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Abstract: Wideband interference (WBI) can significantly reduce the image quality and interpretation
accuracy of synthetic aperture radar (SAR). To eliminate the negative effects of WBI on SAR, we
propose a novel end-to-end data-driven approach to mitigate WBI. Specifically, the WBI is mitigated
by an explicit function called WBI mitigation–generative adversarial network (WBIM-GAN), map-
ping from an input WBI-corrupted echo to its properly WBI-free echo. WBIM-GAN comprises a
WBI mitigation network and a target echo discriminative network. The WBI mitigation network
incorporates a deep residual network to enhance the performance of WBI mitigation while addressing
the issue of gradient saturation in the deeper layers. Simultaneously, the class activation mapping
technique fully demonstrates that the WBI mitigation network can localize the WBI region rather than
the target echo. By utilizing the PatchGAN architecture, the target echo discriminative network can
capture the local texture and statistical features of target echoes, thus improving the effectiveness of
WBI mitigation. Before applying the WBIM-GAN, the short-time Fourier transform (STFT) converts
SAR echoes into a time–frequency domain (TFD) to better characterize WBI features. Finally, by
comparing different WBI mitigation methods applied to several real measured SAR data collected by
the Sentinel-1 system, the efficiency and superiority of WBIM-GAN are proved sufficiently.

Keywords: wideband interference (WBI); WBI mitigation; synthetic aperture radar (SAR); generative
adversarial network (GAN)

1. Introduction

Synthetic aperture radar (SAR) plays a crucial role in fields such as Earth observa-
tion, environmental monitoring, geological exploration, resource investigation, ground
deformation monitoring, and target detection due to its capability of wide-swath and
high-resolution imaging [1–4]. However, SAR echoes are often affected by radio frequency
interference (RFI) from other electronic devices within the same frequency band [3,4].
The low-energy RFI can be mitigated because SAR imaging processing has a significant
coherent signal-processing gain. However, the high-energy RFI would seriously reduce
the image quality and interpretation accuracy of the SAR (e.g., SAR image classification,
target detection, and recognition) [5,6]. Meanwhile, RFI would degrade the estimation
accuracy of Doppler parameters such as the Doppler center and modulation rate, resulting
in unfocused and blurred SAR imaging results [7].

Depending on the bandwidth of the RFI, it is generally divided into two categories:
interference with a limited bandwidth, known as narrowband interference (NBI); and inter-
ference with a broader bandwidth, referred to as wideband interference (WBI). Compared
with NBI, WBI has a larger bandwidth. As a result, the SAR image quality corrupted by
WBI is worse, and the SAR image interpretation accuracy is lower. Figure 1a,c show two
WBI corrupted range-time/azimuth-time domain SAR data recorded by the sentinel-1A
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satellite, which uses Terrain Observation by Progressive Scans Mode (TopSAR). The red
vertical lines surrounded by white ellipses in Figure 1 represent WBI. Figure 1b,d represent
the corresponding two WBI-corrupted SAR data in the range–frequency azimuth-time
domain. From Figure 1, it can be seen that the WBI has vital energy and high time-varying
properties concerning the target echoes. Figure 2 depicts the SAR imaging results without
the WBI mitigation method. It can be seen that the presence of WBI seriously obscures the
information about the target in the scene, which brings significant challenges to SAR image
segmentation, target detection, target identification, and other image interpretation tasks.
Therefore, it is imperative to present a viable WBI mitigation algorithm to eliminate the
effect caused by RFI on SAR images.

Figure 1. The real measured SAR data corrupted with WBI recorded by Sentinel-1 in (a,c) range-
time/azimuth-time domain and (b,d) range–frequency azimuth-time domain.

Figure 2. WBI-contaminated Sentinel-1 SAR images, which was collected of (a) western China on
25 August 2017 and (b) northeastern Germany on 8 May 2019.

1.1. Related Work

In order to reduce the influence of WBI on SAR image interpretation accuracy and
imaging quality, various WBI mitigation methods have been proposed for SAR. Generally,
due to the specific interference mitigation mechanisms, these methods can be divided into
two groups: those that are driven by model and those that are driven by data. Model-
driven methods mainly utilize physical and prior knowledge to construct parameterized
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and non-parameterized WBI mitigation models and then achieve effective WBI mitigation.
The parameterized WBI mitigation methods require the optimization of model parameters
under specific criteria, in which SAR echoes can be expressed mathematically [8,9]. Ac-
cording to the assumption of the joint low rank and sparse model, various robust principal
component analysis-based WBI mitigation and target echo reconstruction methods have
been proposed [10–13]. Huang proposed an NBI mitigation method based on matrix-
factorization decomposition, and it is also applied in WBI mitigation in SAR data and
image domain [14,15]. Meanwhile, Huang proposed a proficient method for reducing WBI
through an alternating projections approach, which exhibits excellent performance and
rapid convergence in the two-dimensional frequency domain [16]. However, the parametric
WBI mitigation methods require high model accuracy, and the model’s error would severely
hinder the effectiveness of WBI mitigation. The nonparametric methods for mitigating WBI
primarily generate effective filters in a specific feature domain to remove the WBI and re-
cover useful target signals. Tao proposed a WBI mitigation method for SAR, which initially
converts the SAR echo corrupted with WBI into the time–frequency domain (TFD), using
the STFT [13]. Then, the original problem of WBI mitigation of the range spectrum will be
reduced to the problem of NBI mitigation of a series of instantaneous spectrums. However,
the implementation of this method comes at the cost of high computational complexity.
Yang proposed a method using an iterative adaptive approach and the orthogonal subspace
projection method. It improves the instantaneous frequency resolution in STFT, using the
IAA method, and filters the WBI based on the OSP method [17]. However, this method
requires that the WBI is not overlapped with the useful target echo, and its computation
complexity is very high.

The WBI mitigation techniques are data-driven and primarily make use of extensive
SAR data that are contaminated with WBI. These data are then employed to train a WBI
mitigation network, using deep learning algorithms. As is well known, deep learning
is widely used in image classification [18], target detection [19], image semantic segmen-
tation [20], image denoising [21], image super-resolution [22], image generation [23–25],
image transformation [26], and RFI mitigation [27,28] because of its ability to obtain the
targets’ hierarchical characteristics in images automatically. The data-driven WBI mitiga-
tion techniques can adaptively capture complex characteristics of WBI in various domains.
These methods efficiently use a high-throughput parameter space to map the WBI and the
target signal. Fan proposed a WBI mitigation algorithm that is implemented by utilizing
deep residual networks (IMNs), which can effectively eliminate NBI and WBI for SAR [29].
Nair developed a technique for mitigating RFI by using the UNet framework, which can
enhance the quality of raw UWB radar data by suppressing undesired signals [30]. Fuchs
suggested a convolutional neural network with complex values to alleviate the RFI; how-
ever, it might lead to signal loss in the suppression scenarios of SAR WBI [31]. Zhang
proposed a novel method for SAR image interference suppression, which is implemented
by constructing a coding–decoding network [32]. Wei introduced an effective technique
for suppressing interference in SAR images by using the Combined-Attention Restoration
Network [33]. Refs. [32,33] effectively suppressed RFI, but their methods may have caused
some scene information to be lost from the RFI mitigation results shown in the articles. In
short, data-driven methods have received more and more attention due to their ability to
use deep learning to reconstruct the useful target signal adaptively in multidimensional
domains without relying on professional knowledge. However, there is much room for
improving the performance of the data-driven-based WBI mitigation network. For ex-
ample, there are obvious statistical disparities between the WBI and the relevant target
signal in the time–frequency spectrogram. Simultaneously, the WBI has sparse and specific
structural characteristics in the time–frequency spectrogram. However, IMN only utilizes
the amplitude features of WBI in the time–frequency spectrum, while the structural and
statistical characteristics of WBI are not fully utilized.

This paper presents a novel method to mitigate the WBI that is implemented by
employing generative adversarial networks (WBIM-GANs) for SAR. It combines the ca-
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pabilities of GAN in feature intelligence extraction and the strong data-fitting ability to
fully capture the statistical and structural characteristics of the WBI in the time–frequency
spectrogram. Firstly, the SAR echo signal corrupted with WBI is expressed in the time–
frequency domain by using a short-time Fourier transform (STFT), which could more
easily depict the distinctiveness between the WBI and the target signal. Secondly, the GAN
combined with the PatchGAN structure is adapted to mitigate WBI, whose aim is to learn
an explicit function mapping from a WBI-corrupted SAR echo to a WBI-free SAR echo.
It can improve the WBI feature extraction accuracy and reconstruct useful target signals
with lower loss. Finally, the SAR echo signal, which has been restored without WBI, is
converted into the time domain through the implementation of the inverse short-time
Fourier transform (ISTFT). It is essential to acknowledge that the SAR echo appears as
a complex signal in the time–frequency spectrogram. To effectively preserve the phase
information of the SAR echo, the input of the WBIM-GAN consists of a real part of the SAR
echo channel and an imaginary part of the SAR echo channel. Simultaneously, WBIM-GAN
can be implemented in parallel along the azimuth dimensions, leading to a further decrease
in computation time.

1.2. Main Contributions

This paper is an extension of [27]. The primary advancements of the WBIM-GAN
introduced in this paper can be outlined as follows:

1. A novel algorithm for mitigating WBI by using GAN is introduced, which can achieve
WBI feature fast extraction and useful target signal accuracy reconstruction with less
loss. In contrast to the conventional WBI mitigation algorithm utilized for SAR, the
WBIM-GAN learns an explicit function mapping from the WBI-corrupted SAR echo to
the WBI-free SAR echo in an end-to-end data-driven way. It simplifies the difficulty of
designing the WBI mitigation algorithm because it does not require prior knowledge.

2. The WBIM-GAN, which is integrated with the PatchGAN architecture, is capable of
capturing the statistical and structural characteristics of the WBI effectively. Mean-
while, it can improve the accuracy of WBI feature extraction and reduce the loss of
recovered useful target signals.

3. The effectiveness, validity, and generalization of the WBIM-GAN was confirmed on
multiple measure SAR data in TopSAR mode. At the same time, the class activation
mapping techniques fully demonstrate that the WBIM-GAN is more concerned with
the WBI feature, which further proves its effectiveness.

The remainder of this article is arranged as follows. Section 2 presents the WBI
formulation, WBI detection method, and WBI mitigation algorithm using GAN. Section 3
explains the experiment’s results in detail and demonstrates the WBIM-GAN’s performance
on several measured SAR data. Finally, the discussion and conclusion of this paper are
given in Sections 4 and 5. Additionally, there are some abbreviations to simplify the
academic terminology, and these are listed in Table 1.

Table 1. Comparison table of abbreviations.

Abbr. Full Name Abbr. Full Name

WBI Wideband interference IMN Interference mitigation network

SAR Synthetic aperture radar ISTFT Inverse short-time Fourier transform

WBIM-
GAN

WBI mitigation–generative
adversarial network Conv Convolutional layers

STFT Short-time Fourier transform ReLU Linear unit layers

TFD Time–frequency domain BN Batch normalization layer
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Table 1. Cont.

Abbr. Full Name Abbr. Full Name

GAN Generative adversarial network Es Elementwise sum layer

RFI Radio frequency interference SDR Signal-distortion ratio

NBI Narrowband interference MNR Multiplicative noise ratio

PRF Pulse repetition frequency SSIM Structure similarity

TopSAR Terrain Observation by Progressive
Scans Mode PSNR Peak signal-to-noise ratio

RMSE Root mean square error JSR Jam-to-signal ratios

ISNF Instantaneous-spectrum notch filtering ESP Eigenspace projection

MFD Matrix factorization decomposition IAA Iterative adaptive approach

2. WBI Expressions and Methodology

In this section, various mathematical formulas are employed to interpret the WBI,
and the characteristics of WBI in the multidimensional domain are analyzed. Then, a
WBI detection method based on kurtosis in the TFD is presented. Meanwhile, the WBI
mitigation method based on GAN (WBIM-GAN) and the detailed network structure are
introduced. Moreover, some quantitative parameters are used to measure the effectiveness
of the proposed method.

2.1. WBI Formulation

The SAR can be expressed as the following formulation, with the range time set to t
and the azimuth time set to τ:

x(t, τ) = s(t, τ) + j(t, τ) + n(t, τ) (1)

where s(t, τ) denotes the valuable target signal, j(t, τ) denotes the WBI, and n(t, τ) denotes
the additional noise. Generally, the WBI can be divided into two forms: chirp-modulated
WBI and sinusoidal-modulated WBI. The WBI with chirp modulation can be modeled as

ICM(t, τ) =
K

∑
k=1

ak(t, τ) exp
{

j
(

2π fkt + πγkt2
)}

(2)

where ak(t, τ) denotes the complex envelope, fk denotes the frequency, γk denotes the
chirp rate, and the subscript k of these three parameters represents the kth WBI component.
Meanwhile, the WBI with sinusoidal modulation is formulated as

ISM(t, τ) =
K

∑
k=1

ak(t, τ) exp{jβk sin(2π fkn + ϕk)} (3)

where ak(t, τ) represents the complex waveform, βk represents the modulation parame-
ter, and ϕk represents the original phase. And the subscript k of these three parameters
represents the kth WBI component as well.

Usually, the SAR echoes are frequently interfered with by the chirp-modulated WBI.
Figure 3a is the SAR echo in the range-time domain, which is the 601th pulse of the SAR
data shown in Figure 1a. Meanwhile, Figure 3d is the SAR echo in the range-time domain,
which is the 1069th pulse of the SAR data shown in Figure 1b. It is evident that SAR
echoes are contaminated with the WBI. At the same time, WBI is time-varying, and its
amplitude is significantly higher than the amplitude of the target signal. Moreover, there
is a significant difference in the amplitude variation of the WBI depicted in Figure 3a,d.
Figure 3b,e show the WBI in the range–frequency domain. It is obvious that the WBI
possesses a greater share of frequency units within the frequency–range domain, and its
amplitude is significantly stronger compared to the useful target signal. Figure 3c,f displays
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the time–frequency spectrogram of WBI. It is obvious that the WBI in Figure 3c is chirp-
modulated. Furthermore, the WBI exhibits significantly greater strength compared to the
valuable target signal. Simultaneously, the WBI in Figure 3f is composed of multiple chirp-
modulated WBIs. Meanwhile, the WBI in the TFD can characterize not only its temporal
and spectral features but also its time–frequency modulation and structure characteristics,
which provide the foundation for further WBI mitigation.

Figure 3. WBI-contaminated SAR echoes in (a,b) range time, (d,e) range–frequency, and
(c,f) range TFD.

2.2. WBI Detection

Figure 1 shows that the WBI is not present in every SAR pulse. Therefore, it is necessary
to determine whether there is WBI in the SAR echo. Otherwise, the WBI mitigation methods
may cause useful target signal loss. Most traditional RFI detection methods are designed
for NBI, and due to the energy of the NBI, the target signal is quite different. Thus, NBI
can be detected. Moreover, a hard threshold based on prior information was primarily
developed. However, the performance of this type of method would be seriously degraded
when there are vital scattering targets in the SAR echoes. Meanwhile, this type of RFI
detection algorithm relies heavily on threshold selection. If the chosen threshold is too high,
it will increase the probability of missed WBI detection. If the threshold is set too low, it
will inevitably increase the probability of false alarms.

To improve the applicability of threshold selection, Meyer designed a threshold adap-
tive selection method based on the Neyman–Pearson criterion to enhance the RFI detection
precision [34]. From Figure 4a, we can see that WBI-free SAR echoes in the TFD are Gaus-
sian distributed, while SAR echoes corrupted with WBI have non-Gaussian characteristics.
Since the statistical characteristics of SAR echo are significantly different from WBI, a
Gaussian distribution parameter can be used to measure their difference, thus detecting the
WBI. From the knowledge of information and statistical theory, kurtosis is usually used to
measure the non-Gaussian properties of data. Figure 4a shows that in the TFD, the kurtosis
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of SAR echo without WBI is 5.78, while the kurtosis of SAR echo with WBI is 482.68. Zhou
proposed an adaptive NBI detection method based on kurtosis [35]. Since NBI and the
target signal have obvious statistical differences in TFD, the Neiman–Pearson criterion
is fully used to detect NBI. However, this method is only used for NBI and is no longer
suitable for WBI detection.

Figure 4. Illustration of (a) statistical comparison of WBI-free instantaneous spectrum and WBI-
corrupted instantaneous spectrum and (b) histogram of WBI-free SAR echoes’ kurtosis with a
distribution fit.

As shown in Figure 3, the characteristics of the WBI in the TFD are dramatically
different from target signals. Therefore, the WBI detection method can also be designed in
the TFD. The statistical distribution of the kurtosis of the WBI-free SAR echo in the TFD
follows the Gaussian distribution depicted in Figure 4b. Meanwhile, the kurtosis of the
SAR echo with WBI shown in Figure 4a is 482.68, and it should be on the heavy tail of the
Gaussian distribution shown in Figure 4b. Therefore, this paper proposes a WBI detection
method for SAR based on the Neyman–Pearson criterion and utilizes the kurtosis diversity
of the WBI and the target signal in the TFD. Furthermore, it transforms the WBI detection
into a task of binary classification, which is formulated as

f lag =

{
1, k ≥ η∗

0, k < η∗
(4)

where f lag denotes the WBI detection result, f lag = 1 indicates that WBI presents in the
SAR echo, f lag = 0 indicates that there is no WBI, η∗ denotes the kurtosis threshold, and k
represents the kurtosis of the SAR echo in the TFD.

Therefore, the critical issue of WBI detection is finding the optimal threshold, η∗. If η∗

is set too high, it will lead to missed detection of the WBI, which would degrade the SAR
image quality. If the η∗ is set too low, the false alarm of the WBI detection will increase,
which would result in the SAR echo loss and an increase in the WBI mitigation processing
time. Thus, the optimization goal of η∗ will improve the WBI detection probability and
ensure that the false alarm remains within the tolerable range. As a result, η∗ can be
expressed as the following optimization problem:

η∗ = argmaxPD
subject to PF < α

(5)

where the false-alarm rate, α, generally is set to 1 × 10−6.
Furthermore, η∗ can be determined by the Neyman–Person criterion and is based on

the rate of false-alarm constrain, and the property of the WBI-free SAR echo’s kurtosis
follows Gaussian distribution, leading to

α =
∫ ∞

η∗

1√
2πσ2

e
−(x−µ)2

2σ2 dx =
1
2

[
1− er f

(
η∗ − µ√

2σ

)]
(6)
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where µ refers to the mean, and σ refers to the standard deviation of the WBI-free SAR echo
in the TFD. According to the relationship of the α and the η∗, η∗ can be given by

η∗ = µ +
√

2σer f−1(1− 2α) (7)

2.3. WBIM-GAN

The fundamental theory of the WBI mitigation algorithm is to identify the inherent
distinctions between the WBI and the target signal. Deep learning has the ability to dynam-
ically capture complex features from the targets in a high-dimensional space. Meanwhile, it
possesses a robust capacity for nonlinear representation, allowing for the accurate approxi-
mation of intricate functions. The problem of reducing WBI in SAR can be reframed as a
sophisticated process of optimizing a complex function. In this process, the given input is
a SAR echo that has been corrupted with WBI in a particular domain, and the intended
outcome is to obtain a restored SAR echo that is free from WBI. As a result, we introduce the
WBIM-GAN in the TFD, and the purpose is to design a mapping mechanism to characterize
the relationship between WBI-affected SAR echo and WBI-unaffected SAR echo.

The generative adversarial network (GAN) is an emerging generative framework
that draws inspiration from the zero-sum game theory. It is composed of a generative
network and a discriminative network. The generative network acquires knowledge from
real-world examples and produces fabricated samples, whereas the discriminative network
assesses the genuineness of the samples. Throughout the training procedure, the generator
consistently enhances the authenticity of the counterfeit samples that are produced. At the
same time, the discriminatory network imposes penalties on the produced samples, thereby
compelling the generative network to generate samples of superior quality. In this way, the
GAN can consistently diminish the statistical disparity between the generated and authentic
samples. As a result, the WBIM-GAN is composed by a network G for mitigating WBI and
a network D for discriminating WBI. The G is employed to reduce WBI and produce the
SAR echo without WBI. At the same time, the D is employed to differentiate the accuracy
of the WBI mitigated SAR echo produced by the G. The G utilizes the integration of the
deep residual network to enhance the effectiveness of WBI mitigation while solving the
gradient saturation problem in the deeper layers. Meanwhile, it D employs the PatchGAN
framework to capture the local details and statistical characteristics of the target echoes,
thereby augmenting the effectiveness of WBI mitigation.

The structure of WBIM-GAN is depicted in Figure 5. The input of the G is the real and
imaginary parts of the SAR echoes corrupted with WBI. The input of the G is the real and
imaginary parts of the WBI-corrupted SAR echoes in the TFD. Table 2 depicts the structure
of G; it can be seen that the G is composed of 11 residual blocks, 3 convolutional layers
(Conv), 3 rectified linear unit layers (ReLU), and 1 Batch normalization layer (BN). Among
them, the residual block is composed of 2 Conv, 2 BN, 1 ReLu, and 1 Elementwise sum
layer (Es). The size of the Conv’s kernel is 3 × 3, the stride is 1, and the number of output
feature maps is 64. The D employs the PatchGAN technology to assess the target echo
reconstruction accuracy of various sections of the SAR echo in the TFD. This technology has
the potential to enhance the D’s effectiveness in evaluating the genuineness of the input
samples. At the same time, it enables G to comprehend the structural characteristics of
the WBI and produce a more polished WBI-free SAR echo in the TFD. The D employs a
sequence of Conv-BN-Leaky ReLU layers to capture the intricate characteristics of the WBI
in higher dimensions. Then, it proceeds to assess whether the input corresponds to a SAR
echo without WBI. Table 3 finds the detailed architecture of the D.
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Figure 5. The structure of the designed WBIM-GAN.

Table 2. The structure of the WBI mitigation network.

Input: Complex SAR echoes contaminated with WBI in the TFD

G-L1 [9 × 9, 64], s = 1;

G-B1 [3 × 3, 64], s = 1; BN;
[3 × 3, 64], s = 1; BN; Es. (G-L1);

G-B2 [3 × 3, 64], s = 1; BN;
[3 × 3, 64], s = 1; BN; Es. (G-B1);

. . .. . .

G-B11 [3 × 3, 64], s = 1; BN;
[3 × 3, 64], s = 1; BN; Es. (G-B10);

G-L2 [3 × 3, 64], s = 1; BN; Es. (G-L1);

G-Output [3 × 3, 2], s = 1;

Table 3. The architecture of the WBI discriminative network.

Input: Generated the SAR echoes without WBI or WBI-free SAR echoes in the TFD

D-L1 [3 × 3, 16], s = 1;

D-L2 [3 × 3, 16], s = 1; BN;

D-L3 [3 × 3, 32], s = 1; BN;

D-L4 [3 × 3, 32], s = 1; BN;

D-L5 [3 × 3, 64], s = 1; BN;

D-L6 [3 × 3, 64], s = 1; BN;

D-L7 [3 × 3, 128], s = 1; BN;

D-L8 [3 × 3, 128], s = 1; BN;

D-Output [3 × 3, 1], s = 1;

WBIM-GAN takes advantage of the mean square error and the WGAN-GP loss func-
tion to train the network 28. The loss function of WGAN-GP can solve the problem of
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vanishing and exploding gradients in WBIM-GAN training and simultaneously enhance
the accuracy of the generated SAR echoes without WBI. The loss function of WBIM-GAN
can be expressed as

min
G

max
D

LG + λ1LM (8)

where LG and LM are the WGAN-GP loss and mean square error, respectively. And the LG
and LM can be expressed as

LG = ES∼pdata [D(S)]−EJ∼pz [D(G(J))] − λ2EX̂w∼ppenalty

[(∥∥∇x̂D
(
X̂w
)∥∥− 1

)2
]

(9)

LM = E
[
(S− G(J))2

]
(10)

where S and J represent the desired target signal and the SAR echo contaminated with WBI in
the TFD, respectively. Meanwhile, the X̂w can be updated via the rule, X̂w ← εG(J) + (1− ε)S .
Moreover, λ1 and λ2 are regularization parameters that balance the terms in Equations (8) and (9),
respectively.

The WBI-corrupted SAR echoes are transformed into TFD with the size of 128× 128
complex matrices by using STFT. Meanwhile, the real and imaginary parts are normalized
to [−1,1], respectively. The Pytorch 1.8.0+cu101 on the NVIDIA Titan-X Graphics Process-
ing Unit (GPU) is utilized to train and test the WBIM-GAN. Meanwhile, the stochastic
gradient descent algorithm is used to train the parameters of the WBIM-GAN. Moreover,
the minimum batch size, momentum, weight decay coefficient, and learning rate (λ1) are,
respectively, set to 32, 0.9, 0.0005, and 0.0001.

2.4. Evaluation Measures

The efficacy and superiority of the WBIM-GAN were validated through qualitative
examination and quantitative measures. The qualitative assessment is generally processed
by visually comparing the target signal reconstructed precision in the TFD and the SAR
imaging results with the implementation of various WBI mitigation methods. Meanwhile,
the signal distortion ratio (SDR), multiplicative noise ratio (MNR) [21], structure similarity
(SSIM), peak signal-to-noise ratio (PSNR), and root mean square error (RMSE) are utilized
to quantitative assess the WBI mitigation performance. Among them, the SDR is generally
used on simulated data. Meanwhile, the MNR, SSIM, PSNR, and RMSE metrics are utilized
to validate the real SAR data.

The SDR is defined as the normalized energy loss of the target signal after WBI
mitigation. It is usually used to estimate the distortion of the target signal after WBI
mitigation, and its formulation is

SDR = 10 log10

(
∑|x0 − x̂|2

∑|x0|2

)
(11)

where x0 denotes the WBI-free SAR echo, and x̂ is the reconstructed signal after WBI miti-
gation. The smaller the SDR value, the better the target echo reconstruction performance
and the lower the distortion.

The MNR is an important interference mitigation performance assessment metric that
assesses the average energy proportion between the no-return area and the neighboring
bright area in SAR images. It can be expressed as

MNR = 10 log10


1
N

N
∑

n=1
|SARIPn|2

1
M

M
∑

m=1
|SARIPm|2

 (12)

where N denotes the pixel’s number of the no-return region, M denotes the pixel’s number
of the highlighted region, SARIPn represents the pixel values of no-return region, and
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SARIPm represents the pixel values of highlighted region. The smaller the MNR value, the
higher image contrast and the better the recovery performance

The SSIM is utilized to quantify the disparity between the recovered SAR image and
original SAR image without WBI, and its mathematical definition is

SSIM =
(2µRµO + C1)(2σRO + C2)(

µ2
R + µ2

O + C1
)(

σ2
R + σ2

O + C1
) (13)

where O and R denote the initial SAR image without WBI and recovered SAR image after
WBI mitigation, respectively; µ|·| and σ2

|·| represent the mean and variance; σ|x||x0| denotes

the covariance; C1 = (0.01× F)2 and C2 = (0.03× F)2 are the constant factors; and
F represents the range of amplitude fluctuation. It is obvious that a higher SSIM value
indicates a lower information loss in the SAR image.

The PSNR serves as a WBI mitigation assessment metric to quantify the similarity
between the recovered SAR image and the initial SAR image without WBI, which denotes
the peak ratio of signal power to noise power. The PSNR can be presented as

PSNR = 10 log10

 MAX2
O

1
MN

M
∑

m=1

N
∑

n=1
∥O(m, n)− R(m, n)∥2

 (14)

where MAXI indicates the maximum value of the SAR image without WBI; and M and N
are pixel num of SAR images in height and width dimensions, respectively. It can be seen
that a higher PSNR indicates less SAR image loss.

The RMSE is used to assess the deviation of the recovered SAR image and from the
original SAR image, and the formulation is as follows:

RMSE =
∥O− R∥F
∥O∥F

(15)

A lower RMSE represents a better WBI mitigation performance.

3. Experimental Results

In this part, the detailed introduction of the WBI mitigation dataset is presented
initially. Then, the experimental details of the proposed WBIM-GAN and the comparison
algorithms performed on simulated data are demonstrated. Finally, the accuracy and
effectiveness of the WBIM-GAN method are verified through comparative experiments by
using real measured SAR data collected by Sentinel.

3.1. Datasets

The WBIM-GAN transforms the WBI mitigation into a problem of WBI-free SAR
echo generation. Therefore, the WBIM-GAN dataset includes WBI-corrupted SAR echoes,
and WBI-free SAR echoes in the TFD. The SAR echoes corrupted with WBI in the TFD
are the input of WBIM-GAN, and the SAR echoes without WBI in the TFD are the label.
Figure 6 shows several label samples of real measured WBI-free SAR echoes in the TFD. The
real measured SAR echoes were collected by Sentinel-1, and the sample size is 128 × 128.
Figure 7 shows several samples of WBI-corrupted SAR echoes in the TFD, which are
obtained by adding simulated chirp-modulated WBI with different signal-to-interference
ratios to the real measured SAR echoes. Meanwhile, it can be seen that there are differences
in the location, modulation frequency, number, and structure of the samples, which are
diverse. There are a total of 46,748 samples in the WBIM-GAN dataset. Moreover, 80% of
the samples are the training set, and 20% of the samples are the validation set. The test set
is the real measured WBI-corrupted SAR echoes collected by the Sentinel-1.
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Figure 6. (a) Real part and (b) imaginary part of measured WBI-free SAR echoes in the time–frequency
domain for training and testing the WBIM-GAN.

Figure 7. (a) Real part and (b) imaginary part of simulated SAR echoes with WBI corruption in the
time–frequency domain for training and testing the WBIM-GAN.

3.2. Results of the Simulated Sentinel-1A Data with WBI Corruption

Figure 8 depicts the WBI mitigation results of WBIM-GAN performed on the valida-
tion set. It is obvious that the WBIM-GAN can effectively mitigate WBI. Figure 9 shows
the training loss curves of IMN and WBIM-GAN with training iterations. It is evident
that WBIM-GAN exhibits superior interference mitigation capabilities compared to IMN.
To further confirm the efficiency of WBIM-GAN, we analyze the performance of differ-
ent WBI mitigation algorithms under different jam-to-signal ratios (JSRs). Comparative
WBI mitigation algorithms include GoDec, instantaneous-spectrum notch filtering (ISNF),
Eigenspace projection (ESP), the iterative adaptive approach (IAA), matrix factorization
decomposition (MFD), IMN, and WBIM-GAN. Figure 10 depicts the SDR curves of the
seven above WBI mitigation methods when the JSR is set to 35 dB, 40 dB, 45 dB, 50 dB, and
55 dB. As can be seen, the data-driven WBI mitigation methods have a better performance.
Meanwhile, the WBIM-GAN exhibits a superior performance in regard to mitigating WBI,
and it should be emphasized that the SAR echoes recovered using the suggested approach
have the lowest SDR compared to all the aforementioned methods for WBI mitigation.
To further demonstrate the effectiveness of WBIM-GAN, we analyze the time–frequency
distribution by using different WBI mitigation methods when the JSR is set to 50 dB, and
the WBI mitigation results are represented in Figure 11. It is evident that the model-driven
WBI mitigation methods can effectively mitigate WBI, but they cause significant distortion
of the target signal. However, the IMN and WBIM-GAN can mitigate WBI and recover
the target signal effectively. Simultaneously, the compared SDR and the WBI mitigation
results demonstrate that the performance of WBIM-GAN is the best. Moreover, Figure 12
shows the class activation maps of the IMN and WBIM-GAN. It can be seen that IMN and
WBIM-GAN focus on the region where WBI occurs, but the localized discriminative region
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of WBIM-GAN is more concentrated, thus demonstrating that WBI-GAN outperforms IMN
in terms of performance.

Figure 8. Comparisons with the original WBI-free SAR echoes, and the recovered SAR echoes after
WBIM-GAN in TFD. (a) WBI-corrupted SAR echoes. (b) The original WBI-free SAR echoes. (c) The
recovered SAR echoes after WBIM-GAN.

Figure 9. Comparison of the training loss with training iterations.

Figure 10. The SDR curves of different WBI mitigation methods.
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Figure 11. Comparison of mitigation results. (a) WBI-contaminated SAR echo. (b–h) WBI mitigation
results after applying the GoDec, ISNF, ESP, IAA, MFD, IMN, and WBIM-GAN, respectively.

Figure 12. The class activation maps of the (a) IMN and (b) WBIM-GAN.

3.3. Results of the Measured WBI-Corrupted Sentinel-1A Data

In this part, we utilize Sentinel-1-collected WBI-corrupted SAR data in interferometric
wide swath (IW) mode to validate the efficacy of the suggested WBI mitigation method.



Remote Sens. 2024, 16, 910 15 of 25

Figure 13 shows the pseudo-color image of the real measured SAR data, and the parameters
of the Sentinel-1 can be found in Table 4. To mitigate the WBI, the kurtosis of SAR echoes in
the TFD is utilized to detect the WBI. Figure 14a shows the kurtosis of each SAR echo in the
TFD before WBI mitigation. The red dotted line depicted in Figure 14a is the WBI detection
threshold, and it is set to 9.3967 according to Equation (7). Figure 14b depicts the enlarged
kurtosis. It is obvious that the kurtosis of the SAR echoes corrupted with WBI is relatively
high. Figure 15 shows the 624th, 674th, and 1010th SAR echoes and the corresponding
kurtosis. The 1010th SAR echo in the time–frequency domain is corrupted with strong
WBI, and the corresponding kurtosis is much larger than the WBI detection threshold.
Meanwhile, the 624th SAR echo is corrupted with weak WBI, and the corresponding
kurtosis is also larger than the WBI detection threshold. Meanwhile, the kurtosis of the
674th WBI-free is smaller than the detection threshold. It can be seen that the kurtosis
values of the 624th and 674th SAR echoes are very close to each other, but it can still
accurately detect whether there is WBI in the SAR echo. The SAR echo shown in Figure 15c
is corrupted with complex WBI, which is composed of multiple chirp-modulated WBIs, and
the amplitude of WBI changes sharply. The presence of the nonstationary characteristic is
apparent, as its magnitude fluctuates significantly over azimuth time, which puts forward
higher requirements for the WBI detection and mitigation algorithm. Figure 16 shows the
SAR image results corresponding to the area marked with a red rectangle in Figure 13. It is
observed that the SAR image on the right is severely corrupted with WBI, which appears
as haze-like artifacts. Meanwhile, targets under WBI coverage cannot be distinguished,
which greatly impacts the precision of SAR image interpretation.

Figure 13. SAR image acquired by the European Sentinel-1A system.

Table 4. Parameters of the Sentinel-1A system.

Parameter Value

Carrier frequency 5.405 GHz
Bandwidth 56.59 MHz

Sampling frequency 64.345 MHz
Pulse repetition frequency (PRF) 1717 Hz
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Figure 14. (a) The WBI detection results at a false alarm rate of 10−3. (b) The enlarged detection
results in which the red dotted line is the WBI detection threshold and it is set to 9.3967.

Figure 15. The representation of (a) 624th, (b) 674th, (c) and 1010th measured WBI-contaminated
echoes with kurtosis value in the time–frequency domain.

Figure 16. Cont.
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Figure 16. SAR imaging results (a) without WBI mitigation and after applying (b) GoDec, (c) ISNF,
(d) ESP, (e) IAA, (f) MFD, (g) IMFD, (h) APMFD, (i) RPCA-TFP-JDA, (j) IMN, and (k) WBIM-GAN.

To illustrate the effectiveness of the WBIM-GAN, we compared and analyzed the
WBI mitigation performance of GoDec, ISNF, ESP, IAA, MFD, IMFD, APMFD, and IMN.
Figure 16b–k depicts the SAR imaging results with the implementation of GoDec, ISNF,
ESP, IAA, MFD, IMFD, APMFD, RPCA-TFP-JDA [36], IMN, and WBIM-GAN, respectively.
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Figure 17 is the magnified image and represents the detail of recovered target signals.
From Figure 17b–f, it can be seen that the GoDec, ISNF, ESP, IAA, and MFD can effectively
mitigate most of the WBI. However, these methods cause useful target echo loss, which
results in defocusing and producing a false target, which is marked with the dotted green
ellipse. Figure 17g,h shows the SAR imaging results utilizing the IMFD and APMFD in
the SAR image domain. It is obvious that there is no false target, but the area marked
with the dotted green ellipse has severe signal distortion. Figure 17i presents the SAR
imaging results after applying the RPCA-TFP-JDA. It can be seen that most of the WBI
is mitigated, and the targets contaminated by WBI are recovered. However, some WBIs
marked with the dotted green ellipse still remain in the SAR imaging result. Figure 17j,k
show the SAR imaging results by utilizing the IMN and WBIM-GAN. It is evident that
the target is well focused. Table 5 shows the results of the MNR, SSIM, PSNR, and RMSE
after applying different WBI mitigation algorithms. It should be noted that the pixels in
blue are a no-return region, and the pixels in the red rectangle are the highlighted region in
Figure 17a and are chosen for the computation of MNR. The WBI-free SAR image used to
calculate SSIM, PSNR, and RMSE is shown in Figure 17l and was recorded by Sentinel-1A
on 3 December 2020. It should be noted that the revisit cycle of Sentinel-1 is 6 days, so the
acquired WBI-free SAR data from adjacent revisit cycles in the same region can be used for
SSIM, PSNR, and RMSE. It is observed that the image obtained through the implementation
of the suggested technique exhibits the most favorable response and image contrast among
all of the above methods. Meanwhile, the suggested method exhibits a superior MNR,
SSIM, PSNR, and RMSE performance. Moreover, due to the WBIM-GAN adopting the
PatchGAN structure, the recovered target is more refined, and its performance is improved
compared with IMN.

Table 5. Performance comparison.

Algorithms MNR (dB) SSIM PSNR RMSE

GoDec −6.8082 0.8071 36.0737 0.4667
ISNF −9.6385 0.8471 36.7555 0.3791
ESP −10.4361 0.8597 36.9835 0.3757
IAA −9.4438 0.8517 36.9612 0.3806
MFD −7.5597 0.8441 36.7016 0.3940
IMFD −7.8758 0.4064 28.2478 2.2445

APMFD −8.1527 0.4981 29.8941 1.7547
RPCA-TFP-JDA −9.8652 0.8195 36.1798 0.4336

IMN −12.0819 0.8726 37.2718 0.3716
WBIM-GAN −12.3211 0.8735 37.2894 0.3716

In addition, Table 6 shows the running time of the different WBI mitigation methods.
All methods were tested on a workstation with an i7-6700K CPU and 64 GB memory. It is
obvious that the ISNF can quickly mitigate the WBI by simply eliminating the prominent
time–frequency bins. The GoDec and MFD algorithms demonstrate notable efficiency
by applying the matrix factorization approach to accelerate the convergence process. To
improve the performance of IAA, each SAR echo is divided into a lot of data with a length
of 32 points for processing. Therefore, the running time of IAA is the longest. Meanwhile,
the size of the SAR imaging result is 16,256 × 5000. To obtain the best WBI mitigation
performance of the IMFD and APMFD, the SAR imaging result is divided into many
2000 × 2500 image blocks. Thus, the running time of IMFD and APMFD is longer than
that of MFD. Meanwhile, the running time of RPCA-TFP-JDA is also longer than that of
other WBI mitigation methods. The WBIM-GAN and IMN are performed on GPU, which
reduces the computational burden. However, WBIM-GAN and IMN are designed in the
TFD. Thus, much time is spent on STFT and ISTFT approaches.
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Figure 17. Enlarged SAR imaging results (a) without WBI mitigation and after applying (b) GoDec,
(c) ISNF, (d) ESP, (e) IAA, (f) MFD, (g) IMFD, (h) APMFD, (i) RPCA-TFP-JDA, (j) IMN, and (k) WBIM-
GAN. (l) WBI-free SAR image acquired in the same area.

Table 6. Running times of different WBI mitigation methods.

Algorithms Running Time (s)

GoDec 21.713
ISNF 21.703
ESP 68.510
IAA 3011.68
MFD 25.78
IMFD 40.98

APMFD 109.18
RPCA-TFP-JDA 235.883

IMN 26.587
WBIM-GAN 32.691

3.4. Results of the Measured WBI-Corrupted Sentinel-1B Data

To validate the efficiency of the WBIM-GAN further, the effectiveness of various
methods is compared and analyzed to mitigate WBI on the recorded data obtained from
Sentinel-1B near Seoul, South Korea, on 28 December 2020. The radar system parameters
of Sentinel-1B are the same as those of Sentinel-1A. Figure 18 displays the pseudo-color
representation of the recorded data.
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Figure 18. The SAR image was acquired by the European Sentinel-1B system.

Furthermore, the SAR imaging results of implementing the GoDec, ISNF, ESP, IAA,
MFD, IMFD, APMFD, RPCA-TFP-JDA, IMN, and WBIM-GAN are illustrated in Figure 19,
which corresponds to the region indicated by a red rectangle in Figure 18. The SAR
image is heavily distorted by WBI in the central portion, making it nearly impossible to
extract any meaningful information. Figure 20 represents the magnified SAR images of
the region, highlighted by a yellow rectangle in Figure 19. It is obvious that all techniques
for mitigating WBI are effective and make the city clearly visible. However, the GoDec,
IAA, and MFD cause fewer signal losses and distortion, which is marked with a green dot
ellipse. Meanwhile, the ISNF, ESP, and RPCA-TFP-JDA cause less WBI to be left in the SAR
images marked with the green dot ellipse. Moreover, the IMFD and APMFD introduce
much signal loss marked with a green dot ellipse. It is evident that both the WBIM-GAN
and IMN demonstrate comparable performances, with the SAR imaging outcomes being
of high quality. The comparison results of the MNR, SSIM, PSNR, and RMSE for the SAR
imaging results depicted in Figure 20 are presented in Table 7. Similarly, the pixels in
the blue are the no-return region, and the pixels in the red rectangle in the highlighted
region in Figure 20a were chosen for calculating the MNR. Meanwhile, the WBI-free SAR
image used to calculate SSIM, PSNR, and RMSE is shown in Figure 20l. According to
Table 7, the WBIM-GAN approach demonstrates a lower MNR and RMSE value, as well as
a larger SSIM and PSNR value, illustrating a refined recovery of the system image output
and heightened image contrast. The running times of different WBI mitigation methods
are listed in Table 8. It is obvious that the proposed WBIM-GAN exhibits a superior WBI
mitigation performance, along with a relatively faster running speed.



Remote Sens. 2024, 16, 910 21 of 25

Figure 19. SAR imaging results (a) without WBI mitigation and after applying (b) GoDec, (c) ISNF,
(d) ESP, (e) IAA, (f) MFD, (g) IMFD, (h) APMFD, (i) RPCA-TFP-JDA, (j) IMN, and (k) WBIM-GAN.



Remote Sens. 2024, 16, 910 22 of 25

Table 7. Performance comparison.

Algorithms MNR (dB) SSIM PSNR RMSE

GoDec −7.4943 0.7768 35.3005 0.6800
Tffilter −7.1579 0.8011 35.5124 0.6465

Eigfilter −8.2282 0.8332 35.8156 0.5366
IAA −9.2969 0.8251 35.7949 0.4975
MFD −8.8208 0.8191 35.6881 0.5358
IMFD −8.8428 0.6623 33.4477 1.1715

APMFD −8.4524 0.6146 32.4047 1.4018
RPCA-TFP-JDA −8.6186 0.7982 35.4474 0.6057

IMN −10.5136 0.8454 35.9998 0.4051
WBIM-GAN −10.8336 0.8482 36.0106 0.3939

Figure 20. Enlarged SAR imaging results (a) without WBI mitigation and after applying (b) GoDec,
(c) ISNF, (d) ESP, (e) IAA, (f) MFD, (g) IMFD, (h) APMFD, (i) RPCA-TFP-JDA, (j) IMN, and (k) WBIM-
GAN. (l) WBI-free SAR image acquired in the same area.
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Table 8. Running times of different WBI mitigation methods.

Algorithms Running Time (s)

GoDec 11.772
ISNR 11.721
ESP 35.930
IAA 1379.250
MFD 12.400
IMFD 35.440

APMFD 143.230
RPCA-TFP-JDA 228.101

IMN 15.938
WBIM-GAN 15.626

4. Discussion

This paper proposes a WBI mitigation algorithm based on GAN (WBI-GAN). Com-
pared with previous WBI mitigation algorithms, Such as GoDec, ISNF, ESP, IAA, MFD,
IMFD, and APMFD, the WBI-GAN mapped from an input WBI-corrupted echo to its
properly WBI-free echo in an end-to-end data-driven approach. It is composed of a WBI
mitigation network and a target echo discriminative network. The WBI mitigation network
utilizes a deep residual network to solve the issue of gradient saturation and further boost
the performance of WBI mitigation. The target echo discriminative network adopts the
PatchGAN architecture to improve the WBI mitigation’s effectiveness by capturing the
local texture and statistical features of target echoes. The WBI mitigation results of GoDec,
ISNF, ESP, IAA, MFD, IMFD, APMFD, IMN, and WBI-GAN on one simulated and two
measured SAR data verify the WBI mitigation performance of the WBI-GAN. Moreover,
the comparison results of the MNR, SSIM, PSNR, and RMSE in Section 3 further prove the
effectiveness and priority of the WBI-GAN.

Most WBI mitigation methods are model-driven approaches, which mainly utilize
physical and prior knowledge to construct parameterized and non-parameterized WBI
mitigation models and then achieve effective WBI mitigation. However, those methods
severely depend on high model accuracy, which would otherwise result in target echo loss.
The WBIM-GAN is a new WBI mitigation method that can achieve useful target signal
accuracy reconstruction without any prior knowledge of WBI and target echo. Moreover,
it simplifies the difficulty of designing a WBI mitigation algorithm in an end-to-end data-
driven way.

The WBI-GAN can effectively mitigate the chirp-modulated and sinusoidal-modulated
WBI for SAR. However, the mitigation performance may be degraded for some complex
forms of WBI, which cannot be expressed by the equation shown in Section 2.1. In the future,
we will include more forms of WBI to improve the performance of the proposed framework.

5. Conclusions

In this paper, we propose a novel data-driven method for mitigating WBI, which is
implemented by using a generative adversarial network. By considering the differences
in structural features between WBI and the target signal in the TFD, this method employs
GAN and PatchGAN architecture to capture the improved characteristics of the target signal
and then restore it. Meanwhile, several real SAR data corrupted with WBI acquired from
the Sentinel-1 satellite are utilized to evaluate the efficacy of the WBIM-GAN. Furthermore,
in order to compare the alleviation effects of different WBI mitigation methods, various
quantitative metrics, such as MNR, SSIM, PSNR, and RMSE, are utilized to implement the
comparison. And the final results verify the advantages of the WBIM-GAN. However, the
mitigation performance of the WBI-GAN may be degraded in some situations in which
complex forms of WBI cannot be expressed by the WBI samples contained in the training
dataset. Therefore, we would include more forms of complex WBI in the training dataset to
improve the WBI mitigation performance of the WBI-GAN in the future.
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