects of finite size with respect to the
wavelength, such as applications based on the discrete-dipole approximation or the T-
matrix method. A key challenge that arises in the modeling of planetary surfaces is
combining a wavelength-scale object with a surface much larger than the wavelength; the
scenario environment is too large for the discretization-based full-wave approaches, but
ray tracing is not a sufficient approximation for a wavelength-scale object. A solution to
this challenge requires future work.
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Abbreviations
The following abbreviations are used in this manuscript:

BSC Backscattering coefficient
HH Horizontal to horizontal
HV Horizontal to vertical
LL Left to left
LR Left to right
OC Opposite circular
P.d.f. Probability density function
Rms Root mean square
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ROSAS Ray-optics for self-affine fractal surfaces
SAR Synthetic aperture radar
SC Same circular
SSO Solar-system object
VNIR Visual and near-infrared
VV Vertical to vertical

Appendix A

The artificial-surface algorithm, based on the theory presented in [23], generates and
discretizes self-affine surfaces. The key steps of the algorithm are summarized here. First,
an array of wavevectors is generated so that for each array element j:

qj =
2π j
m

, (A1)

a corresponding array qk is generated for the orthogonal dimension. For each dimension,
the array is shifted and scaled by the pixel width, de, so that the center of the array is
at 0, and the wavevector ranges from −2πm(2mde)−1 = −π(de)−1 to π(m − 2)(mde)−1.
The two arrays are used for generating a two-dimensional array ρ(q) where an element
ρ(j, k) =

√
q2

j + q2
k . This array is then used to generate a two-dimensional array w(q) =

(ρ(q))−2(H+1) for all elements ρ(j, k) ≥ qrπ/Le, and w(q) = (qrπ/Le)−2(H+1) for all
elements ρ(j, k) < qrπ/Le. The array w(q) is then summed; let us define this sum as wsum.
The normalized power spectrum array is then:

W(q) =
h2

LL2
e w(q)

4π2wsum
. (A2)

The array W(q) can be used to derive the one-dimensional power-spectral-density function
to check that the gradient of the function is −2(H + 1) at all wavevectors that are greater
than the roll-off wavevector and constant at the wavevectors below the roll-off limit.

Next, the Fourier-transformed height array h(q) = B(q) exp(iϕ(q)) is derived so that
the amplitudes are

B(q) =
2πm

de

√
W(q) (A3)

and the phases, ϕ(q), are (uniformly) random in the range from −π to π. The Fourier-
transformed height array has a conjugate symmetry so that W(qj, qk) = W(qj,−qk) =
W(−qj, qk) = W(−qj,−qk). To ensure the symmetry, B(q) and ϕ(q) of the corners of the
first quarter, i.e., elements (1,1), (1,m/2), (m/2,1), and (m/2, m/2) are set to 0 (1 referring
here to the first element). Then, the values along the rows and columns in both the
amplitude and phase arrays are mirrored across to the other side so that the second half of
each row (columns extending from m/2 + 1 to m) are copied and flipped (i.e., in reverse
order) to replace the first half of the row (columns extending from 2 to m/2 − 1). For
columns 1 and m/2, the arrays are copied from row 2 to m/2 − 1 and flipped to replace the
rows from m/2 + 1 to m. The mirrored phase arrays are also multiplied by −1.

Finally, the topography is generated by the inverse fast-Fourier transformation of an
array Z(q) = B(q)[cos(ϕ(q)) + i sin(ϕ(q))] (where i is the imaginary unit) after shifting
the origin of the array Z(q) from the middle (q ∈ [−0.5q0, 0.5q0]) back to the beginning
(q ∈ [0, q0]).

Appendix B

In this section, Equations (17) and (32) are derived. The power spectrum for a 3D
surface is defined as

W(q) = W0

(
q
q0

)−2(H+1)
.
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The square of the rms height over an isotropic self-affine surface area is then

h2(q1, q0) = 2π
∫ q1

q0

qW0

(
q
q0

)−2(H+1)
dq,

which gives

h2(q1, q0) =
2πW0q2

0
2H

[
1 −

(
q1

q0

)−2H
]

,

where q1q−1
0 = m. If m ≫ 1,

h(q1, q0) = q0

√
W0π

H
.

The square of the rms slope is given as

s2(q1, q0) = 2π
∫ q1

q0

q3W0

(
q
q0

)−2(H+1)
dq,

which gives

s2(q1, q0) =
2πW0q4

0
2(1 − H)

[(
q1

q0

)2(1−H)

− 1

]
,

where, with a similar assumption for m as above,

s(q1, q0) = q2
0m1−H

√
W0π

1 − H
.

The ratio of the two products is then

s
h
= q0m1−H

√
H

1 − H
= q1m−H

√
H

1 − H
.

Here, the power spectrum is integrated from the roll-off wavevector q0 to the single-element
wavevector q1. To solve the rms height and the wavelength-scale rms slope for an arbitrary
length (e.g., the spatial resolution in a radar image) defined by a wavevector qx, the power
spectrum must be integrated from q1 to qx, while the roll-off wavevector is still q0 to obtain:

h2(q1, qx, q0) =
πW0q2

0
H

[(
q0

qx

)2H
−

(
q0

q1

)2H
]

and

s2(q1, qx, q0) =
πW0q2

0q2
x

1 − H

[(
q1

qx

)2( q0

q1

)2H
−

(
q0

qx

)2H
]

.

In the ratio of the rms slope and rms height, q0 is eliminated and the ratio is expressed
as a function of only q1q−1

x = mx and qx, that is, Equation (32). To clarify, this solution is
different from the rms slope for a lag of ∆r = x by solving the wavelength-scale rms slope.

Appendix C

Table A1 lists the statistical roughness properties of the Hawaii lava flows presented
in [22,25]. The Rayleigh roughness limit is 0.031 m (at normal incidence) for the rms height
in the wavelength-scale sample length, which can be calculated by h0.25 = h1(0.25)H . All
sites with h1 > 0.06 m are above the Rayleigh limit at a sample length of 0.25 m.
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Table A1. Roughness statistics for the Hawaii lava flows presented in [22,25] (sorted by roughness,
i.e., root-mean-square (rms) slope and rms height, but with the original site numbers shown in the
first column) and used in Figure 6. Test Cases 1, 2, and 3 are, respectively, sites 10, 8, and 5.

Site H sλ (25 cm) s1 (1 m) h1 (1 m) [m] h0.25 (25 cm) [m]

1 0.62 0.073 0.039 0.014 0.006
10 0.63 0.076 0.046 0.017 0.007
9 0.64 0.147 0.088 0.032 0.013
2 0.68 0.172 0.104 0.036 0.014
6 0.44 0.222 0.099 0.041 0.022
8 0.49 0.225 0.108 0.046 0.023
4 0.48 0.324 0.155 0.062 0.032
3 0.51 0.436 0.215 0.085 0.042
7 0.29 0.586 0.217 0.105 0.070
5 0.26 0.705 0.240 0.120 0.084

Appendix D

Figure A1 shows four different slope angle p.d.f. histograms so that hL varies from
0.01 m to 0.3 m, and other parameters are kept constant (H = 0.3, Le = 16 m, m = 128, and
qr = 2). The slope angle is obtained from the vertical component of unit normal vectors of
the surface elements so that θs = arccos(n̂z). A Gaussian p.d.f. fit is added for reference.
The slope (tan θs) distributions are best fit by the Rayleigh p.d.f. as shown by Shepard
et al. [18].

Figure A1. The slope angle p.d.f. for four different cases of hL: (A) hL = 0.01 m, (B) hL = 0.1 m,
(C) hL = 0.2 m, and (D) hL = 0.3 m, when H = 0.3, Le = 16 m, m = 128, and qr = 2. The magenta
curve is a Gaussian p.d.f. fit.
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