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Abstract: The objective of this paper is to tackle the issue of the degraded navigation accuracy of
the inertial navigation system/global navigation satellite system (INS/GNSS) integrated navigation
system in urban applications, especially under complex environments. This study utilizes histori-
cal state estimates and proposes a multi-step pseudo-measurement adaptive Kalman filter (MPKF)
algorithm based on the filter performance evaluation. First, taking advantage of the independence
between INS and GNSS, the enhanced second-order mutual difference (SOMD) algorithm is utilized
for estimating the noise variance of the GNSS, which is decoupled from the estimate error of state and
used as a module for filter performance evaluation. Then, the construction of the proposed method
is presented, together with the analysis of the noise variance of multi-step pseudo-measurement.
Ultimately, the efficacy of the MPKF is confirmed through a real-world vehicle experiment involv-
ing a tightly-coupled INS/GNSS integrated navigation application, demonstrating a noteworthy
enhancement in navigation precision within densely wooded and built-up areas. Compared to the
standard EKF and enhanced redundant measurement-based adaptive Kalman filter (ERMAKF), the
proposed algorithm improves the positioning accuracy by 48% and 34%, velocity accuracy by 50%
and 35%, and attitude accuracy by 38% and 48%, respectively, in the urban building segment.

Keywords: multi-step pseudo-measurement; INS/GNSS integrated navigation; Kalman filter; filter
performance evaluation

1. Introduction

The demand for navigation and positioning is growing rapidly with the growth of
the automotive industry, both in military and civilian applications [1–4]. Among many
alternative navigation systems or sensors, such as LiDAR, visual sensors, and odometers,
the inertial navigation system (INS) and the global navigation satellite system (GNSS) are
the most widely employed systems [5]. The INS is the sole navigation system that does
not necessitate any additional external references [6]. As the BeiDou global navigation
satellite system (BDS-3) has been applied since June 2020 [7], one more GNSS can be used
plus the global positioning system (GPS), GLONASS, and other systems. Theoretically,
more systems mean more convenient utilization and more accurate navigation solutions.
Still, challenges remain and become more difficult in that, with the improvement in the
infrastructure construction, more tunnels and overpasses have been built especially in
megacities [8,9]. These constructions or buildings interfere with or block the signal of the
GNSS, leading to a degenerated positioning accuracy.

The Kalman filter (KF) is the main powerful tool for information fusion in INS/GNSS
applications [9]. The complementary error features of these two systems make the KF
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suitable for INS/GNSS integrated navigation applications. The INS suffers from a long-
term error drift that might even be without bounds, but it can supply high-precision
short-term measurements; conversely, the GNSS can consistently offer positioning data
with errors that fall within an acceptable range unless interference disrupts the signal.
Additionally, the low output bandwidth is another limitation of the GNSS [10].

The classical KF obtains optimal estimates of the concerned states for linear systems
under the assumption that both the noise covariance of the process and the observation are
Gaussian [11]. Unfortunately, in real applications, there is little chance that the assumption
about noise can hold because the covariance may expand under complex environments [12].
For an INS/GNSS integrated system, the covariance of the process noise usually can be
calibrated either by the manual of the INS or by some online/offline algorithms [9], but
the noise covariance of the GNSS (RGN) cannot be set to a fixed one due to the complex
environment. The GNSS navigation accuracy may decrease in dense urban areas compared
to open-sky environments. Although the high-precision-level INS can maintain the accuracy
of navigation due to its ultra-low error drift at extremely expensive costs, most commercial
and inexpensive INS systems struggle to achieve accurate navigation when the GNSS
signal is interfered with or blocked [13]. There are commonly two strategies to tackle these
problems in INS/GNSS-based applications.

(1) The INS/GNSS integrated system is equipped with more hardware sensors, such as
an altitude sensor, odometer [14], LiDAR [15], camera [16], magnetic sensor [17], and wheel
speed sensor, for collecting various data to suppress the errors from the GNSS. The core idea
is to introduce one or more actual independent measurement systems to aid the INS/GNSS.
For example, Aftatah et al. proposed a fusion algorithm by employing an odometer to
replace the GNSS in degraded environments, where the GNSS is unreliable or blocked [14].
Sun et al. developed a two-step EKF integration algorithm with a non-holonomic constraint
(NHC) [16]. In their work, the authors used a monocular camera and a GPS to initialize the
visual odometry (VO)/GPS, and then the first extended KF (EKF) was used for GPS/VO
integration. The IMU dynamic model and estimate outcome from the initial EKF were
utilized to derive the ultimate navigation solution via the secondary EKF filtering process.
The results from Refs. [14,16] demonstrated the effectiveness of introducing more hardware
types of equipment. However, more sensors mean higher power requirements, increased
costs, and a larger volume.

(2) The INS/GNSS navigation system is developed with more suitable and efficient
algorithms. This strategy can be divided into two categories: machine learning-based
(ML-based) methods and ML-free ones.

In the ML-based domain, various learning algorithms are employed to investigate the
correlation between the provided data and the GNSS signal under optimal GNSS signal
quality. After a training state, the well-built model can be used to construct the pseudo-
GNSS measurement. For example, Fang et al. adopted the long short-term memory (LSTM)
method to predict the GNSS increment [18]. Niu et al. introduced a GNSS error estimation
technique utilizing the classification and regression tree and bootstrap aggregating (CART-
Bagging) algorithm [19]. The test outcomes demonstrated that the method enhanced the
reliability of the GNSS error. However, the ML-based method requires a training step, and
the quality of the dataset for training is crucial for building the model. In many practical
applications, there are few available datasets to be used. Additionally, the computation
complexity for machine learning is often too heavy for the integrated navigation hardware
platform provided.

In the ML-free domain, many adaptive and robust filters have been proposed to
improve the accuracy of navigation solutions for the INS/GNSS. It is vital to estimate the
noise variance of the GNSS online so that the Kalman gain can be adaptively adjusted to
a more reasonable level. The commonly used method to detect abnormal measurements
is the chi-squared test based on the innovation sequence or the residual sequence [20,21].
The improved Sage–Husa algorithm also adopts a similar technique [22]. However, these
methods do not manage to obtain desirable results because the sequences are coupled with
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the error of state estimate. The second-order mutual difference (SOMD) method proposed
by our group, which makes full use of the independency between the INS and GNSS,
can provide satisfying results for noise variance estimation. The SOMD relies solely on
measurement information, thereby circumventing any negative effects that may arise from
biased state estimates [12].

To sum up, we aim to utilize the ML-free methodology for its cost-saving character-
istics in hardware and low computational complexity. This methodology can reduce the
complexity, size, and cost of the hardware, while fully utilizing the information from the
GNSS and the dynamic model of the INS, making it more versatile and easy to deploy.

In Kalman filtering, the state transition model and the observation model are usually
known. For the measurement noise covariance matrix, the process noise covariance matrix
follows certain assumptions, and then the estimate error covariance matrix cannot be
decreased due to the deterministic calculation procedure. To improve estimates within
the Kalman filter framework, a new approach is required. Based on this analysis, if the
constructed measurements can be employed, a better estimate accuracy can be made by
the KF, because the Kalman gain matrix would be changed. However, the noise of the
constructed measurements should be zero mean white noise. Additionally, the covariance
of the noise should also be provided. Because these are important prerequisites for the
KF to obtain optimal estimates, the variables used to construct pseudo-observations must
satisfy the above conditions. We intend to use the historical state estimates to construct
pseudo-measurements, which should be unbiased so that the mentioned prerequisites can
be satisfied.

This study first conducts the performance evaluation of the KF in order to guarantee
the unbiasedness of the historical state estimates used to construct pseudo-measurements.
We use the SOMD method to estimate the noise covariance in the GNSS, RGN . Meanwhile,
we use another estimate of RGN by calculating the correlation between the innovation and
residual sequences. These two methods are different because the former is independent
of the state estimate, while the latter is not. Further, we design the filter performance
evaluation mechanism based on the difference between RGN and RGN . Then, a novel multi-
step pseudo-measurement KF (MPKF) algorithm is proposed to enhance the precision of
the state estimate.

The innovative points of this paper are summarized as below.
First, we use the SOMD method to evaluate the performance of the filter. On the

one hand, RGN is estimated online to obtain a robust estimate for the filter; on the other
hand, RGN is employed as a basic module for the filter evaluation to turn on or off the
MPKF procedure by judging the unbiasedness of the historical estimates together with the
calculation of the RGN through the innovation and residual sequences.

Secondly, the MPKF algorithm is proposed, and the noise covariance of the MPKF
is analyzed. Based on the performance evaluation, an adaptive mechanism is presented
to suppress the negative effect led by the measurement noise. The multi-step pseudo-
measurements are derived directly from the previous unbiased state estimates; therefore,
if the actual measurement cannot maintain the desired accuracy, the multi-step pseudo-
measurements can provide additional information to obtain a better estimated result for a
given filter.

Finally, the MPKF algorithm is validated through a practical road test, demonstrating
that it can enhance the accuracy of the navigation solution for the INS/GNSS integrated
navigation system in comparison to other algorithms.

The remainder of this study is organized as follows. In the following section, the filter
performance evaluation mechanism is proposed based on measurement noise covariance
estimation (MNCE). In Section 3, the proposed MPKF algorithm is presented, meanwhile
the analysis of uncertainties and the performance of the constructed multi-step pseudo-
measurements are also discussed. The MPKF-based tightly-coupled INS/GNSS integrated
algorithm is presented in Section 4. In Section 5, the real road experiment and its results are
presented, and Section 6 draws the conclusions.
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2. The MNCE and the Filter Performance Evaluation

By employing the SOMD, an MNCE is obtained, which is independent of the state
estimate. By calculating the correlation between the innovation and residual sequences, an-
other MNCE is obtained, which is relevant to the state estimate. Then, the filter performance
evaluation mechanism is provided based on the difference between the two MNCEs.

2.1. The MNCE Based on the SOMD

Assuming that zGN
k and zIN

k are measurements of a signal zTrue
k from the GNSS and

INS, the measurements are expressed by{
zGN

k = zTrue
k + εGN

k + vGN
k

zIN
k = zTrue

k + εIN
k + vIN

k ,
(1)

where εGN
k and εIN

k are the bias terms that can be assumed to be Gaussian random walk
process [23], k represents the kth epoch, and vGN

k and vIN
k are uncorrelated discrete noise: E[vGN

k
(
vGN

l
)T

] = RGNδk,l

E[vIN
k

(
vIN

l
)T

] = RINδk,l ,
(2)

where δk,l is the Kronecker delta function.
The self-difference for each sensor is expressed by

∆zGN
k = zGN

k − zGN
k−1 =

[
zTrue

k − zTrue
k−1

]
+

[
εGN

k − εGN
k−1

]
+

[
vGN

k − vGN
k−1

]
∆zIN

k = zIN
k − zIN

k−1 =
[
zTrue

k − zTrue
k−1

]
+

[
εIN

k − εIN
k−1

]
+

[
vIN

k − vIN
k−1

]
.

(3)

The mutual difference for the two sensors is expressed by

∇zG−I
k = ∆zGN

k − ∆zIN
k

=
[
εGN

k − εGN
k−1

]
−

[
εIN

k − εIN
k−1

]
+

[
vGN

k − vGN
k−1

]
−

[
vIN

k − vIN
k−1

]
≈

[
vGN

k − vGN
k−1

]
−

[
vIN

k − vIN
k−1

]
,

(4)

where the differences from the bias terms are neglected, because the numerical value of
which is usually smaller than the noise terms. The noise covariance assumptions are
expressed by 

E
[
vGN

k
(
vIN

k
)T

]
= 0

E
[

vGN
k

(
vGN

k−1

)T
]
= 0

E
[

vIN
k

(
vIN

k−1

)T
]
= 0,

(5)

Then, E
[
∇zG−I

k

(
∇zG−I

k

)T
]

is calculated by

E
[
∇zG−I

k

(
∇zG−I

k

)T
]

= E
[
vGN

k
(
vGN

k
)T

]
+ E

[
vGN

k−1

(
vGN

k−1

)T
]
+ E

[
vIN

k
(
vIN

k
)T

]
+ E

[
vIN

k−1

(
vIN

k−1

)T
]

.
(6)
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where E
[
vIN

k
(
vIN

k
)T

]
and E

[
vIN

k−1

(
vIN

k−1

)T
]

are neglected because the accuracy of the INS is

much higher than that of the GNSS in the short term, i.e., E
[
vIN

k
(
vIN

k
)T

]
≪ E

[
vGN

k
(
vGN

k
)T

]
.

Hence, the noise covariance of the GNSS RGN is expressed by

RGN =

E
[
vGN

k
(
vGN

k
)T

]
+ E

[
vGN

k−1

(
vGN

k−1

)T
]

2
≈

E
[
∇zG−I

k

(
∇zG−I

k

)T
]

2
. (7)

A sliding window method is employed to calculate E
[
∇zG−I

k

(
∇zG−I

k

)T
]

:

E
[
∇zG−I

k

(
∇zG−I

k

)T
]
=

1
W

W−1

∑
l=0

∇zG−I
k−l

(
∇zG−I

k−l

)T
, (8)

where W stands for the sliding window size.
The SOMD works well when the sequences ∇zG−I

k are independent. However, due
to the complex environments especially in urban areas, the independence in the mutual
sequences might be violated. In this study, Burg’s method was used to calculate RGN if the
independence was violated by the kernel density estimation (KDE) method [12].

The important advantages of the SOMD are summarized below:

(1) RGN is only based on measurements and is independent of the state estimate error.
(2) Given the measurements from the INS and GNSS, without any stated-related infor-

mation, RGN can be estimated by the SOMD.
(3) If there is a trend term bias in the noise, RGN is not affected because of the self-

difference calculation.

So, we can use RGN as the reference, while another estimate that is not independent of
the state estimate error can be obtained.

2.2. The MNCE Based on the Correlation between Innovation and Residual Sequences

For a general linear stochastic system, the process and observation models in the
discrete-time form are expressed by{

xk = Φk,k−1xk−1 + ΓkvP
k

zk = Hkxk + vR
k ,

(9)

where xk ∈ Rn and zk ∈ Rm represent the state vector and the measurement vector,
respectively. vP

k and vR
k are the process noise and the measurement noise at the kth epoch,

respectively, which are independent zero-mean white Gaussian vectors. Γk stands for the
noise-driven matrix. Φk,k−1 and Hk are the state transition matrix and observation matrix,
respectively. The covariances of vP

k and vR
k are expressed by{

E[vP
t vP

τ ] = Qkδt,τ

E[vR
t vR

τ ] = Rkδt,τ .
(10)

The state estimate x̂k|k, the Kalman gain matrix Kk, and state error covariance Pk|k are
expressed by 

Kk = Pk|k−1HT
k

[
HkPk|k−1HT

k + Rk

]−1

x̂k|k = x̂k|k−1 + Kk

[
zk − Hkx̂k|k−1

]
Pk|k = [I − KkHk]Pk|k−1.

(11)
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The innovation is expressed by

εk ≜ zk − Hkx̂k|k−1, (12)

where x̂k|k−1 represents the one-step predicted state. The residual is expressed by

ηk ≜ zk − Hkx̂k|k. (13)

The correlation of εk and ηk is expressed by

E
[
εkηT

k
]
=

HkE
[(

xk − x̂k|k−1

)(
xk − x̂k|k

)T
]

HT
k + HkE

[(
xk − x̂k|k−1

)(
vR

k
)T

]
+ E

[
vR

k

(
xk − x̂k|k

)T
]

HT
k + Rk.

(14)

Considering (11), the first term in the last line of (14) is calculated by:

HkE
[(

xk − x̂k|k−1

)(
xk − x̂k|k

)T
]

HT
k = RkKT

k HT
k , (15)

The second one is 0 because both xk and x̂k|k−1 are independent of vR
k . The third term is

calculated by:

E
[

vR
k

(
xk − x̂k|k

)T
]

HT
k = −RkKT

k HT
k . (16)

By adding the four terms in (14), we can obtain E
[
εkηT

k
]
= Rk. Also, this is calculated

by a sliding window method similar to (8).
It is worth noting that Rk can be affected by the state estimate, because both εk and

ηk are state estimate-related terms, as shown in (12) and (13), respectively. Put differently,
if the state estimate is unbiased, Rk obtained by (14) can be seen as the ideal estimate.
Otherwise, Rk might be different from the ideal measurement noise covariance, because
the first and the third term in (14) might not be the results calculated by (15) and (16).

2.3. The Filter Performance Evaluation

The SOMD method and the correlation between innovation and residual sequences
were used to determine the filter performance in this study. The key idea is that the former
is immune to the state estimate error, and the latter is relative with the state estimate error.
Hence, the SOMD can provide a solid estimate of RGN , which can be used as the reference
compared to the other one.

For practical INS/GNSS applications, if the difference between RGN calculated using
(7) and RGN

(
= E

[
εkηT

k
])

obtained by (14) is large, we can deduce that, during the calcula-
tion interval, the state estimates are biased; otherwise, the state estimates can be seen as
unbiased.

3. Multi-Step Pseudo-Measurement for the KF

The accuracy of the KF relies on the precision of the measurement if the dynamic model
behaves normally and the statistics of the process noise obey the a priori assumptions.
To acquire more accurate measurements, one way is to utilize high-precision equipment
directly, but at a higher cost as a result. Another way is to use several relatively low-
precision sensors as an array simultaneously [24,25]. Inspired by the second methodology
at the hardware level, we proposed the multi-step pseudo-measurement algorithm under
the KF framework.

This paper used the difference between RGN and RGN as the indicator for evaluating
the filter performance of the KF. This is important for the proposed multi-step pseudo-
measurement method, because the historical estimates employed to construct the multi-step
pseudo-measurement should be unbiased, so that the uncertainty or noise of the multi-step
pseudo-measurement can be seen as zero-mean term. Furthermore, the modified KF can
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obtain better accuracy estimates. Although the noises in multi-step pseudo-measurement
are correlated in that the state estimates are correlated, they can be orthogonalized by a
whitening method [26].

3.1. The Method of Constructing the Multi-Step Pseudo-Measurement

The derivation of the proposed multi-step pseudo-measurement is based on a linear
system described by (9) and its corresponding assumptions. However, this method can be
used in non-linear systems through appropriate modification. In Section 5, an EKF-based
real road experiment is shown as a practical application for a non-linear application.

The multi-step pseudo-measurement is expressed by{
zp

k,k−2 = Hp
k Φk,k−2xk−2

zp
k,k−3 = Hp

k Φk,k−3xk−3,
(17)

where zp
k,k−i,i = 2, 3 stands for the pseudo-measurement constructed from xk−i, and Hp

k
is the pseudo-measurement matrix. Because the ideal state of xk−i cannot be obtained,
it is replaced by x̂k−i|k−i + x̃k−i|k−i, and x̃k−i|k−i is the estimate error. Let vp

k,k−i denote
Hp

k Φk,k−ix̃k−i|k−i, the superscript p here stands for ‘pseudo’; then, the augmented measure-
ment equation can be rewritten in a compact form as zk = Hkxk + vk, whose terms are
defined as 

zk ≜
[
zk, zp

k,k−2, zp
k,k−3

]T

Hk ≜
[
Hk, Hp

k , Hp
k

]T

xk ≜ xk

vk ≜ diag
[
vk, vp

k,k−2, vp
k,k−3

]T
,

(18)

where E
[
vp

k,k−1

]
= 0 when E

[
x̃k−i|k−i

]
= 0; again, this is why we proposed the filter

performance evaluation method to judge the unbiasedness of the state estimates. Then, the
variance of Vk is denoted as Rk:

Rk ≜ E
[
VkVT

k

]
=

Rk 0 0

0 RP
k−2

(
RP

k−2,k−3

)T

0 RP
k−2,k−3 RP

k−3

, (19)

where the 0 components are obtained based on the fact that vk is independent of x̃k−2|k−2

and x̃k−3|k−3. RP
k−2 and RP

k−2,k−3 =
(

RP
k−2,k−3

)T
are expressed, respectively, by

RP
k−2 = Hp

k Φk,k−2x̃k−2|k−2x̃T
k−2|k−2ΦT

k,k−2

(
Hp

k

)T
= Hp

k Φk,k−2Pk−2|k−2ΦT
k,k−2

(
Hp

k

)T
, (20)

RP
k−2,k−3 = Hp

k Φk,k−2x̃k−2|k−2x̃T
k−3|k−3ΦT

k,k−3

(
Hp

k

)T

= Hp
k Φk,k−2Φk−2,k−3x̃k−3|k−3x̃T

k−3|k−3ΦT
k,k−3

(
Hp

k

)T

= Hp
k Φk,k−3Pk−3|k−3ΦT

k,k−3

(
Hp

k

)T
,

(21)

Moreover, (19) shows that Rk is not a diagonal matrix. To lighten the computational
load on the inverse operation in calculating the Kalman gain, vk can be transformed into
independent measurements through the Cholesky decomposition [26]; then, Rk can be a
diagonal matrix.

Then, the Kalman gain, the state estimate, and the error covariance are calculated,
respectively, as

Kk = Pk|k−1HT
k

[
HkPk|k−1HT

k + Rk

]−1
, (22)
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x̂k|k = Φk,k−1x̂k−1|k−1 + Kk

[
zk − Hkx̂k|k−1

]
, (23)

Pk|k =
[
I − KkHk

]
Pk|k−1. (24)

It can be noticed that the optimal filter requires that the noise of the measurement
should be orthogonal to the state estimate error x̃k|k−1; otherwise, the Kalman gain can-
not be calculated by (22). In this study, the noise of the constructed multi-step pseudo-
measurement is not orthogonal to x̃k|k−1; however, we used (22) to calculate the Kalman
gain because this approximation can achieve an acceptable navigation solution accuracy.

In this paper, we only used i = 2, 3 to construct the pseudo-measurements because,
if i = 1, there is a linear correlation between the one-step pseudo-observation and the
state prediction, and if i > 3, more computational loads are needed and more process
uncertainties might be introduced.

Based on the proposed filter performance evaluation method, we designed the follow-
ing mechanism to utilize the multi-step pseudo-measurements, which were constructed
using the historical unbiased state estimates.

If RGN is greater than its nominal value (e.g., from the GNSS receiver manual), and
there is no vast difference between RGN and RGN , the current filter performance can be
considered normal, i.e., the estimates are unbiased and can be employed for the construction.
Then, a multi-step pseudo-observation procedure is initiated to suppress the errors caused
by deteriorating measurement systems. For INS/GNSS applications, the majority of
navigation solution errors come from this circumstance. So, this is the key problem that
this paper aimed to tackle.

If RGN decreases to the normal level, it indicates that the accuracy of the measurement
system is acceptable, and the pseudo-observation mechanism is exited to return to the
normal filtering procedure. On the one hand, even if RGN is unchanged, the proposed
multi-step pseudo-observation algorithm still has the ability to enhance the accuracy of the
navigation solution, only if the historical estimates are unbiased. This is left for our future
work. On the other hand, if the filter performance degrades due to other disturbances, such
as model errors or changes in process noises but RGN , some other adaptive algorithms can
be employed to improve the navigation solutions.

3.2. The Analysis of the Performance of the Proposed MPKF

The matrix Pk|k can be used as the metric to evaluate the performance of a given
filter [27]. Compared to the KF, (24) can generate a smaller Pk|k than Pk|k.

The derivation details are as follows. Through the Cholesky decomposition, Rp
k is

expressed by

Rp
k ≜

[
RP

k−2 RP
k−2,k−3

RP
k−2,k−3 RP

k−3

]
= LkLT

k . (25)

Then, Lk is defined as

Lk =

[
I 0
0 Lk

]
, (26)

where I is the identity matrix of the corresponding dimension. By left multiplying L−1
k , the

noise term in (18) is expressed by
v∗

k = L−1
k vk, (27)

Then, the covariance of R∗
k is expressed by

R∗
k = E

[
v∗

k (v
∗
k )

T
]
= L−1

k

[
Rk 0
0 Rp

k

](
L−1

k

)T
=

[
Rk 0
0 I

]
. (28)

Now, all the noise terms are independent, and Pk|k can be calculated through the
sequential Kalman filtering process as follows:
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[Kk]

0 = Pk|k−1HT
k

[
HkPk|k−1HT

k + Rk

]−1[
x̂k|k

]0
= Φk,k−1x̂k−1|k−1 + Kk

[
zk − Hkx̂k|k−1

]
[
Pk|k

]0
=

[
I − [Kk]

0Hk

]
Pk|k−1,

(29)

where [Kk]
0,
[
x̂k|k

]0
, and

[
Pk|k

]0
= Pk|k are the estimation results of the standard KF. Then,

the pseudo-observation is employed to calculate Pk|k:
Kk =

[
Pk|k

]0(
H∗

k

)T
[

H∗
k

[
Pk|k

]0(
H∗

k

)T
+ I

]−1

x̂k|k =
[
x̂k|k

]0
+ Kk

[
z∗k − H∗

k

[
x̂k|k

]0
]

Pk|k =
[
I − KkH∗

k

][
Pk|k

]0
.

(30)

where  z∗k = L−1
k

[
zp

k,k−2, zp
k,k−3

]
H∗

k = L−1
k

[
Hp

k , Hp
k

]T
.

T

(31)

It can be concluded that Pk|k < Pk|k, in that KkH∗
k , is a positive definite diagonal matrix. This

conclusion can also be illustrated by an intuitive way in that a more reliable measurement
can result in a greater Kalman gain.

However, if the noise of the multi-step pseudo-observation is greater than a threshold, it
has a negative impact on the state estimation; so, it is necessary to set a threshold for employing
the pseudo-observation method. Because the ideal state xk could not be obtained, given zk and
x̂k|k, the residual ηk can be obtained. x̂k|k can be seen as the optimal estimate from the standard
KF procedure; meanwhile, the pseudo-observation-based innovation ε

p
k is expressed by ηk = zk − Hkx̂k|k

ε
p
k ≜

[
zp

k,k−2, zp
k,k−3

]T
−

[
Hp

k , Hp
k

]T
x̂k|k−1.

(32)

The 2-norm of ηk and ε
p
k can be used as the filter performance index to decide whether

the pseudo-observation procedure executes or not. If the following inequation holds, the
pseudo-observation procedure executes.

1
2

∥∥∥∥ε
p
k

(
ε

p
k

)T
∥∥∥∥

2
≤

∥∥∥ηkηT
k

∥∥∥
2
. (33)

Remark 1. For a specific application, not all state variables are equally crucial. Therefore, (33) can
be adapted to focus on the relevant state variables. Additionally, it is important to note that, if some
state variables differ by an order of magnitude in value, the variable with the larger numerical value
has a greater impact on the equation’s norm. For INS/GNSS applications, the numerical value of
the position, velocity, and attitude are greater than other elements, such as the bias of the gyroscope
drift and the accelerometer error.

Remark 2. For applications in which no actual redundancy measurement exists, (33) must be used.

Remark 3. In the above derivation, Hp
k = Hk. For different applications, the selection of Hp

k can be
designed according to the practical engineering circumstance. Meanwhile, the scalar 1

2 can also be
tuned for a certain application.
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4. The MPKF-Based Tightly INS/GNSS Integration Algorithm

The loosely coupled (LC) and tightly coupled (TC) integration methods are usually
employed in INS/GNSS applications. Compared to the LC algorithm, the TC algorithm
could obtain a better navigation solution accuracy as it incorporates the difference in
pseudo-range and pseudo-range rate between the INS and GNSS in the measurement
function. We adopted the EKF as the information fusion algorithm; meanwhile, the error
model of the INS was used for the state prediction function and the measurement function.

4.1. The System Function and the Measurement Function

The details of the mechanism for INS can be found in many references, so, they were
omitted in this paper. In short, the system model is expressed as in (9). The state vector is
expressed by:

x =
[
φn, δVn, δL, δλ, δh, εb,∇b, δtu, δtru

]T
∈ R17, (34)

where φn ∈ R3 stands for the attitude error; δVn ∈ R3 represents the velocity error; and
δL, δλ, δh represent the error in latitude, longitude, and height, respectively. εb ∈ R3 and
∇b ∈ R3 stand for the gyroscope drift and the accelerometer error, respectively. δtu and
δtru are the GNSS receiver’s clock offset and its drift, respectively. The superscript n and b
represent the navigation frame and the body frame, respectively. The transition functions
of the relative state are expressed by (35)–(40):

.
φ

n
= −(ωn

ie + ωn
en)×φn + (δωn

ie + δωn
en)− Cn

b ε
b, (35)

where the subscript e stands for the earth-centered, earth-fixed frame; ωn
ie is the earth rate;

and ωn
en is the rate of the n-frame with respect to the e-frame. The direction cosine matrix

Cn
b represents the transition from the b-frame to the n-frame. The navigation frame is the

local-level frame with axes pointing to east (x), north (y), and up (z) directions.

δ
.
L

δ
.
λ

δ
.
h

 =


δVn

y
RM+h − Vn

y

(RM+h)2 δh
δVn

x
(RN+h) cos L − Vn

x
(RN+h)2 cos L

δh + Vn
x ·tan L

(RN+h) cos L δL

Vn
z

, (36)

where Vn
x , Vn

y , and Vn
z are the velocity errors in the corresponding directions. The meridian

and transverse radius of curvature are denoted by RM and RN , respectively.

δ
.
V

n
= −fn × f n + δVn × (2ωn

ie + ωn
en) + Vn × (2δωn

ie + δωn
en) + δgn + Cn

b∇
b, (37)

where f n denotes the specific force error and δgn is the gravitational error.
The error modes for the gyroscopes, the accelerometers, and the clock offset are

assumed as first-order Markov processes (FOGM):
ε = εb + εr

.
ε

b
= 0

.
ε

r
= − 1

Ctg
εr + ωg,

(38)

.
∇

b
= − 1

Cta
∇b + ωa, (39)

δ
.
tu = δtru + ωu

δ
.
tru = −βδtru + ωru,

(40)

where εb is the gyroscope bias, εr represents the FOGM, and ωg represents the noise. Ctg
and Cta denote the coefficients of the correlation time for the gyroscopes and accelerometers,
respectively. ωg, ωa, ωu, and ωru are Gaussian white noises.



Remote Sens. 2024, 16, 926 11 of 23

The observation model is expressed by:{
δρj = ρ

j
IN − ρ

j
GN

δ
.
ρj =

.
ρ

j
IN − .

ρ
j
GN ,

(41)

where 
ρ

j
IN =

√
(xIN − xj

sat)
2
+ (yIN − yj

sat)
2
+ (zIN − zj

sat)
2

.
ρ

j
IN =

xIN−xj
sat

ρ
j
IN

∂xIN
∂t +

yIN−yj
sat

ρ
j
IN

∂yIN
∂t +

zIN−zj
sat

ρ
j
IN

∂zIN
∂t

rj =

√
(x − xj

sat)
2
+ (y − yj

sat)
2
+ (z − zj

sat)
2

.
rj
=

x−xj
sat

rj
∂x
∂t +

y−yj
sat

rj
∂y
∂t +

z−zj
sat

rj
∂z
∂t

ρ
j
GN = rj + c

(
δtu − δT j)+ ∆ion + ∆trop + vj

ρ

.
ρ

j
GN =

.
rj
+ c

(
δ

.
tu − δ

.
T

j
)
+ vj

.
ρ
,

(42)

where [xIN , yIN , zIN ] and [x, y, z] represent the coordinate of the INS and the true position
in the e-frame, respectively. The position of the jth satellite is denoted by [xj

sat, yj
sat, zj

sat]. c
is the light speed. ∆ion and ∆trop are propagation delays of the ionosphere and troposphere,

respectively. vj
ρ and vj

.
ρ

are the measurement noises. Usually, ∆ion and ∆trop can be calculated
through the Klobuchar model and the troposphere delay model, respectively [28].

To sum up, the model represented in an EKF frame is expressed by:{
xk = Ak,k−1xk−1 + ΓkvP

k
zk = Bkxk + vR

k ,
(43)

where Ak,k−1, Γk, and vP
k are obtained using (35)–(40); z =

[
δρj, δ

.
ρj

]
; Bk = ∂Ξ/∂x̂k/k−1; and

Ξ is calculated using (41) and (42).
The standard EKF evolves as follows [29]:{

x̂k|k−1 = Ak,k−1x̂k−1|k−1
Pk|k−1 = Ak,k−1Pk−1|k−1AT

k,k−1 + ΓkQk−1ΓT
k ,

(44)


Kk = Pk|k−1BT

k

(
BkPk|k−1BT

k + Rk

)−1

x̂k|k = x̂k|k−1 + Kk

(
zk − Bkx̂k|k−1

)
Pk|k = (I − KkBk)Pk|k−1.

(45)

4.2. The Proposed MPKF-Based Algorithm for the TC INS/GNSS Integration System

The main idea of the MPKF is illustrated in Figure 1.
All the blocks proposed in this paper are colored blue. The upper part stands for the

regular EKF procedure. The lower part is our proposed architecture for enhancing the precision
of the navigation solution. By employing the SOMD, which is colored green, we can obtain
RGN. On the one hand, RGN is fed to the measurement update portion for achieving a robust
filter; on the other hand, the use of a multi-step pseudo-observation construction depends on
the trend of RGN and the filter performance evaluation mechanism.
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For GNSS/INS TC integration, although the 17-dimesion vector is used as the state,
the position, velocity, and attitude are considered for most applications. Hence, only these
nine variables were taken into consideration for MP. So, Hp

k is expressed by

Hp
k =


I3×3 0 0 0

0 I3×3 0 0
0 0 I3×3 0
0 0 0 08×8

, (46)

Hp
k is not the same as the matrix Hk in the measurement equation for GNSS/INS TC

integration.
The pseudocode of the MPKF-based INS/GNSS is summarized in Algorithm 1.

Algorithm 1. The pseudocode of the MPKF-based INS/GNSS application

Input: x̂0, P0, Q0, Rk = diag(RGN).
Prediction:
1. Calculate x̂k|k−1 and Pk|k−1 via (44).
Observation update (switch between the regular KF or MPKF):
1. Calculate the ∇zG−I

k via (3) and (4).
2. Gaussian distribution of ∇zG−I

k test via the KDE method [30]:
3. if ∇zG−I

k ∼ Gaussian
Calculate RGN via (7) and (8).
else
RGN = Burg′s Algorithm(∇zG−I

k ).
end
Rk = diag(RGN).
4. if RGN exceeds the normal level (via filter performance evaluation)
MPKF procedure via (22)–(24).
else
Regular KF procedure via (45).
end
Outputs: x̂k|k, Pk/k.
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5. Experiment

To verify the proposed method, we used the data obtained in a field experiment in
Tianjin City, China. The INS was IMU-ISA-100C, which is a product from the NovAtel
Company, and the GNSS was a differential receiver. After post-processing by the NovAtel
Inertial Explorer, the ground truth can be obtained, and 1 cm and 2 cm are the horizontal
accuracy and vertical accuracy. The key performance parameters of the devices are shown
in Tables 1–3.

Table 1. Performance parameters of the IMU-ISA-100C gyroscopes.

Gyroscope Parameters

Raw data rate 200 Hz
Bias stability (In-run) ≤0.05 deg/h

Full-scale measurement range ±495 deg/s
Angular random walk 0.012 deg/

√
h

Scale factor non-linearity ≤100 ppm

Table 2. Performance parameters of the IMU-ISA-100C accelerometers.

Accelerometer Parameters

Raw data rate 200 Hz
Bias stability (In-run) ≤100 µg

Full-scale measurement range ±10 g
Velocity random walk ≤100 µg/

√
Hz

Scale factor non-linearity ≤100 ppm

Table 3. Performance parameters of the IMU-ISA-100C GNSS receiver.

Horizontal Position Accuracy of GNSS (RMS)

Single-point L1/L2 1.20 m
SBAS 0.60 m
DGPS 0.40 m

5.1. Experiment Initialization

The elements in process noise covariance Q0 for INS were obtained through offline
calibration when the vehicle was in a stationary state. The elements for the GNSS were set
according to the specifications. For R0, we adopted 1.2 for the pseudo-range and 0.12 for
the pseudo-range rate according to the manual:

√
Q0 = diag[std(gyox), std(gyoy), std(gyoy), std(accx), std(accy), std(accz), 1 × 10−4, 1 × 10−5]

R0 = diag[1.2, 1.2, 1.2, 1.2, 0.12, 0.12, 0.12, 0.12],
(47)

where std(gyox) denotes the standard deviation of the x-axis gyroscope during the station-
ary interval.

The bias terms of INS were set as follows:

εgx = εgy = εgz = −5.810940718937726 × 10−8 (rad/s)
εb

0 = [εgx, εgx, εgx],
(48)

∇ax = ∇ay = ∇az = −0.054495220989616(mg)
∇b

0 = [∇ax,∇ay,∇az],
(49)

The initial x̂0 and P̂0 were set, respectively, as follows:

x̂0 =
[
03, 03, 03, εb

0,∇b
0, 1.0, 0.1

]T
, (50)
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P̂0 = diag
[
x̂0(x̂0)

T
]
, (51)

where P̂0 is calculated through (51) because, in this study, the state error model was adopted.
We employed the standard extended KF (SKF), EIAKF [31], MCEKF [32], ERMAKF [28],

and our proposed MPKF for comparative analysis. Among them, MCEKF is the improved
EKF algorithm based on the maximum correntropy criterion. The root-mean-square error
(RMSE) was adopted for estimate error comparisons. As an example, the 3-dimensional
position error is expressed by:

RMSEpostion =

√√√√ 1
M

M

∑
i=1

[(
L̂meter

i − Lmeter
i

)2
+

(
λ̂meter

i − λmeter
i

)2
+

(
ĥi − hi

)2
]

, (52)

where
[

L̂meter
i , λ̂meter

i , ĥi

]
and

[
Lmeter

i , λmeter
i , hi

]
are the ith epoch estimate and ground truth

in latitude, longitude, and height, respectively, with units in meters; and M is the total
epochs.

Figure 2 shows the trajectory of the vehicle, with the silver-color-blocked area repre-
senting the dense foliage area and the yellow-blocked one indicating the dense building
area. In these two areas, the GNSS signal quality deteriorates, as indicated by the red color,
the white trajectory represents the SKF resolution The yellow trajectory represents the
ground truth. Figures 3 and 4 show the GNSS-alone errors in positioning for the two blocks.
We can see that, in the two areas, the positioning errors grow rapidly. In the eastward and
northward directions, the maximum values exceed 40 m.
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5.2. Experimental Results
5.2.1. Navigation Solution Error Comparisons in the Foliage Environment

First, we present Figure 5 for illustrating the flag that indicates if the pseudo-measurements
were used.
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The threshold values for the pseudo-range and pseudo-range rate were set, respec-
tively, to: {

tresholdpseudo range = 2 ∗ Rnominal
pseudo range = 2.4 m

tresholdpseudo range−rage = 4 ∗ Rnominal
pseudo range−rate = 0.48 m/s.

(53)

The threshold should be modified for different applications when different sensors are
used. It can be seen from this figure that, if both the values estimated of the pseudo-range
and pseudo-range rate estimated by SOMD exceed their respective thresholds, the MPKF is
employed. The first overlap interval corresponds to the densely wooded area in the actual
trajectory, while the second overlap interval corresponds to the area with dense buildings.
The triggering conditions are consistent with the experiment environments.

Figure 6 illustrates the position, velocity, and attitude errors of these algorithms in the
80–120 s interval of the navigation solution. It can be observed that the proposed algorithm
achieves favorable results across statistical measures, such as the median, mean, and
quartiles. The positioning error of the MPKF is reduced by about 20% and 32% compared
to the ERMAKF and SKF (5.08 m vs. 6.39 m and 7.47 m), respectively. The velocity error
of the MPKF is improved by 10% and 47% compared to ERMAKF and MCEKF (0.30 m/s
vs. 0.33 m/s and 0.57 m/s), respectively. For the attitude error, the improvement is of
about 58% and 38% compared to the ERMAKF and MCEKF (0.18◦ vs. 0.43◦ and 0.29◦),
respectively.
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For further analysis, Figures 7–9 present the results of each component of the naviga-
tion solution.
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The interval with the largest errors is between 40 s and 120 s. During this period,
the GNSS signal quality sharply declines, and due to the limited robustness of the EKF
and EIAKF against the outliers, the errors of these two algorithms are the highest. This
is reflected in the positioning errors, where the maximum longitude error approaches
20 m, while for latitude, it is 5 m. In terms of the velocity errors, the maximum error in
the eastward velocity is close to 2 m per second, and the northward error exceeds 1 m.
The performance of the MCEKF surpasses that of the EKF and EIAKF, as this algorithm
considers the non-Gaussian distribution of noise and is based on the MCC rather than the
MSE criterion. The ERMAKF and MPKF based on the SOMD exhibit the best performance,
as these two algorithms provide estimates of the GNSS noise variance. Furthermore, the
MPKF, when detecting a deterioration in the GNSS signal quality, effectively suppresses
the impact of the actual measurement system’s accuracy degradation by using multi-step
pseudo-observations.
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The RMSEs during 80–120 s for different algorithms are shown in Table 4.

Table 4. RMSEs during 80–120 s (the foliage area).

Algorithm Longitude
(m)

Latitude
(m)

Height
(m)

East Velocity
(m/s)

North
Velocity

(m/s)

Up Velocity
(m/s)

Pitch
(◦)

Roll
(◦)

Yaw
(◦)

SKF 5.4947 1.2624 5.6873 0.6415 0.2246 0.2221 0.2785 0.2165 0.0485
EIAKF 6.4426 1.8995 4.5234 0.6779 0.3255 0.1585 0.2784 0.2645 0.0454

ERMAKF 5.0849 1.9429 4.1101 0.2884 0.2544 0.1006 0.2783 0.3518 0.0312
MCEKF 5.1312 1.1843 5.3578 0.6001 0.2009 0.2183 0.2616 0.2031 0.0483
MPKF 3.6748 1.401 3.338 0.2260 0.1821 0.1726 0.1531 0.1234 0.0502
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5.2.2. Navigation Solution Error Comparisons in the Dense Building Area Environment

From Figure 10, it can be concluded that, in dense urban environments, the MPKF
shows significant improvements in estimating the accuracy compared to the other algo-
rithms. In terms of positioning, the accuracy is improved by 34% and 42% compared to
the ERMAKF and MCEKF, respectively. In terms of speed, the improvements are 35%
and 49% compared to the ERMAKF and MCEKF, respectively. For the attitude error, the
improvements are 48% and 38% compared to the ERMAKF and MCEKF, respectively.
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Figures 11–13 show the estimate results of each component in the algorithms. The
signal quality of the GNSS deteriorates significantly between 260 s and 300 s, resulting
in the poorest performance in positioning estimate for the EKF and IEAKF. Although the
IEAKF estimates the noise covariance of the GNSS, the algorithm’s robustness deteriorates
due to the large errors in the state estimate results in this interval. It is worth noting that, in
the estimate results of the MPKF, the latitude estimate and eastward velocity results are
slightly inferior to those of the ERMAKF, mainly because the positive effect brought by
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how to switch between the conventional EKF and MPKF more quickly.
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Algorithm Longitude
(m)

Latitude
(m)

Height
(m)

East Velocity
(m/s)

North
Velocity

(m/s)

Up Velocity
(m/s)

Pitch
(◦)

Roll
(◦)

Yaw
(◦)

SKF 4.3375 1.1487 3.6983 0.3777 0.1371 0.1732 0.2027 0.07 0.0887
EIAKF 3.9725 3.3917 3.4764 0.2469 0.1951 0.1184 0.2186 0.0932 0.1281

ERMAKF 3.493 1.2287 2.8754 0.2743 0.1631 0.1085 0.1497 0.2148 0.038
MCEKF 3.9398 1.0825 3.2441 0.3459 0.1304 0.1618 0.1906 0.065 0.0922
MPKF 3.3464 3.1183 3.0192 0.2154 0.3022 0.1697 0.0619 0.0863 0.1032
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5.3. Discussion

During the initial phase of the degraded GNSS signal quality, the MPKF method
demonstrates a superior accuracy in estimating the position, velocity, and attitude com-
pared to the alternative algorithms. This is partly due to the estimate of noise covariance in
the GNSS signal and partly due to the smaller uncertainty of the state transition matrix in
this interval. In the second section, the MPKF also achieved a high estimate accuracy, but
did not perform as well in latitude and eastward velocity estimates as in the first section.
This is mainly due to the more pronounced multi-path effects in dense road sections, and
the presence of severe heavy-tailed noise variance distribution. As shown in Figure 11, the
error increased from 280 s to 300 s and might be worse if the time was longer. Therefore,
future work will also include more testing with different GNSS-challenging areas and also
lower grade GNSS and IMU systems.

With the permissions of the authors in Ref. [28], we used the same Q0, R0, and IMU
bias parameters. Usually, for the GNSS clock bias and drift, especially, for the clock bias,
a larger Q = 10 or Q = 100 should be used. Meanwhile, for TC integration applications,
sufficient attention should be paid when using the standard deviation values from the GNSS
receiver for R0 because they are provided in the position domain, not the measurement
domain. Additionally, although the reference position has an accuracy of centimeters, i.e.,
accurate to the second decimal place, we used four decimal places to avoid introducing
rounding errors and truncation errors during the calculation process.

This paper focused on the application of the proposed MPKF algorithm in TC inte-
grated navigation. For the LC mechanisms, the algorithm is also applicable, requiring only
corresponding changes in the state transition matrix and measurement matrix.

Furthermore, in the current field of autonomous driving, the use of LiDAR and
cameras is becoming increasingly widespread and mature. The noise of these sensors
also varies with different environments. Therefore, the SOMD-based multi-step pseudo-
measurement approach proposed in this paper is also applicable to the fusion of more
sensor information. Future work will also consider the combination of multi-sensor elastic
fusion and multi-step pseudo-measurements.

6. Conclusions

This paper proposes a multi-step pseudo-observation algorithm based on filter per-
formance evaluation. (1) According to the outcomes of performance evaluation based on
the SOMD, it can be determined whether the actual measurement system is in a degraded
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state. (2) When the actual measurement system noise increases, unbiased historical state
estimates are used to construct pseudo-observations. Benefiting from the good short-term
self-sustainability of the INS, and compared to simply expanding the noise covariance
matrix, the proposed algorithm makes more full use of historical filtering information,
thereby improving the estimate accuracy. (3) Actual vehicle tests verified that, in urban nav-
igation applications, especially in complex environments, the proposed algorithm shows
significant improvements compared to adaptive algorithms based on the MSE criterion
and MCEKF algorithms based on the MCC criterion.
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