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Abstract: Aquatic vegetation is an essential component of lake ecosystems, used as a biological
indicator for in situ monitoring within the Water Framework Directive. We developed a hierarchical
object-based image classification model with multi-seasonal Sentinel-2 imagery and suitable spectral
indices in order to map the aquatic vegetation in a Mediterranean oligotrophic/mesotrophic deep lake;
we then applied the model to another lake with similar abiotic and biotic characteristics. Field data
from a survey of aquatic macrophytes, undertaken on the same dates as EO data, were used within
the accuracy assessment. The aquatic vegetation was discerned into three classes: emergent, floating,
and submerged aquatic vegetation. Geographic object-based image analysis (GEOBIA) proved to be
effective in discriminating the three classes in both study areas. Results showed high effectiveness
of the classification model in terms of overall accuracy, particularly for the emergent and floating
classes. In the case of submerged aquatic vegetation, challenges in their classification prompted us to
establish specific criteria for their accurate detection. Overall results showed that GEOBIA based on
spectral indices was suitable for mapping aquatic vegetation in oligotrophic/mesotrophic deep lakes.
EO data can contribute to large-scale coverage and high-frequency monitoring requirements, being a
complementary tool to in situ monitoring.

Keywords: remote sensing; Sentinel-2 MSI; GEOBIA; aquatic vegetation; lake monitoring; WFD;
Mediterranean lakes

1. Introduction

Inland water ecosystems are significant because of the high biodiversity and endemism
they support [1,2] and the variety of valuable ecosystem services they provide [3]. However,
they suffer from rapid habitat loss and degradation at a global scale [4,5]. In particular,
in recent decades and under intensified climate pressure, the quality of inland waters
has been severely threatened and often dramatically degraded [4]; thus, the monitoring
of bio-physical variables depicting water conditions became essential [6]. Water quality
monitoring was based for many years on in situ measurements, allowing the collection
of data for an extensive set of biotic and abiotic parameters (e.g., nutrient concentrations,
phytoplankton abundance, aquatic vegetation richness and abundance). These constituent
parameters eventually became subject to national and international standards [7–9]. Over
the last few years, the biomonitoring of European aquatic ecosystems changed substantially
to reflect aquatic structure and functioning [10]. The development was driven by the EU
Water Framework Directive 2000/60/EC (WFD) [11], according to which WFD-compliant
monitoring and assessment methods have been developed by Member States [12].

Aquatic vegetation is an integral part of lake ecosystems, playing a significant role in
their structure and functioning (e.g., by providing habitat for species, stabilizing sediments,
helping the migration and circulation of elements, improving water quality, and limiting
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the growth of algae) [13–16]. This role is critical for the evolution, ecological balance, and
restoration of lakes. Aquatic plants (hydrophytes or macrophytes) in lakes can be divided
into three groups, namely emergent aquatic vegetation (EAV); floating aquatic vegetation
(FAV), comprising two subclasses (free-floating and floating-leaved macrophytes); and sub-
merged aquatic vegetation (SAV). Among them, EAV and FAV are above the water surface,
while SAV is below the water surface. Each species of aquatic vegetation has its unique
ecological function [17–19]. SAV is especially related to water transparency, water depth,
and eutrophication, and its biomass is usually considered a key indicator for evaluating
the quality of lake ecosystems [20]. Changes in the composition and abundance, such as a
decline in submerged vegetation and an increase in abundance of free-floating plants [21],
indicate the degradation of lake ecosystems [17,22]. Thus, aquatic macrophytes are widely
used as a biological indicator in monitoring and assessment systems developed in the
context of WFD for lakes [19,23]. Moreover, the monitoring of temporal and spatial patterns
of the growth status and the distribution of aquatic vegetation, in relation to environmental
factors, is of great significance, especially considering its role in the ecological restoration
of lake ecosystems [24,25].

More than 20 years after the adoption of WFD, the need for innovation in monitoring
is highlighted [26], together with the requirement to provide sufficient spatial and temporal
resolution and, in some cases, to make monitoring more cost-effective [26] or to address
some of the limitations of in situ methods [27–29]. The rapid, large-scale, and regular
monitoring of aquatic vegetation via remote sensing is essential in order to improve the dy-
namic monitoring of aquatic vegetation [30]. Additionally, it enhances confidence in WFD
classification through increasing both the spatial coverage and frequency of monitoring
variables such as macrophyte coverage [26,31]. Moreover, remote sensing products can be
used in quantitative analysis and compared over time, showing the progressive changes
in such ecosystems [28]. However, mapping the spatial extent of aquatic vegetation has
proven to be a challenging task, due to the complexity of aquatic systems, in terms of high
temporal variability, heterogeneity in optical response through water column attenuation,
and due to lack of available data [30]. In particular, several factors, such as the physiological
status of vegetation, stress, or diseases, can lead to alterations in the spectral response of
the vegetation [32]. Because of the wide spectral variability, the classification of aquatic
vegetation can often lead to poor results.

As remote sensing technologies are rapidly evolving, a range of studies utilizing
different satellite data and extraction methods for aquatic vegetation mapping have been
developed with remarkable results [20,28,33–38]. In particular, the use of multiseasonal
imagery in order to incorporate seasonal variability in water regimes and vegetation phe-
nology, is considered very helpful [33,34,37,39]. For instance, Ramsey and Laine [40]
demonstrated that the combination of images from two seasons facilitates segregation
between emergent and floating vegetation (winter and spring), and between flooded emer-
gent vegetation and open water (autumn and winter). However, commercial spaceborne or
airborne data are prohibitively expensive for large-scale and regular monitoring, which
often results in annual and intra-annual data gaps. Thus, Sentinel-2 sensors are an attrac-
tive contender to monitor the rapid expansion of macrophytes during the growing season,
due to their high revisit frequency and spectral resolution [41]. Although they are not as
powerful in terms of spectral resolution as hyperspectral data, or their spatial resolution is
not as detailed as very-high-resolution (VHR) data or UAV–acquired data, multispectral
data, such as those from Sentinel-2, offer a high degree of flexibility and applicability for
macrophyte mapping and monitoring at larger scales [42,43].

Alternative image classification algorithms, such as decision tree [44,45] or neural
network classifiers [46], have been widely used in aquatic vegetation mapping. For example,
Zhao et al. [47] and Luo et al. [34,48] utilized Landsat TM and HJ-CCD imagery, respectively,
to develop a decision tree algorithm for the detection of emergent, floating, and submerged
aquatic vegetation in Taihu Lake. The study of Rodriquez—Garlito [46] incorporates
spectral indices from Sentinel-2 band combinations with a convolutional neural network
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classifier, in order to detect invasive aquatic plants. Villa et al. [49] developed a rule-based
classification scheme for mapping aquatic vegetation types, based on vegetation indices
with consistent accuracy results. De Grandpe et al. [50] utilized an object-based image
analysis workflow, incorporating spectral indices, in order to generate SAV cover maps in
complex aquatic environments. Visser et al. [51] applied multi-level object-based image
analysis combined with expert knowledge to obtain consistent classifications of SAV in
shallow clear-water streams. Geographic object-based image analysis (GEOBIA) offers a
framework that can be used to integrate more complex data than the raw remote sensing
signal by including different levels of spatial information related to scale, shape, and
texture [50,52–54]. This higher level of information offers a more robust comparative basis
than pixel-based approaches when radiometric accuracy is uncertain, such as in complex
water cases.

In this study, we test whether the multi-seasonal observation capability of large-
scale, open-source Sentinel-2MSI provides sufficient information for aquatic vegetation
mapping, potentially supporting in situ monitoring according to WFD, in Mediterranean
oligotrophic/mesotrophic deep lakes. In particular, we develop a GEOBIA classification
model based on spectral indices, which are better suited to monitor aquatic vegetation;
this way, we both ensure the simplicity of a spectral index (SI)-based approach and aim
at efficiency in monitoring aquatic vegetation. Our main objectives are as follows: (i) to
develop a hierarchical object-based classification model based mainly on SIs for aquatic
vegetation mapping in an oligotrophic–mesotrophic deep lake and to apply it in a second
lake with similar characteristics; (ii) to test its accuracy in two Mediterranean lakes. Thus,
we evaluate its effectiveness through reference data and assess its overall applicability for
similar lakes.

2. Materials and Methods
2.1. Site Description

We developed and tested our approach for the classification of aquatic vegetation in
two freshwater lakes, featuring high abundances of aquatic vegetation: Trichonida Lake
and Feneos Lake, Greece (Figure 1). Both lakes are part of the National Monitoring Network
of Waters in Greece (see http://nmwn.ypeka.gr/, (accessed on 15 September 2022) and
https://wfd.ekby.gr/, accessed on (15 September 2022) for details) and they have been
monitored by The Goulandris Natural History Museum—Greek Biotope/Wetland Centre
(EKBY), since 2012 [55].

Trichonida Lake (38◦34′21′′N 21◦33′09′′E) is the deepest and largest natural lake in
Greece, located 16 m above the mean sea level in the eastern area of Aetolia-Acarnania
(Figure 1a). The lake covers an area of approximately 96 km2 (up to 19 km long and 6 km
wide), stretching in the W–E direction, and its maximum depth is 52 m [56]. According to
the updated Köppen–Geiger classification [57], the lake is located in a Csa climate zone,
which is defined as a warm temperate climate with hot and dry summers. Trichonida Lake
is one of the seven warm monomictic deep natural lakes with a mean depth > 9 m (national
type Deep Natural Lake (GR-DNL)) of the Greek National Water Monitoring Network [58].
It is connected to Lysimachia Lake through a narrow superficial long canal (2.8 km) located
at its western part. The lake plays an important role in flood management, drought
prevention, carbon sequestration, biodiversity maintenance, and microclimate regulation.
Although we have not conducted a hydrological analysis of the lake, there are a few studies
available on hydroclimatic variables’ temporal trends [59–61] as well as the lake’s biological
parameters [62–66]. The lake and its surrounding area is part of the European Natura 2000
network of protected sites as a Special Area for Conservation (code GR2310009), as it hosts
types of habitats and species of European interest [67]. Although it was characterized as
an oligotrophic lake more than 40 years ago [68,69] the presence of vascular plants such
as Myriophyllum spicatum, Potamogeton pectinatus, Ranunculus trichophyllus, and others that
mostly occur in eutrophic or mesotrophic lakes [70] indicate its mesotrophic tendencies.
This is consistent with the results of the ecological classification of the lake in good ecological

http://nmwn.ypeka.gr/
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status (from 2013 to 2021), according to the WFD-compliant national monitoring and
assessment method (HeLM) based on aquatic macrophytes [23]. Aquatic plants recorded
in the lake were grouped as emergent aquatic vegetation, floating aquatic vegetation, and
submerged aquatic vegetation. The dominant species of each vegetation type, as recorded
by the samplings undertaken by the National Monitoring Network, are presented in Table 1.
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Figure 1. Study areas of Trichonida Lake (a) and Feneos Lake (b) examined in this analysis. The red
polygon boundary denotes the 200 m buffer zone around the respective shoreline that was determined
by the mean water level (16 m above the mean sea level for Trichonida Lake and 872 m above the
mean sea level for Feneos Lake). The buffer indicates the zone based on a 200 m distance from
the shoreline, and it comprised the final area under investigation. Blue points denote the transects
established for the in situ monitoring of aquatic vegetation for WFD purposes. The green points
denote the additional plots where extra field vegetation recordings were available for Feneos Lake.
These points comprise the final set of in situ recorded points used in the accuracy assessment. We
used the World Topographic Map as a basemap, available in ESRI ArcGIS software v. 10.8.2.
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Table 1. Types of aquatic vegetation in Trichonida and Feneos Lakes.

Vegetation Type
Dominant Species

Trichonida Lake Feneos Lake

EAV (emergent
aquatic vegetation)

Phragmites australis
Bolboschoenus maritimus
Schoenoplectus litoralis

Typha angustifolia
Phragmites australis

FAV (floating
aquatic vegetation)

Ludwigia peploides
Nymphaea alba -

SAV (submerged
aquatic vegetation)

Vallisneria spiralis
Ceratophyllum demersum
Myriophyllum spicatum

Najas marina

Chara vulgaris
Myriophyllum spicatum

Nitella flexilis
Nitella furcata

Vallisneria spiralis

Feneos Lake (37◦55′45′ ′N 22◦17′11′ ′ E) is an artificial lake, located 872 m above sea
level in the area of western Corinthia in the Peloponnese (Figure 1b). It covers a mean
surface of 0.5 km2 with a maximum depth of 29 m. As per the updated Köppen–Geiger
classification, the area is categorized under the Csb climate zone, which is defined as a
temperate climate with warm summers [57]. Even though it is an artificial lake constructed
in the mid-1990s for storage purposes, it resembles a natural lake as a species-rich abun-
dant aquatic vegetation has been developed due to absence of water abstraction and to
natural water level fluctuation [23]. Its ecological status is characterized as “High” for the
period 2013–2021, based on the HeLM system. The lake is surrounded by Mediterranean
pine forests with endemic black pines and lacks any pollution sources. The lake and its
surrounding area are part of a wider area included in the European Natura 2000 network of
protected areas (GR2320002, GR2320013). Over the years, it has developed into an impor-
tant ecotourism attraction. Additionally, only non-motorboat activities are allowed in the
lake for recreational purposes. Aquatic plant species recorded by the samplings undertaken
by the National Monitoring Network were grouped into two types, i.e., emergent aquatic
vegetation and submerged aquatic vegetation. The dominant species per vegetation type
are presented in Table 1. A buffer zone of 200 m (red polygon boundary in Figure 1) was
generated around the lakeshore in both lakes. This was decided in order to detect all po-
tential locations of aquatic vegetation due to water level fluctuations and to provide some
additional information regarding the surrounding cover area. The respective shoreline was
determined based on the average water level of 2021, which was 16 m above the mean sea
level for Trichonida Lake and 872 m above the mean sea level for Feneos Lake. The final
study areas cover 10,495 ha and 130 ha for Trichonida and Feneos lakes, respectively.

The lakes do not form an integrated hydrological system and the geomorphology
of their basin is differentiated, leading also to different morphometric characteristics.
However, they have common characteristics regarding mainly the water transparency.
Their vegetation has also some similarities (e.g., there are extended patches of Vallisneria
spiralis and Myriophyllum spicatum dominated communities) but also different macrophytic
communities such as the Characeae communities in the deeper parts of the littoral zone
in Feneos Lake, or the Ceratophyllum demersum- and Najas marina-dominated communities
in Trichonida Lake. We believe that these similarities, but also the differentiations in the
biotic and abiotic characteristics, make these two lakes a suitable pair to develop and test
our methodology.

2.2. Datasets
2.2.1. In Situ Monitoring Data of Aquatic Vegetation

With regard to the monitoring and assessment system applied for the implementation
of the WFD (HelM [23]), a full survey of aquatic macrophytes is undertaken every three
years at each lake of the national network (Trichonida and Feneos lakes amongst them),
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while the maximum colonization depth (Cmax) of the aquatic vegetation is measured per
lake per year.

The sampling method consists of establishing belt transects perpendicular to the lake’s
shoreline, which are revisited in each sampling survey. They are linearly arranged with a
length extending from the shoreline to the maximum depth of plant growth and a width of
approximately 5 m. In these transects, the taxonomic composition of aquatic macrophytes
is recorded in five depth zones, 0–1 m, 1–2 m, 2–4 m, 4–8 m, and >8 m (consisting the
individual surveying plots), and their abundance is estimated on the semi-quantitative
five-point DAFOR scale [71,72] (for details on the sampling method, see [23]). In each
depth zone, five sampling points, evenly distributed along the increasing depth gradient,
are determined. In Trichonida Lake, 20 belt transects have been established with 42 plots
on average per transect. In Lake Feneos, 10 transects have been established due to its small
area, with 32 plots on average per transect. The number of plots per transect varies due
to the variation in Cmax among the different transects. The last field survey in both lakes
was carried out in August 2021. Additional plots (of an area of 5 × 5 m) were sampled in
August 2022 in Feneos Lake (green points in Figure 1).

In order to effectively extract the information from these plots in the current study,
sorting was required, especially as these plots were both distributed in dense linear patches
along the transects and covered by more than one vegetation type. In particular, plots
were carefully chosen from the initial field dataset, with the criterium of vegetation cover
>80% of one of the studied classes (EAV, FAV, SAV). In the end, we selected 110 plots in
total (64 for Trichonida Lake and 46 for Feneos Lake). A point was generated per plot and
then attributed to the corresponding class. The generated points were used throughout the
accuracy assessment process.

2.2.2. Bathymetric Data

The bathymetric data we used are contour lines derived from corresponding bathymet-
ric Digital Elevation Models (DEMs). They were developed within the National Monitoring
Network of Waters in Greece by EKBY [56] and are available at EKBY’s Geoserver [73].
They were produced by the following methods: (i) bathymetry measurements using sonar
and GPS on a floating medium; (ii) digitization of contours and elevation points in the
littoral nearshore area from 1:5000 scale topographic maps, where the equi-dimensionality
of the contours was 2 m and the accuracy of the elevation points was 2 cm; (iii) interpolation
of the above data to produce very-high-resolution (1 m pixel size) DEMs. The “Topo to
Raster” tool is available in ESRI ArcGIS software v. 10.8.2. and is based on the ANUDEM
program developed by Michael Hutchinson [74–78]. These data were used in order to
determine the shoreline and the respective buffer zones and to assist in outlining deep
water areas as well.

2.2.3. Satellite Data

In this study, Sentinel 2A-MSI L2A products were employed, available freely from
the Copernicus Data Space Ecosystem [79]. They are distributed as ortho-rectified and
UTM-geocoded bottom-of-atmosphere (BOA) reflectance images. The Sentinel-2A carries
on board the MultiSpectral Instrument (MSI) optical sensor, which acquires images in
13 bands (spectral region between 442 and 2201 nm) with a spatial resolution of 10, 20, and
60 m (depending on the spectral band) (Table 2) [80]. For this study, the 10 bands of the
VIS–NIR and SWIR region (b2–b8A and b11–b12) were stacked into a single file resampled
to a 10 m spatial resolution. As the atmospheric correction is a key limiting factor of satellite-
based water quality monitoring, the reliability of results from water-leaving reflectance
will be subject to the quality of atmospheric correction [81]. We used the Sentinel-2 Level
2 products, which are atmospherically corrected with the SEN2COR package, since this
method, as used in many similar studies, was found to be more suitable for the correction
of inland water bodies compared to coastal areas [81,82]. Therefore, two tiles per study area
were acquired, one for the summer season (ss) and one for the winter season (ws) (Table 2),
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in order to incorporate the highest temporal phenological differentiation of the aquatic
vegetation in the analysis. The dates for the summer season were chosen in relevance to
the dates of the in situ macrophyte survey. Cloud cover was <15%; thus, cloud masking
was not required.

Table 2. Spectral parameters of Sentinel-2 satellite images and data acquisition dates.

Sentinel 2_MSI Bands Central Wavelength (µm) Resolution (m) Trichonida Lake Feneos Lake

Band 1—Coastal aerosol 0.443 60

17-February-21 (ws)
12-July-21 (ss)

27-February-21 (ws)
27-July-21 (ss)

Band 2—Blue 0.490 10
Band 3—Green 0.560 10
Band 4—Red 0.665 10

Band 5—Veg. Red Edge 0.705 20
Band 6—Veg. Red Edge 0.740 20
Band 7—Veg. Red Edge 0.783 20

Band 8—NIR 0.842 10
Band 8A—Veg. Red Edge 0.865 20

Band 9—Water vapour 0.945 60
Band 10—SWIR Cirrus 1.375 60

Band 11—SWIR1 1.610 20
Band 12—SWIR2 2.190 20

It should be noted that the Sentinel-2 data were not further processed for water
body correction. This was decided since it has been demonstrated that Sentinel-2 data
can achieve benthic substrate differentiation through atmospheric correction only [83].
Additionally, other studies have concluded that water column correction models, based
on band combination, provide only minor improvements in calm, clear, and shallow
waters, while their use is discouraged in complex and deep areas [84]. Moreover, there
are also difficulties with their transferability to other image acquisitions with different
conditions [84]. It is worth pointing out that other studies demonstrate satisfactory results,
obtained without applying water column correction [85–87].

2.3. Study Workflow
2.3.1. Classification Scheme

Since the analysis was based on the optical response of aquatic vegetation from Earth
Observation (EO) data with the above-mentioned specific spectral and spatial characteristics
(Table 2), the classification scheme should take into account the capabilities of the input
satellite data in capturing macrophyte heterogeneity. As an example, SAV can be effectively
mapped from EO medium resolution data when they present enough density, even in
cases of mixture with other species such as floating [49]. Moreover, the discrimination
of macrophyte classes with a mixed presence with no clear dominance, and/or of small
patches of such communities, is impossible from multi-spectral satellite data at a medium
spatial resolution (10–30 m), particularly in small water systems [49].

Considering all that was mentioned above, we used a comprehensive classification
scheme that could potentially be feasible to map. We used the grouped aquatic vegetation
types (i) “Emergent” (EAV), (ii) “Floating” (FAV), and (iii) “Submerged” (SAV), as already
described in the previous sections. Moreover, the classes “Natural vegetation” and “Other”
were added in the scheme for the classification of the rest of the buffer zones. The first
corresponds to areas covered by trees and low herbaceous vegetation, while the second
one includes croplands and artificial areas. The croplands were delineated through photo-
interpretation using the Google hybrid basemap, Google Earth, and QGIS software [88],
and the artificial surfaces were discriminated through classification rules. Finally, the
classes “Water” and “Deep Water” were included. The discrimination of “Deep Water”
class was based on Cmax and bathymetric data.
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2.3.2. Geographic Object-Based Image Analysis

The geographic object-oriented approach adopted in this study was implemented
within the Trimble eCognition Developer v9.4 (https://geospatial.trimble.com/) (accessed
on 15 September 2022), which enables the development of a hierarchical classification model
and has the flexibility required to employ spectral and class-related features embedded in
the software.

For each study area, we segmented the two single 10-band S2 images (ws and ss)
by applying the multiresolution segmentation algorithm [89]. Specifically, this algorithm
uses a “bottom-up” image segmentation approach that begins with pixel-sized objects,
which are consecutively grown through pair-wise merging of neighboring objects. The
size of the object increases through interactively comparing all neighboring pixels’ values
to the object’s mean, and the pixels with small differences are allocated to the object.
Several user-defined parameters (scale, color/shape, smoothness/compactness) compile
a “stopping threshold” that results in the final objects. In particular, the scale parameter
is of great importance since it controls the dimension and size of the segmented objects,
which may directly affect subsequent classification results [90]. In this study, we selected
three segmentation levels with a clear target object size. The user-defined parameters
were selected through an iterative process and evaluated for their suitability to each one
of the study areas. At Level 1, we aimed to create objects representing more general
classes (i.e., Water, Other); at Level 2, smaller meaningful objects of interest were generated
(i.e., Emergent, Floating); at Level 3, we targeted specific areas (i.e., Submerged) that were
difficult to detect and isolate due to spectral behavior that they present. So, we decided
to produce very small objects (almost pixel-sized) in order to distinguish the particular
class. Specifically:

1. Level 1: image layers weighted—all spectral information images of both seasons;
thematic layer used—layers for croplands and bathymetry; scale—30; shape—0.7;
compactness—0.5.

2. Level 2: image layers weighted—all spectral information images of both seasons;
scale—9, shape—0.1; compactness—0.5.

3. Level 3: applied to “Water” class only. Image layers weighted—all spectral informa-
tion images of both seasons; scale—2, shape—0.1; compactness—0.5.

A set of 66 features was compiled that could potentially discriminate the range of
classes in both study areas. Spectral information from both the summer season (ss) and
winter season (ws) was used for the calculation of spectral indices, such as the Normalized
Difference Vegetation Index—NDVI [91], the Soil Adjusted Vegetation Index—SAVI [92],
the Normalized Difference Water Index—NDWI [93], the Normalized Difference Red Edge
Index—NDRE [94], the Normalized Difference Aquatic Vegetation Index—NDAVI [95],
and the Water Adjusted Vegetation Index—WAVI [95] (Table 3).

Table 3. List of object features divided into four categories according to eCognition‘s categorization;
(ws) and (ss) denote features derived from winter season and summer season images, respectively.

Feature Categories Features Description Number of Features

Customized
(Spectral indices)

NDVI (ws, ss) NDVI = b8−b4
b8+b4

18

NDWI (ws, ss) NDWI = b3−b12
b3+b12

NDRE (ws, ss) NDRE = b8−b5
b8+b5

SAVI (ws, ss) SAVI = (1 + L) b8−b4
b8+b4+L

WAVI (ws, ss) WAVI = (1 + L) b8−b2
b8+b2+L

NDAVI (ws, ss) NDAVI = b8−b2
b8+b2

Ratios NDAVI (ss)/(ws), Blue/Green (ws, ss)

Subtractions NDWI (ws) − (ss), NDWI (ss) − (ws),
NDAVI (ws) − (ss), WAVI (ss) − (ws)

https://geospatial.trimble.com/
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Table 3. Cont.

Feature Categories Features Description Number of Features

Layer Values
(Spectral Features)

Mean (for all image layers)
The mean value represents the mean

brightness of an image object within a
single band.

42

Brightness Sum of mean values in all bands
divided by the number of bands.

Max. Difference

For each image object, Max.Diff is
defined as the absolute difference

between the minimum object mean
values and the maximum object mean
values in the visible bands divided by

the mean object brightness [96]

Standard Deviation (for all image
layers both ss and ws)

The standard deviation of all pixels
which form an image object within

a band

Thematic
attributes

One mask generated through
photo-interpretation and one from

bathymetry data

For the classification of a part of the
“Other” class representing the

agricultural areas and the bathymetry
data for the discrimination of the

“Deep Water” class

2

Class-related
Relations to super objects Existence to “Water” class 2

Relation to neighbor objects Border to, Relative border to features 2

Total 66

For this work, a value of L = 0.5 has been adopted.

A top-down process was adopted so as to initially identify the general classes (i.e., Deep
Water, Water, Other) and then proceed with the classification of the detailed classes. The
classification approach is based on user-defined rules. In order to avoid any subjectivity
involved in defining manually the rules for categories that present spectral similarities,
the Classification And Regression Tree (CART) decision tree algorithm was applied [97].
The decision tree classification method is especially helpful and is widely used in aquatic
vegetation classification [45,47]. In our study, CART was utilized concurrently as a support
tool offering guidance for classes that presented spectral similarities and were difficult
to define.

The decision tree algorithm, embedded in the software, is a well-known classification
algorithm which uses a multi-stage approach to the problem of label assignment [97]. As a
supervised classifier, CART construction requires labeled training data as input; thus, we
carefully chose objects as training samples. Specifically, we used the objects as these were
derived from the multiresolution algorithm. Through photointerpretation on the Google
hybrid basemap, Google Earth, and Sentinel data, we selected the appropriate ones, and
based on our expert knowledge of the lake, we attributed each object to a specific class.
Nevertheless, the final result of the CART analysis, which naturally extends to a rule-based
classification scheme, was visually evaluated and manually integrated within the ruleset.

The classification model (Figure 2) was developed in the study area of Trichonida
Lake based on the corresponding dataset and then applied in the study area of Feneos
Lake. Prior to its application, the ruleset was evaluated for its performance and minor
adjustments were made, to achieve better classification results to the second lake as well.
Although we kept the features and indices selected per class constant, re-adjustments to
their respective range of values were made.

2.3.3. Accuracy Assessment

In order to evaluate the performance of the object-based classification model and the
efficacy of the spectral indices, we employed multinomial distribution so as to determine
the total sample size of the reference data per study area [98]. The sample size was derived
by Equation (1) introduced by Tortora (1978) [99], and 345 points were generated.
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N =
[BΠi(1 − Πi)]

b2
i

where:

Πi is the proportion of a population in the ith class out of k classes that has the proportion
closest to 50%.
bi is the desired precision (e.g., 5%) for this class.
B is the upper (a/k) × 100th percentile of the chi square (χ2) distribution with 1 degree of
freedom.
a is calculated by the confidence level (1−a) (when confidence level is equal to 95%, a is
equal to 0.05).
k is the number of classes.
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Figure 2. Hierarchical classification flow with three levels of segmentation. The links between the
classes denote the relationship between them.

The specific points were distributed through stratified random sampling, in order to
ensure that all classes would be included in the accuracy assessment. The appropriate
class was assigned to each of these points, based on existing knowledge of the area and
photo-interpretation using the Google hybrid basemap and Google Earth. The 110 in situ
points, as they resulted from the sorting (see Section 2.2.1), were added, producing a final
set of 455 reference points. In the end, the confusion matrix method was used to derive all
necessary accuracy measures [98,100]. Table 4 presents the distribution of the points per
study area.
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Table 4. Number of reference points used in the accuracy assessment process per study area.

Study Area Number of Thematic Classes Total Number of Points Number of In Situ Points

Trichonida Lake
7

(Emergent, Floating, Submerged, Natural
vegetation, Other, Water, Deep Water)

262 64

Feneos Lake 6
(absence of “Floating” class) 193 46

3. Results
3.1. Hierarchical Image Classification Model

The implementation of the geographic object-based classification flow (Figure 3) in
the study area of Trichonida Lake, based on the corresponding S2 dataset, resulted in the
discrimination of seven classes, five of which were associated with the lake ecosystem as
was determined in this study and two were associated with the buffer zone (Figure 4). The
model was also applied in the study area of Feneos Lake, leading to the differentiation of
six classes (due to the absence of floating vegetation), with four classes corresponding to
the lake ecosystem (Figure 5).
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Figure 3. The classification ruleset as it was developed in the study area of Trichonida Lake. Features
derived from winter season and summer season images are denoted with (ws) and (ss), respectively.
Prior to its application in the second study area of Feneos Lake, the ruleset was evaluated for its
performance and minor adjustments were made to the respective range of values of the features.

At the first segmentation level, the croplands were derived from the delineation mask
and labelled as “Other”, while the class “Water” was easily defined based on the NDWI and
WAVI indices, calculated for the summer season (ss). The class “Deep Water” represents
the objects labelled as “Water” that exceed Cmax in depth. Therefore, the appropriate
bathymetric contours and delineation masks were imported as ancillary thematic layers
within the classification model.

Next, at the second segmentation level, the classes “Natural vegetated areas”, “Emergent”,
and “Floating” were discriminated based on differentiations in SI values. In particular, NDRE
values of the summer season (ss) and seasonal differences ((ws) − (ss)) of NDAVI values
were used for the classification of “Natural vegetated areas”. Similarly, the “Emergent” class
was classified based on NDRE (ss) values and NDWI ((ws) − (ss)) values. Due to water
permanency throughout most of the year and the phenological seasonal differences of the
dominant emergent vegetation, the relevant objects differed in their spectral response. However,
contextual features, such as the border and relative border to objects already defined as “Water”,
were used for a more accurate discrimination. The “Floating” class was easily detected based
on WAVI ((ss) − (ws)) and NDAVI ((ws) − (ss)) values on objects that were initially classified
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as “Water” at the first level. Finally, NDWI (ss) values and mean blue (ss) values helped to
outline the artificial surfaces that were added to the “Other” class.
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Figure 4. Examples of classification results in Trichonida Lake. The first two columns indicate the
Sentinel 2A images for summer and winter season, respectively; the third column shows the classifica-
tion result. In case (A), patches of floating vegetation (pink) can be observed in the image of summer
season, while in all cases the emergent vegetation (orange) demonstrates a characteristic spectral dif-
ferentiation between seasons. In cases (B,C), pictures show the distribution of submerged vegetation
(purple) as it resulted from NDAVI ((ws) − (ss)) values combined with mean blue (ss) values.



Remote Sens. 2024, 16, 916 13 of 22

Remote Sens. 2024, 16, x FOR PEER REVIEW  13  of  23 
 

 

summer season, while in all cases the emergent vegetation (orange) demonstrates a characteristic 

spectral differentiation between seasons. In cases (B,C), pictures show the distribution of submerged 

vegetation (purple) as  it resulted from NDAVI ((ws) − (ss)) values combined with mean blue (ss) 

values. 

 

Figure 5. Examples of classification results in Feneos Lake. The first two columns indicate the Sen-

tinel 2A images for summer and winter season, respectively; the third column shows the classifica-

tion result. In cases (A,B), we observe the high discrimination of the emergent aquatic vegetation 

Figure 5. Examples of classification results in Feneos Lake. The first two columns indicate the Sentinel
2A images for summer and winter season, respectively; the third column shows the classification
result. In cases (A,B), we observe the high discrimination of the emergent aquatic vegetation class,
while the submerged aquatic vegetation was slightly less accurate. In case (C), the submerged aquatic
vegetation class in the shallow part of the lake was very well discriminated, although this does not
apply for the deeper part (almost near the “Deep Water” class (dark blue) where we observed, during
our survey, patches of Vallisneria spiralis).

The classification of the “Submerged” class was a challenging task, as anticipated, due
to significant differentiation in terms of spectral identity, spatial distribution, abundance,
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depth of occurrence, and differences in species composition. Thus, we aimed to set a
classification rule that would be able to detect objects of submerged vegetation accurately,
even though there would be cases of under-classification. The case of over-classification,
meaning that objects of “Water” would be erroneously classified as “Submerged”, was
considered inadmissible. Therefore, a third segmentation level with a smaller scale was
applied to the objects that were already labelled at Level 2 as “Water”, resulting in almost
pixel-sized objects. Several tests of the CART algorithm, with the same training set but
with different sets of spectral indices and features, were applied only to demonstrate the
over-classification and/or under-classification of the particular class. To be more specific,
we observed that minor changes in the range of values resulted in limited discrimination
of the SAV class in certain areas of the lake. Meanwhile, other parts of the lake showed
extended over-classification of the SAV (Figure 6). Eventually, the optimal classification
rule, which was able to fairly classify the objects into the SAV class, aligning with our
initial goal, was based on seasonal spectral differentiations of NDAVI ((ws) − (ss)) values
combined with mean blue (ss) values.
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Figure 6. Examples of the classified objects for the “Submerged” class (purple). The polygons
with yellow color—produced through digitization solely for demonstration purposes—define areas
covered by submerged aquatic vegetation (based on in situ data and expert photointerpretation).
It can be observed that, in cases (c,d,f), the submerged communities dominated by Myriophyllum
spicatum, Najas marina, and Potamogeton lucens, particularly in the deeper parts of the lake, were under-
classified. This is mainly due to the differences in spectral characteristics of the particular communities
in different depths. Several tests for their discrimination led to unwanted over-classifications. In
the other cases (a,b,e,g–i), it can be observed that the submerged communities dominated by the
Vallisneria spiralis have been systematically classified.
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3.2. Thematic Accuracies

The confusion matrix, based on the reference data (which was a sum of 345 generated
points from stratified random sampling and 110 points from in situ sampling) resulted
in an overall accuracy (OA) of 89.31% for Trichonida Lake and 89.12% for Feneos Lake,
with a Kappa Index of Agreement (KIA) of 0.8736 and 0.8613, respectively (Table 5). The
results of the classification flow were satisfactory in terms of overall performance and
kappa coefficient. In particular, EAV scores were the highest (among the classes of interest)
as the producer and user accuracies of EAV of Trichonida Lake were 91.67% and 97.06%,
respectively, while those for Feneos Lake were 91.30% and 80.77%. Moreover, we calculated
the confusion matrix based only on the 110 points from in situ sampling. The OA and KIA
in both lakes also exhibited high scores (Table 6). In particular, the overall accuracy was
76.56% (KIA = 0.7046) for Trichonida Lake and 82.61% (KIA = 0.7225) for Feneos Lake.

Table 5. Statistical accuracy measures calculated separately for the two study areas (PA stands for
producer’s accuracy and UA for user’s accuracy; empty cells indicate the corresponding categories
that were not present in the respective area).

Trichonida Lake Feneos Lake
PA UA PA UA

Water 100.00% 60.66% 100.00% 60.00%
Deep Water 100.00% 100.00% 100.00% 100.00%

Other 100.00% 100.00% 92.31% 100.00%
Natural vegetated areas 100.00% 94.74% 98.53% 97.10%

Emergent 91.67% 97.06% 91.30% 80.77%
Floating 85.71% 85.71% - -

Submerged 63.64% 97.67% 63.83% 100.00%

Overall Accuracy (OA) 89.31% 89.12%
Kappa index of Agreement (KIA) 0.8716 0.8613

Table 6. Statistical accuracy measures calculated based only on in situ points. These were 64 points
for Trichonida Lake and 46 points for Feneos Lake. (PA stands for producer’s accuracy and UA
for user’s accuracy; empty cells indicate the corresponding categories that were not present in the
respective area).

Trichonida Lake Feneos Lake
PA UA PA UA

Emergent 92.31% 92.31% 100.00% 91.67%
Floating 50.71% 100.00% - -

Submerged 70.45% 96.88% 71.43% 100.00%

Overall Accuracy (OA) 76.56% 82.61%
Kappa index of Agreement (KIA) 0.7046 0.7225

3.3. Spatial Extent per Class

The classification results of both study areas, in terms of spatial extent (in hectares)
of each class and their respective percentages, are shown in Table 7. In Trichonida Lake,
FAV covers the smallest area (1 ha or 0.01% of the total area) which confirms that although
this particular type of cover is very limited, we were able to identify it based on its spectral
differentiation. Similarly, SAV covers a small area; in Trichonida Lake, it covers 89 ha or
0.85% of the total extent, and in Feneos Lake, 0.89 ha or 0.69% of the total extent.
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Table 7. Total spatial extents (ha) and the respective percentages of all classes in study areas, as they
resulted from the classification process.

Trichonida Lake Feneos Lake
Spatial Extent (ha) % Spatial Extent (ha) %

Water 638 6.08 9.67 7.53
Deep Water 8545 81.42 32.58 25.38

Other 673 6.42 11.01 8.58
Natural vegetated areas 263 2.51 71.13 55.41

Emergent 285 2.72 3.10 2.42
Floating 1 0.01 - -

Submerged 89 0.85 0.89 0.69

Total (ha) 10,495 128.38

4. Discussion

Our results support that the proposed workflow, comprising a geographic object-based
image approach based on spectral indices, was suitable for mapping aquatic vegetation,
particularly in oligotrophic/mesotrophic deep lakes. The hierarchical object-based classifi-
cation model proved to be effective in discriminating the classes of interest (EAV, FAV, SAV)
in both study areas. In Trichonida Lake, where the classification model was developed, the
high overall accuracy (OA = 89.31%, KIA = 0.8716) demonstrates that GEOBIA can provide
a framework that can be used to integrate data of more complex environments such as
aquatic ones. The high overall accuracy (OA = 89.12%, KIA = 0.8613) achieved in Feneos
Lake, where the model was applied, indicates that the model can be transferred to other
study areas with the same characteristics. Figures 4 and 5 show examples of classification
results in both lakes. It is important to note that in order to give an unbiased assessment of
our mapping approach performance, the training samples used within the CART algorithm
differed from the in situ data. This was decided because there were a limited number of
plots for Trichonida Lake, with >80% covered by one vegetation type and with a sporadic
spatial allocation (only 64), where we could apply per-plot-based splitting between training
and validation subsets; thus, we opted to reserve them for the accuracy assessment [49].

Moreover, our study shows that in order to identify all vegetated classes, the incor-
poration of seasonal spectral information is important, since such a combination facili-
tates their segregation, a result also demonstrated in other studies [34,39,40]. Specifically,
both producer’s accuracy (PA) and user’s accuracy (UA) scores of all vegetation classes
(i.e., Emergent, Floating, Submerged, Natural vegetated areas), confirm the importance
of seasonal spectral information in their classification. Moreover, the efficacy of spectral
indices to discern vegetated classes is high, indicating their usefulness as a support tool in
aquatic vegetation monitoring. Combinations of spectral indices, due to their flexibility,
easy implementation, and high efficiency, have been widely applied in remote sensing
for distinguishing different types of aquatic vegetation [48,49,101–103]. The classification
of EAV and FAV classes result in more accurate outcomes compared to SAV, as expected;
this is a common result among approaches with similar objectives [30,49,104]. This was
achieved mainly because the relevant objects differed in their spectral response due to both
water permanency throughout most of the year and to their phenological seasonal differ-
ences [105]. The best-performing aquatic vegetation type of our model is EAV (Table 5);
the multi-temporal spectral indices NDWI ((ws) − (ss)) and mono-temporal NDRE (ss)
result in high PA and UA scores in both study areas. FAV was present only in Trichonida
Lake, with small but dense patches that were classified with high accuracy. The UA and
PA scores of this particular class indicate a slight over-classification result from WAVI
((ss) − (ws)) and NDAVI ((ws) − (ss)) values, which occurred due to spatial resolution
limitations. More specifically, there were cases of (a) pixel-sized objects with FAV covering
smaller-than-pixel-sized areas and (b) pixel-sized objects mixed with FAV and EAV with
greater coverage of FAV in comparison to EAV. In both cases, these areas were classified as
FAV. These over-classifications were minor and thus accepted; the alternative option led to
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the under-estimation of FAV abundance, as the areas covered by FAV patches in Trichonida
Lake are small. It should be noted that no further classification rules were required for the
discrimination of potential algal blooms (AB) from FAV, as would be in the case in eutrophic
lakes [106], since such phenomena were absent in both lakes. Despite the need to monitor
SAV, since it has been recognized as a key component of lake ecosystems and an indicator
of their ecological status, this task remains a difficult one, particularly at large spatial
scales. Although the recent progress in remote sensing of SAV is significant, its monitoring
is still mainly undertaken by field surveys [107]. SAV exhibits significant alterations in
terms of spectral identity, spatial distribution, abundance, depth of occurrence, species
variety, etc. [28]. Similar studies have reported low SAV accuracies as well [30,49,104].
We set a classification rule that effectively detects objects of submerged vegetation, even
though there are cases of under-classification related mainly to the spectral variation of
SAV communities’ composition and to the impact of water depth in deep lakes with high
water transparency and thus a high maximum depth of macrophyte colonization [28].

Our results indicate that patches of SAV communities dominated by the aquatic
angiosperm Vallisneria spiralis were systematically classified as SAV in this analysis, most
probably because of their spectral characteristics [108–110]. Based on bathymetric data,
we observed that the accuracy of the classification was higher with increased V. spiralis
abundance in water depths up to 5 m. In deeper areas (~5 m<), although we observed under-
classification, in terms of spatial distribution, the model managed to consistently detect
patches of V. spiralis. The monitoring of V. spiralis is crucial, among other reasons, because it
is being used as an ecological engineering species for aquatic ecosystem restoration based
on its ability to remove excess nutrients from the water body [109]. However, areas of
SAV with communities dominated by other species such as Myriophyllum spicatum, Najas
marina, and Potamogeton lucens in the case of Trichonida Lake and communities dominated
by M. spicatum and species of the Characeae family in the case of Feneos Lake were not
classified as SAV with the same accuracy. These particular communities were present in
both shallow and deep parts of the lakes. It has been observed that in the shallow parts
(~up to 3 m), the model was able to detect these particular communities, while in the deeper
parts (~3 m-Cmax), there was minimum detection. This is probably a result of their spectral
characteristics (leading to weaker spectral signal), the population density, or the species’
depth distribution (Figure 6).

We tried to find an optimal classification rule that would be able to discriminate these
particular SAV communities or SAV patches with mixed species bodies. However, all efforts
concluded in the significant over-classification of SAV, an outcome which was inadmissible.
PA and UA scores of the classes “Water” and SAV in both study areas show that our initial
goal—that any over-classification of SAV is unwanted—was attained. In addition, SAV
located in deeper parts (>10 m) of the water extent cannot be sufficiently classified, as these
scores indicate. This applies also in the cases of either sparse submerged vegetation plots
or mixed-species plots, which presented multiple differences in their spectral response
within parts of the same lake. The contribution of very-high-resolution (VHR) data or
UAV–acquired data would be a worthwhile endeavor in this matter [111,112]. However,
such approach was beyond the scope of our study.

The final rule, which is based on seasonal spectral differentiations of NDAVI ((ws)-(ss))
values combined with mean blue (ss) values, ended in a satisfactory overall classification
result of SAV with the highest possible accuracy. This was based mainly on (a) the distribu-
tion of dense patches of V. spiralis, which exhibit strong spectral identity, and (b) the spatial
detection of certain under-classified SAV communities. Thus, our approach provides a
useful tool for the design of aquatic vegetation monitoring.

Remote sensing is competent tool to complement and extend in situ measurements,
providing frequent observations both for near-real-time and retrospective analyses [37]. In
this context, our methodology can form a baseline for frequent observations of the spatial
distribution of the classes of interest and the changes in their abundance. At the same time,
it seems to be a valuable tool for the detection of SAV communities in the deeper parts
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of lakes. Furthermore, it can be applied in lakes under monitoring prior to field surveys
to enable the in situ evaluation of certain areas that are not within established transects.
Finally, it can be tested in lakes that are not yet included in the Monitoring Network as a
means to determine the appropriate survey areas.

5. Conclusions

In this study, we have developed a hierarchical geographic object-based image clas-
sification model with multi-seasonal Sentinel-2 imagery and suitable spectral indices for
large-scale aquatic vegetation mapping. Our findings show the effectiveness of utilizing
Sentinel-2 imagery, especially when incorporating multi-seasonal information. Further-
more, spectral indices have been evaluated as sufficient for discriminating different aquatic
vegetation classes, leading to a more robust and simpler model. Although we encountered
challenges in classifying certain vegetation patches (i.e., SAV communities), our approach
provides a flexible methodology for aquatic vegetation mapping and can complement in
situ methods for monitoring design and implementation. We aim to test and assess this
approach in other Mediterranean lakes, foreseeing necessary adjustments, to enhance its
applicability for monitoring purposes.
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