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Abstract: Yield calculation is an important link in modern precision agriculture that is an effective
means to improve breeding efficiency and to adjust planting and marketing plans. With the con-
tinuous progress of artificial intelligence and sensing technology, yield-calculation schemes based
on image-processing technology have many advantages such as high accuracy, low cost, and non-
destructive calculation, and they have been favored by a large number of researchers. This article
reviews the research progress of crop-yield calculation based on remote sensing images and visible
light images, describes the technical characteristics and applicable objects of different schemes, and
focuses on detailed explanations of data acquisition, independent variable screening, algorithm selec-
tion, and optimization. Common issues are also discussed and summarized. Finally, solutions are
proposed for the main problems that have arisen so far, and future research directions are predicted,
with the aim of achieving more progress and wider popularization of yield-calculation solutions
based on image technology.

Keywords: remote sensing images; visible light images; machine learning; deep learning; biomass;
yield calculation

1. Introduction

The growth process of crops is complex, and their yields are often influenced by
various factors such as crop variety, soil, irrigation, fertilization, light, diseases and pests [1].
Therefore, predicting crop yield is difficult. At the same time, yield estimation is a necessary
step in adjusting breeding plans and improving traits. Calculating current and final crop
yields accurately and efficiently is of great significance for actual production.

At present, yield calculation mainly relies on traditional yield-calculation methods
such as artificial field surveys, meteorological models, and growth models. Among them,
the artificial field survey method has a low technical threshold and strong universality, and
it is most frequently used in actual yield calculation. However, this method is cumbersome
to operate and inefficient; the yield-calculation method based on meteorological and growth
models requires a large amount of historical data to support it [2], and with its numerous
parameters, it is only applicable for specific planting areas or varieties. In recent years,
with the continuous development of sensors and artificial intelligence technology [3],
yield calculation based on remote sensing technology or visible light images [4,5] has
shown rapid development; remote sensing calculation can obtain multi-band reflection
information of a crop canopy, which can accurately reflect the internal growth status
and phenotype information of crops, and which is particularly suitable for large-scale
grain-crop-yield calculation. The yield-calculation methods based on visible light images
are suitable for detecting crops with relatively regular target shapes and textures, such
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as wheat ears, apples, grapes, and citrus, etc., mainly by extracting their color, texture,
morphology, and other features [6], and by achieving object segmentation counting by
combining machine learning algorithms [7,8]; alternatively, deep learning algorithms can
be used to automatically achieve object detection and counting [9,10], especially neural
network models represented by CNNs (Convolutional Neural Networks), which have
achieved good calculation performance [11]. The main methods and advantages and
disadvantages of crop-yield calculation are shown in Table 1.

Table 1. Crop-yield-calculation methods and comparison of advantages and disadvantages [12–15].

Calculation Method Implementation Method Advantage Disadvantages

Artificial field
investigation

Manual statistical calculation by
calculation tools

Low technical threshold,
simple operation, and
strong universality

Each step of the operation is
cumbersome and prone to errors,
and some crops are also subject to
damage detection

Meteorological model

Analyze the correlation of
meteorological factors and
establish models using statistical,
simulation, and other methods

Strong regularity and strong
guiding significance for
crop production

Needs a large amount of historical
data to be accumulated, suitable for
large-scale crops

Growth model
Digging a large amount of growth
data to digitally describe the
entire growth cycle of crops

Strong mechanism, high
interpretability, and
high accuracy

The growth models have numerous
parameters, are difficult to obtain,
are only suitable for specific
varieties and regions, and have
limited applications

Remote sensing
calculation

Obtaining remote sensing data
from multiple channels such as
multispectral and hyperspectral
data to establish regression models

Expressing internal and
external characteristics of
crops, which can reflect
agronomic traits of crops

Applicable to specific regions,
environments, and large-scale crops

Image detection
Implementing statistics and
counting through target
segmentation or detection

Low cost and high precision
A large number of sample images is
required, and the occlusion
problem is not easy to solve

The existing reviews have sorted out crop-yield calculation from the perspective of
model algorithms [12]. This article mainly analyzes the research and application progress of
image-based crop-yield calculation technology and compares and summarizes its technical
points, main problems, and development trends. To reflect the latest research results, this
article mainly focuses on the research results after 2020. More than 1200 relevant scientific
research papers were found in searches of the Web of Science database using keywords
such as images, crops, and yield calculation. Through further research and exclusion,
142 papers closely related to this topic were selected for in-depth research. The Section 1 of
the article analyzes common research objects in the literature, and the main characteristics
of crops and yield-calculation methods; the Section 2 focuses on introducing the progress of
literature research according to different technical routes; the Section 3 discusses the main
algorithms and common problems in current research; and finally, a summary of the entire
article is provided, and future development trends are discussed.

2. Yield-Calculation Indicators for Different Crops

Different types of crops have different external performance traits, and the parameter
indicators and technical solutions used for yield calculation are also different. Table 2
explains the main varieties studied in the literature, with a focus on introducing yield-
calculation indicators. Among them, grain crops are mainly multi-seed crops, such as corn,
wheat, and rice. The yield of crops is typically determined by assessing the number of
grains per unit volume, seed density, and unit weight. Economic crops are categorized
into fruit, tuber, stem, and leaf crops, with yield-calculation indicators based on their
physiological structural characteristics.
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Table 2. Yield-calculation methods for main crop varieties.

Classification Variety Crop Characteristics Yield-Calculation Indicators

Food crops

Corn
Important grain crop with strong
adaptability, planted in many countries, and
also an important source of feed

Number of plants, empty stem rate, number
of grains per spike

Wheat
The world’s highest sowing area, yield, and
distribution of food crops; high planting
density and severe mutual obstruction

Number of ears, number of grains per ear,
and thousand-grain weight

Rice
One of the world’s most important food
crops, accounting for over 40% of total global
food production

Number of ears, number of grains per ear,
seed setting rate, thousand-grain weight

Economic crops

Cotton
One of the world’s important economic
crops; an important industrial raw material
for strategic supplies

Total number of cotton beads per unit area,
number of cotton bolls per plant, and quality
of seed cotton per boll

Soybean
One of the world’s important economic
crops, widely used in food, feed, and
industrial raw materials

Number of pods, number of seeds per plant,
and weight of 100 seeds

Potato Potatoes are the world’s fourth largest food
crop after wheat, corn, and rice Tuber weight and fruiting rate

Sugarcane Important economic crops, grown globally;
important sugar raw materials Single stem weight and number of stems

Sunflower Important economic and oil crops Kui disk size and number of seeds

Tea Important beverage raw materials Number and density of tender leaves

Apple The third largest fruit crop in the world Number of plants per mu, number of fruits
per plant, and fruit weight

Grape Fruit consumption and brewing raw materials
have high social and economic impacts Grape bead count, ear count, and grain count

Orange The world’s largest category of fruits has
become a leading industry in many countries

Number of plants per mu, number of fruits
per plant, and fruit weight

Tomato
One of the main vegetable varieties in the
facility, and also an important raw material
for seasoning sauces

Number of spikes per plant, number of fruits,
and fruit weight

Almond Common food and traditional Chinese
medicine raw materials

Number of plants per mu, number of fruits
per plant, and fruit weight

Kiwifruit
One of the most consumed fruits in the
world, renowned as the “King of Fruits” and
“World Treasure Fruit”

Number of plants per mu, number of fruits
per plant, and fruit weight

3. The Application of Image Technology in Crop-Yield Calculation

With the development of artificial intelligence technology, image-analysis technol-
ogy has been widely applied in fields such as crop disease detection, soil analysis, crop
management, agricultural-product quality inspection, and farm safety monitoring [16].
According to the imaging categories, it can be divided into visible light, hyperspectral,
infrared, near-infrared, thermal imaging, fluorescence, 3D, laser, CT, etc. Among them,
visible light imaging, hyperspectral, infrared, and thermal imaging technologies can accu-
rately reflect the internal growth status and phenotype parameters of crops [17,18], and
these methods have been widely used in crop-growth monitoring and yield prediction.
At the same time, the growth process of crops is extremely complex, and crop yields are
related to various factors such as variety, planting environment, and cultivation methods.
The external structures of different types of crops are also different, and the calculation
methods for yields are also different. It is necessary to choose the corresponding single- or
composite-imaging technology based on specific objects and scenes. For the convenience of
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description, this article describes two technical solutions based on remote sensing images
and visible light images. Remote sensing images generally cover multiple imaging cate-
gories, often including multi-channel data sources, while visible light images are mainly
captured through digital cameras, mobile phones, and other means. In Figure 1, the process
of calculating crop yield based on image technology is illustrated.
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3.1. Yield Calculation by Remote Sensing Image

Remote sensing images mainly reflect the electromagnetic wave information emitted
or reflected by objects, and they can effectively express their internal or phenotypic informa-
tion. After processing and extracting remote sensing images, much key target information
can be captured [19]. Remote sensing technology plays a crucial role in precision agricul-
ture; through continuously and extensively collecting remote sensing image information
from planting areas, crop-growth status can be well monitored and understood [20]. Agri-
cultural remote sensing data mainly includes vegetation indices, crop physical parameters,
and environmental data, which have obvious big data attributes and are used to monitor
crop growth [21] for use as the main data sources. Therefore, feature information closely
related to crop growth can be extracted from remote sensing data to predict crop yield [22].
Remote sensing technology has the advantages of wide coverage, short cycle, low cost,
and long-term equality, playing an important role in crop-growth monitoring and yield
calculation. Remote sensing data obtained using spaceborne, airborne, and unmanned
aerial vehicles (UAVs) have been successfully used for crop-yield prediction [23]. The main
advantages of crop-yield prediction based on remote sensing are reliability, time savings,
and cost-effectiveness, which can apply to yield calculation in different growth regions,
categories, and cultivation methods.

At present, remote sensing platforms are mainly divided into low-altitude remote
sensing based on drones and high-altitude remote sensing based on satellite platforms [24].
Compared with space and airborne platforms, unmanned-aerial-vehicle remote sensing
technology equipped with visible light cameras, thermal infrared cameras, and spectral
cameras has many advantages [25,26]; for example, high spatiotemporal resolution, flexible
acquisition windows, and less atmospheric attenuation, which make it more suitable for
crop monitoring and yield prediction on a farm or field scale. Satellite remote sensing is
mainly based on various artificial satellites for data collection [27], which has the advantages
of good continuity and high stability [28], making it especially suitable for long-term
monitoring of crops grown in large fields such as wheat, rice, and corn. Although satellite
remote sensing data is highly valuable due to its large-scale coverage, insufficient high-
altitude resolution remains a prominent issue. Many prediction models can only provide
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more accurate crop-yield predictions in large-scale crops and cannot describe detailed
changes in crop yield at smaller scales (such as individual fields). In addition, due to the
possibility of satellites being obstructed by clouds and being affected by large weather
images, it is not possible to obtain timely information on the entire growth cycle of crops.

The spectral information obtained based on remote sensing technology is generally
divided into multispectral (MSI) and hyperspectral (HSI) information [29]. The multi-
spectral sensors installed on drones consist of suitable spectral bands in the visible and
near-infrared (VNIR) range, which are highly effective in obtaining various vegetation in-
dices (VIs) sensitive to crop health [13], such as the Normalized Difference Vegetation Index
(NDVI) [30], Green Normalized Difference Vegetation Index (GNDVI), and Triangle Vege-
tation Index (TVI), etc. Multispectral data based on drones and combined with machine
learning (ML) models [31] has been effectively used to monitor biomass information [32]
and yield prediction for various crops, such as corn, wheat, rice, soybeans, cotton, and other
varieties. Compared with natural light and multispectral imaging modes, hyperspectral
imaging [33,34] has over 100 bands with narrow distances between them, which can more
accurately express plant canopy reflectance and capture rich crop-structural information,
making them more advantageous for analyzing crop row shapes. At the same time, there
are also issues such as data redundancy, spectral overlap, and interference [14], and the
increase in data volume has also brought difficulties to model construction, so suitable
band selection algorithms are needed for dimensionality reduction.

The key to crop biomass or yield monitoring based on remote sensing images is
the identification of the spectral bands that are most sensitive to canopy reflectance; for
example, NDVI is calculated from the red and near-infrared bands [14], while EVI is
obtained from a combination of the red, near-infrared, and blue light bands [35]. Extraction
of vegetation indices, biophysical parameters, growth environment parameters, and other
indicators from remote sensing data, and establishment of correlations with crop-dependent
variables through machine learning or deep learning algorithms [36] is required. The
vegetation indices (VIs) formed based on the spectral information of various bands have
high correlations with yield, and they can reliably provide spatiotemporal information of
vegetation coverage, which are currently widely used in spectral index information. Table 3
explains the commonly extracted types of remote sensing feature information [37,38].

Table 3. Common remote sensing indicator Information [37–40].

Type Title Extraction Method or Description Remarks

Vegetation
index

Normalized Vegetation
Index (NDVI) (NIR − R)/(NIR + R) Reflects the coverage and health

status of plants

Red-edge chlorophyll vegetation
index (ReCl) (NIR/RED) − 1 Displays the photosynthetic

activity of the canopy

Enhanced Vegetation Index (EVI2) 2.5 × (NIR − R)/(NIR + 2.4 × R + 1) ×
(1 − ATB)

Accurately reflects the growth
of vegetation

Ratio Vegetation Index (RVI) NIR/R
Sensitive indicator parameter of
green plants, which can be used
to estimate biomass

Difference Vegetation Index (DVI) NIR − R

Sensitive to soil background,
beneficial for monitoring
vegetation ecological
environment

Vertical Vegetation Index (PVI) ((SR − VR)2 + (SNIR − VNIR)2)1/2 S represents soil emissivity and V
represents vegetation reflectance

Transformed Vegetation
Index (TVI) (NDVI + 0.5)1/2 Conversion of chlorophyll

absorption
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Table 3. Cont.

Type Title Extraction Method or Description Remarks

Vegetation
index

Green Normalized Difference
Vegetation Index (GNDVI) (NIR − G)/(NIR + G) Strong correlation with nitrogen

Normalized Difference Red-Edge
Index (NDRE) (NIR − RE)/(NIR + RE) RE represents the emissivity of

the red-edge band

Red–Green–Blue Vegetation
Index (RGBVI) (G − R)/(G + R) Measuring vegetation and surface

red-color characteristics

Green Leaf Vegetation Index (GLI) (2G − B − R)/(2G + B + R) Measures the degree of
surface-vegetation coverage

Excess Green (ExG) (2G − R − B) Small-scale plant detection

Super Green Reduced Red
Vegetation Index (ExGR) 2G − 2.4R Small-scale plant detection

Excess Red (ExR) 1.4R − G Soil background extraction

Visible Light Atmospheric
Impedance Vegetation
Index (VARI)

(G − R)/(G + R − B)
Reduces the impacts of lighting
differences and atmospheric
effects

Leaf Area Vegetation Index (LAI) leaf area (m2)/ground area (m2)
The ratio of leaf area to the soil
surface covered

Atmospheric Resilience
Vegetation Index (ARVI) (NIR − (2 × R) + B)/(NIR + (2 × R) + B) Used in areas with high

atmospheric aerosol content

Modified Soil Adjusted
Vegetation Index (MSAVI)

(2 × NIR + 1 − sqrt((2 × NIR + 1)2 − 8
× (NIR-RED)))/2

Reduce the impact of soil on
crop-monitoring results

Soil Adjusted Vegetation
Index (SAVI) (NIR − R) × (1 + L)/(NIR + R + L) L is a parameter that varies with

vegetation density

Optimize Soil Adjusted
Vegetation Index (OSAVI) (NIR − R)/(NIR + R + 0.16) Uses reflectance from NIR and

red spectra

Normalized Difference Water
Index (NDWI) (BG − BNIR)/(BG + BNIR) Research on vegetation moisture

or soil moisture

Conditional Vegetation
Index (VCI)

The ratio of the current NDVI to the
maximum and minimum NDVI values
during the same periods of time over
the years

Reflects the growth status of
vegetation within the same
physiological period

Biophysical
parameters

Leaf Area Index (LAI) Total leaf area/land area

The total leaf area of plants per
unit land area is closely related to
crop transpiration, soil water
balance, and canopy photosynthesis

Photosynthetically active
radiation component (FPAR)

Proportion of absorbable
photosynthetically active radiation in
photosynthetically active
radiation (PAR)

Important biophysical parameter
commonly used to estimate
vegetation biomass

Growth
environment
parameters

Conditional Temperature
Index (TCI)

The ratio of the current surface
temperature to the maximum and
minimum surface temperature values
over the same periods of time over
the years

Reflecting surface temperature
conditions, widely used in
drought inversion and monitoring

Conditional Vegetation
Temperature Index (VTCI)

The ratio of LST differences between all
pixels with NDVI values equal to a
specific value in a certain research area

Quantitatively characterizing crop
water stress information

Temperature Vegetation Drought
Index (TVDI)

Inversion of surface soil moisture in
vegetation-covered areas

Analyzing spatial changes in
drought severity
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Table 3. Cont.

Type Title Extraction Method or Description Remarks

Growth
environment
parameters

Vertical Drought Index (PDI)

The normal soil baseline perpendicular
to the coordinate origin in the
two-dimensional scatter space of
near-infrared and red reflectance

The spatial distribution
characteristic commonly used for
soil moisture

3.1.1. Yield Calculation by Low-Altitude Remote Sensing Imaging

Different crops have different spectral characteristics, and the absorbed, radiated,
and reflected spectra also differ; low-altitude remote sensing technology, which is mainly
based on the spectral characteristics of plants, can be equipped with multi-channel image
sensors [41], collect different images in different bands, and analyze the different character-
istic parameters of crops. With the continuous advancement of flight control technology,
unmanned aerial vehicles equipped with multiple sensors have high degrees of freedom
in flight and flexible control [42,43]. Compared with satellite remote sensing technology,
drone remote sensing has the advantages of a small observation range, high image res-
olution, and the ability to capture video images. Utilizing drone low-altitude flight to
obtain high-resolution remote sensing images has become an ideal choice for agricultural
applications. In Figure 2, the low-altitude remote sensing imaging devices and imaging
effects are shown.
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• Yield Calculation of Food Crops

Food crops are an indispensable source of food in daily life, with corn, rice, and wheat
accounting for more than half of the world’s food. They have the characteristics of a wide
planting range and high yield, which are the research objectives that people focus on. In
terms of crop-growth monitoring, the analysis methods for food crops are relatively similar,
working mainly by collecting remote sensing image information to obtain information on
crop optics, structure, thermal characteristics, etc. Indicator prediction can be achieved by
establishing biomass or yield fitting models through machine learning or deep learning
algorithms [46].

Corn is one of the commodities widely cultivated in countries such as the United
States, China, Brazil, Argentina, and Mexico, and there is also a lot of related research
work. Yang et al. [47] used a drone platform to collect hyperspectral images of corn at
different growth stages, extracted spectral and color image features, and used a CNN
model to achieve a prediction accuracy of 75.5% for corn yield, with a Kappa coefficient of
0.69, which is better than single-channel feature extraction and traditional neural network
algorithms. Danilevicz et al. [48] proposed a multimodal corn-yield prediction model,
and drones were used to obtain multispectral corn images and extract eight vegetation
indices, and when combined with field management and a variety of gene information,
a multimodal prediction model based on tab-DNN and sp-DNN was established. The
results showed a relative mean square error of 7.6% and an R2 of 0.73, which is better than
the modeling results using a single data type. Kumar et al. [49] obtained the vegetation
index VIs of corn at different stages using drones, and used multiple machine learning
algorithms such as LR (Linear Regression), KNN (k-Nearest Neighbor), RF (Random
Forest), SVR (Support Vector Regression), and DNN (Deep Neural Network) to predict corn
yield, and the effects of various variables on yield-prediction results were evaluated and
screened, proving that the combination of VIs and ML models can be used for corn-yield
prediction. Yu et al. [50] obtained RGB and multispectral MS images of corn using drones,
constructed raster data of crop surface model CMSs, and extracted vegetation plant VIs.
Some corn aboveground-biomass-AGB prediction models based on DCNN and traditional
machine learning algorithms were constructed, and the effects of different remote sensing
datasets and models were compared. The results showed that using data fusion or deep
learning algorithms had more advantages in giving results. Marques et al. [39] obtained
hyperspectral images of corn using drones and extracted 33 vegetation indices; a prediction
model was established by using the random forest RF algorithm, and the contribution rate
of vegetation indices to yield was evaluated and ranked. Finally, the optimal model was
found to have a correlation coefficient of 0.78 for corn-yield prediction.

Most rice cultivation is concentrated in East Asia, Southeast Asia, and South Asia,
and its growth period generally includes milk ripening, wax ripening, full ripening, and
withering. Mia et al. [51] studied a multimodal rice-yield prediction model, which combined
multispectral data collected by drones with weather data, and they established a prediction
model using multiple CNNs (Convolutional neural networks). The optimal model RMSPE
was 14%, indicating that multimodal modeling had better prediction performance than
single data source modeling. Bellis et al. [52] used drones to obtain hyperspectral and
thermal images of rice, and they extracted vegetation indices. Two depth models, 3D-CNN
and 2D-CNN, were used to establish rice-yield prediction models, resulting in RMSE of
8.8% and 7.4–8.2%, respectively, indicating the superiority of convolutional autoencoders
in yield prediction.

Most countries in the world rely on wheat as their main source of food, making it
the world’s largest crop in terms of planting area, yield, and distribution. There have
been numerous research reports on wheat breeding, planting technology management,
storage, and transportation, and yield prediction is particularly important. The maturity
stage of wheat is generally divided into the milk maturity stage, wax maturity stage,
and complete maturity stage, and the characteristics expressed at different stages are also
different. The calculation of wheat yield based on remote sensing images is mainly achieved
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through spectral data. In the field of multispectral research on wheat-yield calculation,
Bian et al. [53] used drones to obtain multispectral data of multi-stage wheat and extracted
multiple vegetation indices. Machine models such as Gaussian process regression (GPR),
support vector regression (SVR), and random forest regression (RFR) were used to establish
a wheat-yield prediction model based on vegetation indices. The GPR model R2 reached a
maximum of 0.88. Han et al. [54] used drones to capture multispectral images of wheat
and extracted its feature indices. Using the GOA-XGB model based on the Grasshopper
optimization algorithm, the optimal prediction accuracy R2 for aboveground-biomass AGB
of wheat was obtained, which was 0.855. Zhou et al. [55] studied the correlation between
multispectral reflectance and wheat yield and protein content, and they evaluated the
performance of various machine learning models such as random forest (RF), artificial
neural network (ANN), and support vector regression (SVR), which were compared with
linear models based on vegetation indices, and the results demonstrated the modeling
advantages of machine learning algorithms. Sharma et al. [56] used a drone equipped with
multiple sensors to collect multispectral images of oats at different growth stages in three
experimental fields, and they extracted multiple vegetation indices VIs. The performance of
four machine learning models, namely partial least squares (PLS), support vector machine
(SVM), artificial neural network (ANN), and random forest (RF), were evaluated. In the
collected multiple images, the Pearson coefficient r was between 0.2 and 0.65, and the
reasons for the unsatisfactory prediction performance were analyzed. Similar studies
include those by Wang et al. [57] and Roy et al. [58], which combined spectral indices with
machines to calculate yield by collecting multispectral data during the growth period. In
terms of hyperspectral imaging, Fu et al. [59] used drones to obtain hyperspectral images
of wheat and used Multiscale Gabor GLCM to extract its canopy texture features, which
they combined with vegetation index and other spectral features, and they used filtered
parameter variables and an LSSVM algorithm to obtain the highest accuracy in wheat
biomass calculation; R2 was 0.87. Tanabe et al. [60] applied CNN networks to wheat-yield
prediction based on unmanned-aerial-vehicle hyperspectral data, which achieved better
performance than traditional machine learning algorithms. Li et al. [61] used drones to
obtain hyperspectral images of winter wheat during flowering and filling stages, extracted
a large number of spectral indices, and used three algorithms for feature filtering to reduce
dimensionality. The highest prediction result was obtained using an integrated model
based on SVM, GP, LRR, and RF, with an R2 of 0.78, which was superior to a single
machine learning algorithm and independent variables without feature optimization. In
terms of data-fusion yield calculation, the main approach is to use multi-sensor and multi-
channel data to establish a wheat-yield calculation model, and many more results have
been achieved than with a single dimension, such as those of Fei et al. [38], Li et al. [62],
Sharif et al. [63], and Ma et al. [64], who have studied some wheat-yield calculation models
based on the fusion of multi-channel data such as RGB images, multispectral, thermal
infrared images, and meteorological data. The results obtained through multiple machine
learning algorithms are superior to single-channel modeling, and the calculation accuracy
and robustness were more advantageous.

• Yield Calculation of Economic Crops

Economic crops typically play an important role in the food industry, in addition to
industrial raw materials such as soybeans, potatoes, cotton, grapes, etc. Soybeans occupy
an important position in global crop trade, with Brazil, the United States, and Argentina
contributing over 90% of global soybean yield. The combination of spectral indices and
machine learning algorithms is also a common research topic within yield prediction.
Maimaitijiang et al. [65] used a drone equipped with multiple sensors to collect RGB,
multispectral, and thermal images of soybeans, and extracted multimodal features such as
canopy spectra, growth structures, thermal information, and textures. Multiple algorithms
such as PLSR, RFR, SVR, and DNN were used to predict soybean yield, which verified that
multimodal information was more accurate than single-channel data sources, the highest
R2 reached 0.72 using DNN-F2, and the RMSE was 15.9%. Zhou et al. [66] extracted seven
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feature indicators from hyperspectral images obtained by drones, which they combined
with maturity and drought-resistance classification factors, and they built a hybrid CNN
model to predict soybean yield. The predicted result of the model was 78% of the actual
yield. Teodoro et al. [37] used drones to collect multi-temporal spectral data of soybeans,
and they extracted multiple spectral indices and used multi-layer deep regression networks
to predict the maturity stage (DM), plant height (PH), and seed yield (GY) of soybeans. The
modeling effect was superior to traditional machine learning algorithms, which provided a
good solution for soybean-yield prediction. Yoosefzadeh-Najafabadi et al. [67] extracted
the hyperspectral index (HVI) of soybeans for predicting yield and fresh biomass (FBIO),
established a prediction model using DNN-SPEA2, and studied the effects of different
band and index selections on the prediction results, and compared it with traditional
machine learning algorithms, achieving good expected results. Yoosefzadeh-Najafabadi
et al. [68] obtained hyperspectral reflectance data of soybeans, used recursive feature
elimination (RFE) to reduce data dimensionality and screen variables, evaluated MLP, SVM,
and RF machine learning algorithms, and found the optimal combination of exponential
independent variables and models. Shi et al. [69] studied the feasibility of estimating
the AGB and LAI of mung beans and red beans using multispectral data collected by
drones [70], compared and analyzed the sensitive bands and spectral parameters that
affect AGB and LAI, evaluated multiple machine learning algorithms such as LR, SMLR,
SVM, PLSR, and BPNN, and, finally, achieved the best fitting effect through the SVM
model. The predicted R2 for AGB of red beans and green beans reached 0.811 and 0.751,
respectively. Ji et al. [40] obtained RGB images of fava beans by using a drone, and they
extracted vegetation index, structural information, and texture information to predict
aboveground biomass (AGB) and yield (BY). The impacts of different growth stages,
variable combinations, and learning models on prediction performance was evaluated.
Finally, an ensemble learning model was used to predict fava bean yield with an R2 of 0.854.

Yield prediction based on drone remote sensing technology is also common in crops
such as potatoes, cotton, sugarcane, tea, alfalfa, etc. Different types of crops have different
spectral reflectance characteristics and sensitive feature indices, and it is necessary to gradu-
ally screen according to the actual contribution rate to ultimately establish a high-precision
and robust-prediction model. Liu et al. [71] studied the aboveground biomass (AGB) predic-
tion of potatoes based on unmanned-aerial-vehicle (UAV) multispectral images. Multiple
variable information such as COS (canopy original spectra), FDS (first-derivative spectra),
VIs (vegetation indices), and CH (crop height) were extracted from the spectral images.
The focus was on analyzing the correlation between different channel-variable charac-
teristics, growth stages, regression models, and AGB, and they selected the independent
variables and combinations with the highest correlation. Sun et al. [72] used drones to
collect hyperspectral images of potatoes to predict potato tuber yield and setting rate. Ridge
regression was used to predict tuber yield with R2 of 0.63, and partial least squares was
used to predict setting rate with R2 of 0.69. Xu et al. [45] studied cotton-yield calculation
based on time-series unmanned-aerial-vehicle remote sensing data. A U-Net network
was used for semantic segmentation, multiple feature information was extracted, and a
nonlinear prediction model was established by using the BP neural network. Through
variable screening and evaluation of results, an optimal yield-prediction model was ob-
tained that had an average R2 of 0.854. Poudyal et al. [73] and de Oliveira et al. [74] used
hyperspectral and multispectral methods, respectively, to calculate sugarcane yield. He
et al. [44] used drones to collect hyperspectral images of spring-tea canopy to predict its
fresh yield, extracted multiple common chlorophyll spectral indices and leaf area spectral
indices, studied the differences caused by single or multiple spectral indices, and evaluated
the prediction accuracy of LMSV (linear model with a single index variable), PLMSVs
(piecewise linear model with the same index variables), and PLMCVs (piecewise model
with the combined index variables) models, and good prediction results were achieved,
demonstrating the potential of hyperspectral remote sensing in estimating spring-tea fresh
yield. Feng et al. [75] used hyperspectral images collected by drones to predict alfalfa
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yield. Firstly, a large number of spectral indices were extracted from the images and dimen-
sionality was reduced. Then, three machine learning algorithms, namely random forest
(RF), support vector machine (SVR), and KNN, were used for training. Finally, the best
prediction performance was achieved by integrating machine models, with an R2 of 0.854.
Wengert et al. [76] collected multispectral-image data of grasslands in different seasons
by using drones, analyzed characteristic bands and vegetation indices, and evaluated the
model performance of four machine learning algorithms and finally found that the model
based on the CBR algorithm had the best prediction performance, with high prediction
accuracy and robustness. Pranga et al. [77] fused the structure and spectral data of drones
to predict ryegrass yield and extracted canopy height and vegetation index information
collected by sensors, and the model performance of PLSR, RF, and SVM machine learning
algorithms for predicting dry matter DMY were evaluated; they found that the prediction
accuracy based on multi-channel fusion was higher, and that the RF algorithm had the best
prediction performance, with a maximum error of no more than 308 kg ha−1. Li et al. [78]
used drones to collect multispectral-image information for red clover and extracted six
spectral indices to predict its dry matter yield. The predictive performance of three machine
learning algorithms were evaluated, and, finally, they found that the model established
through artificial neural networks had the best performance, with an R2 of 0.90 and an
NRMSE of 0.12, respectively.

In economic crops, fruit counting is used to calculate yield, with visible light image
segmentation or detection is mainly utilized. However, some scholars have also evaluated
overall yield through remote sensing technology for varieties such as tomatoes, grapes,
apples, almonds, etc. Tatsumi et al. [79] used high-resolution RGB and multispectral
images of tomatoes, collected by drones, to measure their biomass and yield. Information
from a total of 756 first-order and second-order features were extracted from the images.
Multiple variable screening algorithms were used to identify the independent variable
factors that contributed significantly to the SM, FW, and FN of tomato, and the impacts
of three machine learning algorithms on model performance were evaluated. Finally, the
best biomass-indicator calculation models were established through multiple experiments.
Ballesteros et al. [80] used drones to obtain hyperspectral images of vineyards and to
extract vegetation index VIs and vegetation coverage information, which were used to
establish a fitting relationship with yield through artificial neural networks. The impacts of
different variables on yield-prediction accuracy were evaluated, providing a good reference
for grape-yield prediction based on remote sensing technology; Chen et al. [81] studied
apple tree-yield prediction based on drone multispectral images and sensors, evaluated the
contribution of spectral and morphological features to yield, and established an ensemble
learning model by combining SVR and KNN machine learning algorithms. Finally, through
feature priority and model optimization, the R2 of the optimal model on the validation
set reached 0.813, and on the test set this reached 0.758, providing a good case for apple-
yield prediction based on remote sensing images. Tang et al. [82] collected multispectral
aerial images of almonds and established an improved CNN network for almond-yield
prediction, achieving good prediction accuracy. The results were significantly better than
those obtained by machine learning algorithms based on vegetation indices, demonstrating
the advantages of deep learning algorithms in automatically extracting features. In Table 4,
the research progress on crop-yield calculation based on low-altitude remote sensing
is shown.

With the continuous advancement of flight control technology, the cost of obtaining
high-resolution remote sensing data is becoming lower and lower. Significant progress
has also been made in crop-yield monitoring by using drone platforms, among which the
machine learning algorithm ML has played an irreplaceable role. However, there are also
many problems, such as the inability to obtain stable and continuous image data, and the
question of how to filter feature indices is also an important issue that affects prediction
accuracy. Further consideration is needed for machine learning algorithms.
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Table 4. Research progress on crop-yield calculation based on low-altitude remote sensing.

Crop
Varieties Literature Year Task Network Framework and

Algorithms Result

Corn

[47] 2021 Predict the yield of corn CNN AP: 75.5%
[48] 2021 Predict the yield of corn tab-DNN and sp-DNN R2: 0.73
[49] 2023 Predict the yield of corn LR, KNN, RF, SVR, DNN R2: 0.84
[50] 2022 Estimate biomass of corn DCNN, MLR, RF, SVM R2: 0.94
[39] 2020 Predict the yield of corn RF R2: 0.78

Rice
[51] 2023 Predict the yield of rice CNN RMSPE: 14%
[52] 2022 Predict the yield of rice 3D-CNN, 2D-CNN RMSE: 8.8%

Wheat

[53] 2022 Predict the yield of wheat GPR R2: 0.88

[38] 2023 Predict the yield of wheat Ensemble learning algorithms
of ML R2: 0.692

[61] 2022 Predict the yield of wheat Ensemble learning algorithms
of ML R2: 0.78

[54] 2022 Estimate biomass AGB of wheat GOA-XGB R2: 0.855
[62] 2022 Estimate yield of wheat RF R2: 0.86

[55] 2021 Calculate the yield and protein
content of wheat SVR, RF, and ANN R2: 0.62

[59] 2021 Estimate biomass of wheat LSSVM R2: 0.87
[57] 2022 Estimate biomass of wheat RF R2: 0.97
[58] 2021 Calculate the yield of wheat ANN R2: 0.88
[64] 2023 Predict the yield of wheat MultimodalNet R2: 0.7411
[60] 2023 Predict the yield of wheat CNN RMSE: 0.94 t ha−1

[56] 2022 Estimate biomass of oats PLS, SVM, ANN, RF r: 0.65
[63] 2020 Calculate the yield of barley GPR R2: 0.84

Beans

[65] 2020 Predict the yield of soybean DNN-F2 R2: 0.72
[66] 2021 Predict the yield of soybean CNN R2: 0.78
[37] 2021 Predict the yield of soybean DL and ML r: 0.44
[67] 2021 Predict yield and biomass DNN-SPEA2 R2: 0.77
[68] 2021 Predict the yield of soybean seed RF AP: 93%
[69] 2022 Predict AGB and LAI SVM R2: 0.811

[70] 2022 Estimate plant height and yield of
broad beans SVM R2: 0.7238

[40] 2023 Predict biomass and yield of
broad beans

Ensemble learning algorithms
of ML R2: 0.854

Potato
[71] 2022 Estimate biomass of potatoes SVM, RF, GPR R2: 0.76
[72] 2020 Predict the yield of potato tuber ridge regression R2: 0.63

Cotton [45] 2021 Predict the yield of cotton BP neural network R2: 0.854

Sugarcane
[73] 2022 Predict component yields of

sugarcane GBRT AP: 94%

[74] 2022 Predict characteristic parameters
of sugarcane RF R2: 0.7

Spring tea [44] 2023 Predict fresh yield of spring tea PLMSVs R2: 0.625

Alfalfa [75] 2020 Predict yield Ensemble learning algorithms
of ML R2: 0.854

Meadow [76] 2022 Predict the yield of the meadow CBR R2: 0.87
Ryegrass [77] 2021 Predict the yield of ryegrass PLSR, RF, SVM RMSE: 13.1%
Red clover [78] 2021 Estimate the yield of red clover ANN R2: 0.90

Tomato [79] 2021 Predict biomass and yield
of tomato RF, RI, SVM rMSE: 8.8%

Grape [80] 2020 Estimate the yield of the vineyard ANN RE: 21.8%
Apple [81] 2022 Predict the yield of apple tree SVR, KNN R2: 0.813
Almond [82] 2020 Estimate yield of almond Improved CNN R2: 0.96
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3.1.2. Yield Calculation by High-Altitude Satellite Remote Sensing Imaging

Compared to drone platforms, satellite platforms have advantages in coverage and
stability, and they can continuously monitor crop growth in different spectral bands, extract
multiple vegetation indices for yield prediction, and collect data across growth periods and
over a large area more efficiently [35,83]. However, their resolution is lower when collecting
small-scale plots, which are more affected by weather changes and are more expensive.
Remote sensing satellites can provide free and continuous remote sensing data-collection
tools for constructing crop-growth models. The most common representative satellites
in the world include the LANDSAT series operated in cooperation with the National
Aeronautics and Space Administration (NASA) and the United States Geological Survey
(USGS), the SPOT series developed and operated by the French National Center for Space
Studies (CNES), the NOAA series operated by the National Oceanic and Atmospheric
Administration (NOAA) of the United States, the Sentinel series developed by the European
Space Agency (ESA), and the ZY-3 and GF-2 systems developed and operated by the
National Space Administration of China. The entire process of crop-yield prediction and
data processing based on remote sensing satellites includes data acquisition; preprocessing;
image correction; feature extraction, classification and interpretation; accuracy evaluation;
post-processing; and analysis. Each step has its specific methods and techniques, and the
order of and specific implementation of these steps may vary depending on the calculation
indicators and data characteristics. In Figure 3, the remote sensing satellite imaging process
overview and effect diagram are shown.
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Bebie et al. [83] used the Sentinel-2 satellite to obtain remote sensing image data of
wheat, and they extracted emissivity data from multiple growth stages as input parameters.
An evaluation model was established by using random forest (RF), KNN, and BR. The
highest R2 of 0.91 was reached when images of all growth stages were used. Kamir
et al. [84] studied the yield prediction of wheat based on satellite images and climate time-
series data, and they analyzed the effects of different vegetation indices, machine learning
algorithms, growth stages, and other factors on the prediction accuracy of the model; they
finally obtained the best prediction effect through a support vector machine algorithm,
with an R2 of 0.77, which was better than other single machine learning algorithms or
ensemble models. Liu et al. [85] used satellite remote sensing, climate, and crop-yield data
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to predict wheat yield; multiple linear regression models, machine learning algorithms,
and deep learning methods were compared, and they evaluated the impacts of different
satellite variables, vegetation indices, and other factors on the prediction results. Son
et al. [35] studied the prediction of rice yield in fields based on Sentinel-2 satellite images,
evaluated three machine model algorithms: RF, SVM, and ANN, and the yield for four
consecutive growing seasons was predicted, which obtained satisfactory prediction results;
Abreu et al. [86] estimated the yield of coffee trees by obtaining multispectral images from
satellites and using machine learning algorithms. The correlations between different bands
of vegetation-index selections and yield were analyzed, and they evaluated the prediction
accuracy of various model algorithms and finally found that the highest prediction accuracy
was obtained by the neural network algorithm NN. Bhumiphan et al. [87] obtained remote
sensing-impact data for rubber trees through the Sentinel-2 satellite for one entire year. By
extracting data for six vegetation indices, including GSAVI, MSR, NBR, NDVI, NR, and RVI,
the impacts of single or multiple indices on prediction accuracy were evaluated. Finally,
the optimal yield-prediction model was established through multiple linear regression,
with an R2 of 0.80, providing a reference for yield prediction based on high-altitude remote
sensing images. Filippi et al. [88] studied the prediction of cotton yield based on remote
sensing datasets in both temporal and spatial domains, including satellite images, terrain
data, soil, weather, etc. A prediction model was constructed by using the random forest to
evaluate the effects of different resolutions, time spans, coverage areas, and other factors
on the prediction results. Desloires et al. [15] studied a corn-yield prediction model based
on Sentinel-2, temperature, and other data, and they evaluated the effects of time, spectral
information, machine algorithms and other factors on yield and finally obtained the best
result by integrating multiple machine learning algorithms, with an average error of 15.2%.
Liu et al. [89] proposed a hybrid neural network algorithm for predicting grain yield. Based
on remote sensing image data provided by MODIS satellites combined with channel data
such as vegetation index and temperature, a convolutional neural network incorporating a
CBAM (Convolutional Block Attention Module) attention mechanism was used to enhance
the extraction of vegetation index and temperature features. Finally, LSTM (Long Short-
Term Memory) was used to analyze time-series data, and the final model obtained an R2 of
up to 0.989 in the application. In Table 5, the research progress on crop-yield calculation
based on high-altitude-satellite remote sensing is shown.

Table 5. Research progress on crop-yield calculation based on high-altitude-satellite remote sensing.

Crop
Varieties Literature Year Task Network Framework and

Algorithms Result

Wheat
[83] 2022 Predict the yield of wheat RF, KNN, BR R2: 0.91
[84] 2020 Predict the yield of wheat SVM R2: 0.77
[85] 2022 Predict the yield of wheat SVR R2: 0.87

Rice [35] 2022 Predict the yield of rice SVM, RF, ANN MAPE: 3.5%
Coffee tree [86] 2022 Predict the yield of coffee tree NN R2: 0.82
Rubber [87] 2023 Predict the yield of rubber LR R2: 0.80
Cotton [88] 2020 Predict the yield of cotton RF LCCC: 0.65
Corn [15] 2023 Predict the yield of corn Ensemble learning algorithms of ML R2: 0.42
Foodstuff [89] 2023 Predict the yield of a foodstuff LSTM R2: 0.989

Over the years, with the continuous iterations of technology, satellite-based remote
sensing data acquisition has become more convenient, and calculating various vegetation
indices (VIs) has also become more convenient. However, there are also issues such as
spatial resolution and cloud cover, and optical remote sensing satellites are heavily affected
by weather images. Therefore, it can be combined with microwave-remote sensing data,
which can receive longer electromagnetic wave information from the surface. These longer
electromagnetic waves can effectively penetrate clouds and mist and are not easily affected
by meteorological conditions and sunlight levels, making microwave remote sensing
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capable of monitoring the surface. In addition, microwave-remote sensing technology
can penetrate vegetation and has the ability to detect subsurface targets. The obtained
microwave images have a clear three-dimensional sense and can provide information
beyond visible-light photography and infrared remote sensing. Therefore, it has strong
synergistic potential by combining the above two.

3.2. Yield Calculation by Visible Light Image

Visible light images can convey the absorption and reflection of white light by crops,
and high-resolution digital images contain rich color, structure, and morphological infor-
mation [90], which can be used to analyze the growth and yield prediction of crops by
fully extracting feature information. The extraction of color features from digital images
is the most effective and widely used method for monitoring crop-growth characteristics.
Information such as crop coverage, leaf-area index, biomass, plant nutrition, and pests
and diseases will be reflected in color, and commonly used color indices include VARI,
ExR, ExG, GLI, ExGR, NDI, etc. Texture is a description of the grayscale of image pixels.
Compared with color features, texture can better balance the overall and detailed aspects
of the image. Therefore, texture analysis plays a very important role in image analysis,
which usually includes two aspects: the extraction of detailed texture features of the image,
such as contrast (CON), correlation (COR), and entropy (ENT); and the classification of
the image based on the extracted features. Morphological features are often associated
with crop features and used together to describe image content. However, due to the
complexity of crop growth, the information expressed by a single channel’s features is
often not complete enough. It is necessary to comprehensively study features such as
color, texture, and morphology to more accurately monitor crop-growth characteristics.
With the continuous maturity of digital imaging technology and the widespread use of
high-resolution camera equipment, there is an increasing amount of research on evaluating
crop growth by analyzing crop-growth images. According to different processing methods,
there are mainly two types of image processing: traditional image processing based on
segmentation, and depth processing.

3.2.1. Yield Calculation by Traditional Image Processing

Traditional image processing is mainly achieved through information extraction and
segmentation. Image segmentation is the core of plant-phenotype image processing, with
the main purpose of extracting the parts of interest and removing background or other
irrelevant noise from the image. When performing image segmentation, the object of
interest is defined by the internal similarity of pixels in features such as texture and color.
The simplest algorithm is that for threshold segmentation, which creates pixel groups on
grayscale based on intensity levels to separate the background from the target [91]. Feature
extraction is one of the key technologies for target recognition and classification based on
computer vision [92]; its main purpose is to provide various classifications for machine
learning, and the features extracted from the image are processed into “feature vectors”,
including edges, pixel intensity, geometric shapes, combinations of pixels in different color
spaces, etc. Feature extraction is a challenging task that often requires manual screening
and testing using multiple feature-extraction algorithms in traditional image processing
until satisfactory feature information is extracted.

The traditional image-processing method is relatively complex and requires manual
feature selection, followed by the establishment of calculation models using classification
or regression algorithms. Massah et al. [93] used a self-developed robot platform to collect
images and extract features such as grayscale histogram, gradient direction histogram,
shape context, and local binary to achieve statistical analysis of kiwifruit quantities. The
image was segmented based on the RGB-threshold segmentation method, and a support
vector machine algorithm was used to achieve quantity prediction. A prediction result with
R2 of 0.96 was obtained, which was superior to those from FCN-8S, ZFNet, AlexNet, Google
Net and ResNet deep networks. Zhang et al. [94] extracted color and texture features from
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high-resolution RGB images obtained by a drone to predict the LAI of kiwifruit orchards.
Two regression algorithms (SWR and RFR) were used for modeling and comparative anal-
ysis. The highest estimated R2 for LAI was 0.972, and the RMSE was 0.035, providing a
good reference for kiwifruit growth monitoring and yield calculation. Guo et al. [95] devel-
oped a new vegetation index, MRBVI, for predicting chlorophyll and yield of corn. Their
experiment showed that the determination coefficients of R2 for estimating chlorophyll
content and predicting yield by using MRBVI were 0.462 and 0.570, respectively, which
were better than those from the other seven commonly used VI methods. Zhang et al. [96]
used consumer-grade drones to capture RGB images of corn, extracted its color features
using ExG, and established a corn-yield prediction model using regression algorithms. The
yield prediction models for three samples were significant, with a minimum MAPE range
of 6.2% and a maximum of 15.1%, and with R2 not exceeding 0.5. The reasons for this were
analyzed. In addition, this research evaluated the impact of nitrogen application on crop
growth through ExG characteristics. Saddik et al. [97] developed a low-complexity apple-
counting algorithm, which was based on apple color and geometric shape for detection.
The RGB images were subjected to HSV and Hough transformations, achieving a maximum
accuracy of 97.22% on the test dataset, and performing apple counting without relying
on large amounts of data and computing power; Liu et al. [98] estimated the plant height
and aboveground biomass (AGB) of Toona sinensis seedlings by obtaining RGB and depth-
imaging data of canopy. Firstly, the U-Net model was used to segment the foreground
and extract multiple feature indicators. Then, SLR was used to predict plant height. The
performance of ML, RF, and MLP machine learning algorithms in predicting aboveground
biomass (AGB) was compared, and the key factors for predicting AGB were analyzed.
Finally, the selected model’s predicted R2 for fresh weight reached 0.83. Rodriguez-Sanchez
et al. [99] obtained RGB images of cotton through aerial photography, and trained them
by using a SVM supervised learning algorithm. The accuracy of cotton-pixel recognition
reached 89%, and after further morphological processing the R2 reached 0.93 in fitting the
number of cotton bolls. This machine learning method reduced the performance require-
ments for model deployment. In Table 6, the research progress on crop-yield calculation
based on traditional image processing is shown.

Table 6. Research progress on crop-yield calculation based on traditional image processing.

Crop
Varieties Literature Year Task Network Framework and

Algorithms Result

Kiwifruit
[93] 2021 Count fruit quantity SVM R2: 0.96

[94] 2022 Calculate the leaf area index
of kiwifruit RFR R2: 0.972

Corn
[95] 2020 Predict the yield of corn BP, SVM, RF, ELM R2: 0.570
[96] 2020 Estimate yield of corn Regression Analysis MAPE: 15.1%

Apple [97] 2023 Count apple fruit Raspberry AP: 97.22%
Toona sinensis [98] 2021 Predict aboveground biomass MLR R2: 0.83
Cotton [99] 2022 Estimate the yield of cotton SVM R2: 0.93

The RGB color model and HIS model are the most common models in image process-
ing. The RGB color model mixes natural colors in different proportions by selecting red,
green, and blue as the primary colors. The RGB mode uses the color-light-additive method.
In the HIS model, H represents hue, S represents saturation, and I represents intensity.
Saturation represents the brightness of a color, and intensity is determined by the size of
the object’s reflection coefficient. Compared with RGB color models, HIS color models
are more suitable for human visual senses and can be more conveniently used in image
processing and computer vision algorithms. There is a conversion relationship between
RGB models and HIS models, which can be easily exchanged and provides more ways for
image processing. The combination of color index, texture features [91], and morphological
information with machine learning algorithms enhances the predictive performance of the
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model, which can well meet the requirements of biomass or yield calculation in general sce-
narios. In addition, feature fusion has better robustness and result accuracy than prediction
models established with single-dimensional features [100].

3.2.2. Yield Calculation by Deep Learning Imaging

Deep learning algorithms mainly include convolutional neural networks, recursive
neural networks, long short-term memory networks, generative adversarial networks,
autoencoders, and reinforcement learning. These algorithms have achieved significant
results in fields such as computer vision, natural language processing, and generative
models. Convolutional neural network models [101,102] have been widely applied in
crop-phenotype-parameter acquisition and biomass calculation [103]. Crop-yield calcula-
tion based on deep learning technology is generally achieved through object detection or
segmentation [104] by counting the number of fruits in a single image. For densely planted
or heavily occluded crops, only a portion of the entire yield can be detected in the image,
so regression statistics are often needed to achieve this. In addition, with the continuous
progress of digital imaging counting, the resolution of images that can be obtained is getting
higher and higher, and there is also an increasing amount of research on refined detection for
individual plants and grains [105]. Object detection refers to locating and identifying seeds
or fruits of interest in an image or video, while object segmentation accurately segments and
extracts the target from the background in the image. Object-detection algorithms mainly
include region-based and single-stage-based object detection [103]. Region-based object-
detection algorithms mainly include R-CNN, Fast R-CNN, and FasterR-CNN [106], and
this type of algorithm first generates candidate regions, then extracts features from each can-
didate region, and then performs target classification and bounding-box regression on the
extracted features through a classifier. By introducing candidate-region-generation modules
and deep learning-based feature-extraction modules, the accuracy and efficiency of object
detection are greatly improved. Single-stage-object-detection algorithms mainly include
YOLO and SSD, which directly perform object detection on feature maps by dividing an-
chor boxes and bounding boxes. These algorithms have faster detection speeds but slightly
lower accuracies. Deep learning algorithm-based object segmentation mainly includes
semantic segmentation and instance segmentation. Semantic segmentation algorithms
mainly include FCN, SegNet, and DeepLab. These algorithms introduce convolutional
neural networks and dilated convolution techniques to achieve pixel-level classification of
images, improving segmentation accuracy and efficiency. Instance segmentation is based
on target segmentation, in which each target instance is further segmented and extracted
to achieve fine recognition of each target, which is mainly performed using MaskR-CNN
and PANet. The feature-extraction process based on deep learning technology is automat-
ically completed by machines, greatly improving the accuracy of feature extraction and
simplifying operational complexity. Research into yield calculation based on deep learning
technology mainly focuses on target segmentation, detection, and counting.

• Yield Calculation of Food Crops

For food crops, the main goal is to achieve detection and counting of grain tassels,
which is common in research on corn, wheat, and rice. Obtaining high-resolution images of
grain tassels in specific scenarios can also be useful for detecting single grains. Mota-Delfin
et al. [107] used unmanned aerial vehicles to capture RGB images of corn-growth stages,
and used a series of models such as YOLOv4, YOLOv4 tiny, YOLOv4 tiny 3l, and YOLOv5
to detect and count corn plants. After comparison, the best prediction results were achieved
by YOLOv5s, with an average accuracy of 73.1%. Liu et al. [108] used the Faster R-CNN
network to detect and count corn ears, and they compared the performance of ResNet and
VGG as feature-extraction networks. The highest recognition accuracy for corn-growth
images captured by drones and mobile phones reached 94.99%. Jia et al. [109] combined
deep learning and image morphology processing methods to achieve the detection and
counting of corn ears. First, a deep learning network based on VGG16 was used to complete
the recognition of the entire corn plant, and then multiple features of image color, texture,
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and morphology in the known area were extracted to achieve recognition of corn ears.
Finally, the recognition accuracy of the plant reached 99.47%, and the average accuracy of
corn ears reached 97.02%.

In terms of wheat-yield calculation, Maji et al. [110] developed a second-order deep
learning framework called SlypNet for wheat-ear detection, which combined Mask R-CNN
and U-Net algorithms to automatically extract rich morphological features from images. It
could effectively overcome interference such as leaf overlap and occlusion in peak detection,
and the accuracy of the small-ear-detection model validation reached 99%. Nevavuori
et al. [111] used unmanned aerial vehicles to obtain RGB images and weather data of wheat-
growth stages, studied the feasibility of using spatiotemporal sequence-based datasets in
yield prediction, and compared the predictive performance of three model architectures
CNN-LSTM, ConvLSTM, and 3D-CNN, and found that more accurate prediction results
were obtained than with a single temporal phase. Qiu et al. [112] studied a wheat spike-
automatic-detection and -counting method based on unsupervised image learning. Color
images of four wheat strains were collected, and unsupervised spike labeling was achieved
by using the watershed algorithm. A prediction model was established by using DCNN
and transfer learning, and a maximum R2 of 0.84 was obtained, greatly improving the
efficiency of wheat spike recognition. Zhaosheng et al. [113] applied an improved YOLOX-
m object-detection algorithm to detect wheat ears and evaluated the prediction accuracy
of datasets with different growth stages, planting densities, and drone-flight heights. The
highest prediction accuracy obtained through the improved model reached 88.03%, an
increase of 2.54% compared to the original. Zang et al. [114] integrated the ECA-attention-
mechanism module into the main network of YOLOv5s to achieve rapid detection of
wheat spikes, enhancing the ability to extract detailed features. The accuracy of wheat-
spike-count statistics reached 71.61%, which was 4.95% higher than those of the standard
YOLOv5s, and which could effectively solve the problem of wheat mutual occlusion and
interference. Zhao et al. [115] studied an improved YOLOv4 network for detecting and
counting wheat ears, mainly by adding a spatial feature pyramid SPP module to enhance
feature fusion at different scales. The average accuracies on two datasets was 95.16% and
97.96%, respectively, and the highest fitting R2 with the true value was 0.973.

Lin et al. [116] used drones to obtain RGB images of sorghum canopy and labeled
them with masks. A CNN segmentation model was established by using U-Net, and a
prediction mask was used to detect and count sorghum, with the final accuracy reaching
95.5%. Guo et al. [117] combined image segmentation and deep learning to automatically
calculate the rice seed setting rate (RSSR) based on RGB images captured by mobile phones.
During the experiment, multiple convolutional neural network algorithms were compared,
and the best-performing YOLOv4 algorithm was ultimately selected to calculate RSSR. The
detection accuracies for full grain, empty grain, and RSSR of rice were 97.69%, 93.20%,
and 99.43%, respectively. Han et al. [118] proposed an image-driven-data-assimilation
framework for rice-yield calculation. The framework included error calculation schemes,
image CNN models, and data assimilation models, which could estimate multi-phenotype
and yield parameters of rice, providing a good and innovative approach.

• Yield Calculation of Economic Crops

There is a significant difference between the foreground and background of fruit
crops, with obvious target features such as shape, boundary region, and color. It is easy
to achieve target segmentation or detection by using deep learning algorithms, which
are most commonly reported in crops such as kiwifruit, mango, grape, and apple. Zhou
et al. [119] used MobileNetV2, InceptionV3, and corresponding quantified networks to
establish a fast-detection model for kiwifruit in orchards. Considering Both the true
detection rate and model performance, the quantified MobileNetV2 network, with a TDR
of 89.7% and the lowest recognition time and size, was selected to develop a lightweight
mobile application. Xiong et al. [120] studied a mango-target-detection method based on
the deep learning YOLOv2 algorithm’s model, which achieved an accuracy of 96.1% under
different fruit quantities and light conditions. Finally, a fruit-tree calculation model was
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used to fit the actual mango quantity, with an error rate of 1.1%, achieving a relatively good
predicted effect.

Grapes are one of the most popular fruits and are important raw materials for wine.
Predicting grape yield is of great significance for adjusting production and marketing
plans. Image-based grape-yield prediction mainly focuses on grape-string detection and
single-grain counting. Santos et al. [121] used convolutional neural networks of Mask
R-CNN, YOLOv2, and YOLOv3 to achieve grape-instance segmentation prediction in
grape-string detection. The highest F1 score reached was 0.91, which could accurately
evaluate the size and shape of fruits. Shen et al. [122] conducted channel pruning on
the YOLO v5 model to obtain YOLO v5s when studying grape-string counting, which
effectively reduced the number of model parameters, size, and FLOPs. NMS was introduced
to improve detection performance during prediction, resulting in mAP and F1 scores of
82.3% and 79.5%, respectively, on the image datasets, which were validated through video
data. Cecotti et al. [123] studied grape detection based on convolutional neural network
algorithms and compared the effects of three feature spaces: color images, grayscale images,
and color histograms. Finally, the model trained using the ResNet network combined with
transfer learning performed the best, with an accuracy of over 99% for both red and white
grapes. Palacios et al. [124] combined machine learning with deep learning algorithms to
achieve grape-berry detection and counting. SegNet was used to segment individual berries
and extract canopy features. Three different yield-prediction models were compared, and
the experimental results showed that support vector machine regression was the most
effective model, resulting in an NRMSE of 24.99% and an R2 of 0.83. Chen et al. [125]
designed an improved grape-string segmentation method based on the PSPNet model,
in which a CBAM attention mechanism and atrous convolution were mostly embedded
in the backbone network to enhance the ability of detail feature extraction and multi-
layer feature fusion. The improved model increased IOU and pixel density PA by 4.36%
and 9.95%, respectively, reaching 87.42% and 95.73%. Olenskyj et al. [126] used three
models, Object Detection, CNN, and Transformer, to count grape clusters and found
that the Transformer architecture had the highest prediction accuracy, with a MAPE of
18%, and they eliminated the step of manually labeling images, demonstrating significant
advantages. Sozzi et al. [127] applied YOLOv3, YOLOv3 tiny, YOLOv4 tiny, YOLOv5 tiny,
YOLOv5x, and YOLOv5s to grape-string detection and counting, compared the prediction
results of different models on different datasets, and finally selected YOLOv5x as having
the best performance with an average error of 13.3%. Palacios et al. [128] used the deep
convolutional neural network SegNet for grape-flower detection and counting, and VGG19
was used as the encoder, achieving good detection accuracy. The predicted flower count
for each tree achieved an R2 of over 0.7 compared to the actual R2, and they developed
a mobile automatic detection device. In terms of apple-yield calculation, Sun et al. [129]
proposed the YOLOv5-PRE model for apple detection and counting based on YOLOv5s.
By introducing lightweight structures from ShuffleNet and GhostNet, as well as attention
mechanisms, it was found that the average accuracy of the YOLOv5-PRE model reached
94.03%, showing significant improvements in accuracy and detection efficiency compared
to YOLOv5s. Apolo-Apolo et al. [130] explored apple-detection technology based on CNN
networks; aerial images collected by drones were used as the training set, and Faster
R-CNN was used as the training network. The R2 value reached 0.86 and linear regression
was used to fit the total number of apples in each tree to solve the occlusion problem of
some fruit trees, providing a good solution for apple calculation.

In addition, similar studies have also been conducted for weed detection [131], chili-
biomass calculation, pod detection and counting, etc. Weeds are one of the important
factors hindering the healthy growth of crops. In recent years, image recognition techniques
based on deep learning algorithms have been increasingly used for weed detection, with
RGB images being the most common image category. Quan et al. [132] developed a
dual-stream–dense-feature fusion convolutional neural network model based on RGB-
D to achieve weed detection and aboveground fresh-weight calculation in land parcels,
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obtaining richer information than RGB images. By constructing a NiN-Block structural
module to enhance feature extraction and fusion, the average accuracy of predicting
weed fresh weight reached 75.34% when IoU was set to 0.5. Moon et al. [133] combined
simple formulas with deep learning networks to calculate the fresh weight and leaf area
of greenhouse sweet peppers. The fresh weight was calculated by using the total weight
and volumetric water content of the system in the device. The ConvNet network was used
to calculate the sweet pepper leaf area, and R2 values are 0.7 and 0.95, respectively. This
solution is universal and can be promoted in practical application scenarios. Lu et al. [134]
used a camera to capture RGB images of plants. First, Faster R-CNN, FPN, SSD, and
YOLOv3 were selected for pod recognition. Then, they selected the YOLOv3 network as
having the highest recognition accuracy, and on the basis of this, the loss function, anchor
box clustering algorithm, and some networks were improved for the detection and counting
of soybean leaves. Finally, the GRNN algorithm was used to model the number of pods
and leaves and obtained the optimal soybean-yield prediction model, with the average
accuracy reaching 97.43%. Riera et al. [135] developed a yield-calculation framework based
on multi-view images by using RGB images captured by cameras, and established a pod-
recognition and counting model by using RetinaNet, effectively overcoming the problem
of pod-counting occlusion. In Table 7, the research progress of deep learning in crop-image
yield calculation is shown.

Table 7. Research progress of deep learning in crop-image yield calculation.

Crop
Varieties Literature Year Task Network Framework and

Algorithms Result

Corn
[107] 2022 Detect and count corn plants YOLOv4, YOLOv5 series mAP: 73.1%
[108] 2020 Detect and count corn ears Faster R-CNN AP: 94.99%
[109] 2020 Detect and count corn ears VGG16 mAP: 97.02%

Wheat

[110] 2022 Detect and count wheat ears SlypNet mAP: 99%
[111] 2020 Predict wheat yield 3D-CNN R2: 0.962
[112] 2022 Detect and count wheat ears DCNN R2: 0.84
[113] 2022 Rapidly detect wheat spikes YOLOX-m AP: 88.03%
[114] 2022 Detect and count wheat ears YOLOv5s AP: 71.61%
[115] 2022 Detect and count wheat ears YOLOv4 R2: 0.973

Sorghum [116] 2020 Detect and count sorghum spikes U-Net AP: 95.5%

Rice
[117] 2021 Calculate Rice Seed Setting Rate (RSSR) YOLOv4 mAP: 99.43%
[118] 2022 Estimate rice yield CNN R2: 0.646

Kiwifruit [119] 2020 Count fruit quantity MobileNetV2, InceptionV3 TDR: 89.7%
Mango [120] 2020 Detect and count mangos YOLOv2 error rate: 1.1%

Grape

[121] 2020 Detect and count grape strings Mask R-CNN, YOLOv3 F1 score: 0.91
[122] 2023 Detect and count grape strings YOLO v5s mAP: 82.3%
[123] 2020 Detect grapes Resnet mAP: 99%
[124] 2022 Detect and count grape-berry quantity SegNet, SVR R2: 0.83
[125] 2021 Segment grape skewers PSPNet PA: 95.73%

[126] 2022 Detect and count grape strings Object detection, CNN,
Transformer MAPE: 18%

[127] 2022 Detect and count grape strings YOLO MAPE: 13.3%
[128] 2020 Detect and count grapevine flowers SegNet R2: 0.70

Apple [129] 2022 Detect and count apples YOLOv5-PRE mAP: 94.03%
[130] 2020 Detect and count apples Faster R-CNN R2: 0.86

Weed [132] 2021 Estimate aboveground fresh weight
of weeds YOLO-V4 mAP: 75.34%

Capsicum [133] 2022 Estimate fresh weight and leaf area ConvNet R2: 0.95

Soybean [134] 2022 Predict soybean yield YOLOv3, GRNN mAP: 97.43%
[135] 2021 Count soybean pods RetinaNet mAP: 0.71
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The method for image processing based on deep learning is relatively complex, and
its feature extraction is independently completed by machines without the need for manual
intervention, resulting in relatively high accuracy. At the same time, deep learning requires
a large amount of computation and has multiple layers in the network. As the network
depth increases, feature maps and concept layer information are continuously extracted,
resulting in reduced resolution and insufficient sensitivity to detail information, which will
lead to missed or false detections. In addition, during the application process, the occlusion
problem between plants, leaves, and fruits is also quite serious, and optimization is needed
in image acquisition, preprocessing, and training network construction, such as background
removal, branch and leaf construction, video streaming shooting, and other methods.

4. Discussion

From the large amount of research literature, it can be seen that, at present, image-
based crop-yield calculation is mainly divided into remote sensing images and visible light
images. The large amount of data collected by remote sensing can describe almost all plant
physiology, and even internal changes in plants based on the resolution of sensors. That is,
by extracting absorption spectra or reflected electromagnetic wave information through
multi-channel sensors or remote sensing satellites, machine learning algorithms are used to
establish crop biomass or yield-calculation models, which can reflect the overall growth of
crops and are suitable for the large-scale cultivation of grain crops. Crop-yield calculation
based on visible light mainly achieves fruit counting through image segmentation or
detection, which is suitable for economic crops such as eggplants and melons. High-
resolution image acquisition, image preprocessing, feature variable selection, and model
algorithm selection are all key factors that affect prediction accuracy. Yield-calculation
schemes for crops are compared based on two types of images in Table 8, mainly explaining
image acquisition methods, preprocessing, extraction indicators, main advantages, main
disadvantages, and representative algorithms.

Table 8. Comparison of crop-yield calculation schemes by different technical categories.

Image Types Obtaining
Methods

Image
Preprocessing

Extracting
Indicators

Main
Advantages Main Disadvantages Representative

Algorithms

Remote
sensing
images

Low-altitude
drone: equipped
with
multispectral
cameras, visible
light cameras,
thermal imaging
cameras, and
hyperspectral
cameras

Size correction;
multi-channel
image fusion;
projection
conversion;
resampling;

Surface
reflectance;
multispectral
vegetation index;
biophysical
parameters;
growth
environment
parameters;

Multi-channel
image containing
time, space,
temperature, and
band information;
multi-channel
fusion; rich
information

The spatiotemporal
and band attributes
are difficult to fully
utilize, and the
shooting distance is
far, making it suitable
for predicting the
yield of large-scale
land parcels with low
accuracy; easily
affected by weather;

ML, ANN,
CNN-LSTM, and
3DCNN

Satellite

low spatial and
temporal resolution,
long cycle time, and
pixel mixing

Visible light
images Digital camera

Size adjustment;
rotation;
cropping;
gaussian blur;
color
enhancement;
brightening;
noise reduction,
etc.;
annotation;
dataset
partitioning;

Color index;
texture index;
morphological
index;

Easy to obtain
images at a low
cost

Only three bands of
red, green, and blue
that have limited
information content

Linear regression,
ML,
YOLO,
Resnet,
SSD,
Mask R-CNN
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Image acquisition. With the continuous advancement of digital imaging and sensor
technology, obtaining high-resolution visible light or spectral images has become more
convenient and efficient. At present, unmanned aerial vehicles (UAV) are widely used
for data collection in agricultural and ecological-related applications, with advantages
in economy and flexibility. The satellite platform-based remote sensing-data-acquisition
method has better stability, which makes it easy to use for obtaining remote sensing data
from multiple growth stages, and it is convenient for long-term monitoring. In addition,
factors such as image shooting angle, smoothness, backlight, shadows, occlusion, etc., lead
to incomplete target segmentation, so will effectively weaken its impacts of improving
image contrast, light compensation, etc.

Image preprocessing. The near-infrared region expresses the absorption of hydrogen-
containing groups, but at the same time, the absorption is weak and the spectra overlap,
requiring denoising and filtering to reduce the signal-to-noise ratio to enhance the distribu-
tion of vegetation characteristics and canopy structure changes. For visible light images,
random aspect ratio cropping, horizontal flipping, vertical flipping, saturation enhance-
ment, saturation reduction, Gaussian blur, grayscale, CutMix, Mosaic, etc. are processing
methods that are commonly used to adjust the geometric shape of the image, expand the
number of samples, and enhance the signal-to-noise ratio, which can enhance the model’s
generalization ability.

Feature variable screening. There are over 40 crop indices, and the selection of indices
closely related to crop growth and yield still faces many difficulties. Determining how
to select highly correlated independent variables from a large amount of feature informa-
tion is also the key to building a high-performance model. Therefore, it is important to
eliminate redundant or irrelevant variables, which can improve model robustness and
reduce computational complexity. Principal Component Analysis (PCA) is a common data
dimensionality reduction algorithm that can identify high-scoring independent variables
to describe potential relationships in data. Similar algorithms include decision tree DTM,
genetic algorithm GA, simulated annealing algorithm SA, etc.

Selection of model algorithms. There are two main model algorithms used for yield
calculation: machine learning (ML) and deep learning (DL) [136].

(1) Machine learning (ML)

The growth process of crops is complex, and the response to different environmental
changes is generally nonlinear. Therefore, traditional statistical methods are not always
sufficient to accurately estimate the growth of plants. Machine learning (ML) [12] is
used to perform regression analysis on highly nonlinear problems and identify nonlinear
relationships between input and output datasets (Bishop) [137], which can learn change
patterns from a large amount of data, achieve autonomous decision-making, and provide
a good solution for complex data analysis. It is widely used in scenarios such as image
segmentation and target recognition. Compared with traditional crop models and statistical
methods, yield-prediction models established with ML can handle nonlinear relationships
and identify independent variables that affect yield weight, but the interpretability is
limited [138], and the generated models are usually targeted at specific application scenarios
requiring special attention to overfitting processes. In crop-yield calculation research,
commonly used machine learning algorithms are those such as artificial neural networks
(ANN), support vector machines (SVM), Gaussian process regression (GPR), partial least
squares regression (PLSR), multi-layer prediction (MLP), random forest (RF), k-nearest
neighbor (KNN), etc., which need to be applied based on specific conditions for datasets,
variable types, crop types, growth stage, etc.

(2) Deep learning (DL)

Deep learning is a high-order machine learning method that includes multiple layers
of neural networks, which can deeply explore the internal relationships from data and
automatically learn from large hierarchical representations of data by using complex non-
linear functions. Compared with ML, deep learning has higher accuracy. In recent years,
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DL has been increasingly used for crop biomass monitoring or yield calculation, proving
its powerful feature extraction and self-learning abilities. Convolutional neural networks
(CNN) and recurrent neural networks (RNN) are the most commonly used DL methods
used in exploring the correlations between independent variables and production [139].
Among them, the Convolutional Neural Network (CNN) is the most widely used deep
learning architecture in image processing, which is mainly composed of a convolutional
layer and a pooling layer [101]. CNN can take images as input and automatically extract
features such as color, geometry, texture, etc. [140]. It has been widely applied in field weed
and pest identification, environmental stress, agricultural image segmentation, and yield
calculation; CNN models are mainly used to capture spatial features of images, while RNN
is mainly used to analyze temporal data, especially in analyzing remote sensing data and
meteorological data with multiple growth periods and long time series. Long Short-Term
Memory (LSTM) is an excellent version of an RNN model iteration, which can effectively
solve problems such as gradient explosion and vanishing. When combined with CNN, it
is more accurate in establishing yield-calculation models based on multimodal fusion of
remote sensing data, meteorological data, phenological information, and other modalities.

Meanwhile, deep learning models generally have complex structures, and require a
large amount of data samples and computing power to achieve the expected results. Small
samples can easily cause overfitting, so data augmentation is particularly important. In
addition, numerous model hyperparameters are also important factors affecting prediction
accuracy. In many studies, hyperparameters are usually determined based on experience
or model evaluation, and some algorithms are combined to achieve hyperparameter opti-
mization, such as the Bayesian algorithm, genetic algorithm, particle swarm optimization
algorithm, etc.

5. Conclusions and Outlooks

With the continuous progress of artificial intelligence and sensor technology, image-
analysis technology is being studied more and more in relation to agricultural yield. Remote
sensing images and visible light images are also being applied by scholars in crop-target
segmentation, detection, counting, biomass monitoring, and yield calculation. Image
spectral index, geometric shape, texture, and other information can effectively reflect
the internal growth status of crops, express the growth status of crops, and have been
proven to be applicable to yield calculation for various food and economic crops. With
the improvement of image resolution and continuous optimization of model algorithms,
the accuracy of crop-yield calculation is also increasing, but it also faces more problems
and challenges.

Model algorithm optimization. There are still some problems in the application of
deep learning-based object detection and segmentation algorithms, such as poor detection
and segmentation performance for small objects and low accuracy for target boundaries.
To solve these issues, researchers have proposed many improvement and optimization
methods. On one hand, the performance of object detection and segmentation algorithms
can be improved by changing the network structure and loss function. For example,
it can enhance the network’s attention and perception ability towards targets, and it
can improve the accuracy of target detection and segmentation by introducing attention
mechanisms and multiscale fusion techniques. On the other hand, data augmentation
can also effectively improve the effectiveness of object detection and segmentation. By
performing transformations such as rotation, scaling, and translation on the data, the
diversity of training data can be increased, and the robustness and generalization ability
of the model can be improved. In addition, by pre-training the model parameters, the
convergence speed of the model training can be accelerated, and the performance of object
detection and segmentation can be improved. In summary, deep learning-based object
detection and segmentation algorithms have broad application prospects in the field of
computer vision. By continuously improving and optimizing algorithms, the accuracy and
efficiency of object detection and segmentation can be improved.
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The fusion of multimodal and channel data. The growth process of crops is com-
plex and variable and is greatly influenced by factors such as light, precipitation, and
temperature. Yield prediction is closely related to environmental factors, so time-series
samples are particularly important when predicting yield [141]. Therefore, data collection
needs to cover remote sensing and meteorological data with multiple growth periods and
long time series, and multi-feature fusion (multispectral, thermal infrared, weather) has
higher accuracy than does a single dimension. After data fusion, including image texture
and multi-channel spectral information, further training of the model can be achieved
by using private datasets or other publicly available datasets. In addition, multimodal
frameworks can be extended, integrating environmental factors such as meteorology, geog-
raphy, soil, and altitude into yield prediction, which will give significant improvements in
prediction results.

Compensation for insufficient sample size by transfer learning algorithms. Deep
learning requires a large number of data samples as support [142]. Transfer learning can
perform parameter fine-tuning based on trained models, resulting in better performance
for addressing new problems. In this method, a limited number of samples can be used
to fine-tune the parameters of the pre-trained model on a large dataset to achieve optimal
performance in new tasks. Specifically, it includes the following two aspects: region-
based transfer learning and parameters-based transfer learning. Firstly, the regions with
sufficient sample size are used to learn the model and then to extend the model to other
regions with fewer samples to achieve region transfer. The second aspect is parameters-
based transfer learning, which involves sharing partial parameters or prior distributions
of hyperparameters between models for related tasks to improve overall performance. So
far, although both methods have contributed to improving model performance, due to
the complexity and diversity of data, there is currently no unified method for defining
dataset similarity, and similarity-based transfer requires more quantitative and qualitative
explanations. Therefore, in the future, with the accumulation of data, the advantages
of deep learning models will gradually become prominent. In addition, in region-based
transfer learning, the environments of different regions are heterogeneous, and the question
of how to achieve transfer in heterogeneous environments is a future research direction.

The combination of multiple collection platforms. When monitoring crop growth and
estimating yield at the field scale, satellite remote sensing makes it difficult to overcome
the impact of spatial heterogeneity on accuracy. However, drone platforms can better
identify heterogeneity information. Therefore, it is possible to combine drone platforms
with satellite platforms and to use drone platform data as an intermediate variable for scale
conversion in the spatiotemporal fusion process of satellite data to ensure accuracy in the
downscaling process.

The interpretability of the yield-calculation model. The mechanism of deep learning
algorithms is difficult to explain. Based on deep learning algorithms, feature extraction
is mostly automatic from data. Growth models can better express information such as
crop-growth process, environment, and cultivation technology [9], thereby describing the
growth and development process. Crop-growth models can be combined to improve the
explanatory power of crop growth.

Power requirements of model computing. When monitoring and estimating yield,
it is necessary to use the complex network structure of deep learning to fully learn high-
resolution data, which requires a lot of time for training. At the same time, high com-
puter performance is required, so lightweight model algorithms are particularly important
while ensuring accuracy. Therefore, the questions of how to efficiently and quickly learn
features, ensure the integrity of learning features, and minimize the learning of redun-
dant information are important issues in the use of deep learning methods for field-scale
growth monitoring.
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