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Abstract: Remote sensing data are becoming increasingly important for quantifying long-term
changes in land surfaces. Optical sensors onboard satellite platforms face a tradeoff between tem-
poral and spatial resolutions. Spatiotemporal fusion models can produce high spatiotemporal data,
while existing models are not designed to produce moderate-spatial-resolution data, like Moderate-
Resolution Imaging Spectroradiometer (MODIS), which has moderate spatial detail and frequent
temporal coverage. This limitation arises from the challenge of combining coarse- and fine-spatial-
resolution data, due to their large spatial resolution gap. This study presents a novel model, named
multi-scale convolutional neural network for spatiotemporal fusion (MSCSTF), to generate MODIS-
like data by addressing the large spatial-scale gap in blending the Advanced Very-High-Resolution
Radiometer (AVHRR) and Landsat images. To mitigate the considerable biases between AVHRR
and Landsat with MODIS images, an image correction module is included into the model using
deep supervision. The outcomes show that the modeled MODIS-like images are consistent with the
observed ones in five tested areas, as evidenced by the root mean square errors (RMSE) of 0.030,
0.022, 0.075, 0.036, and 0.045, respectively. The model makes reasonable predictions on reconstructing
retrospective MODIS-like data when evaluating against Landsat data. The proposed MSCSTF model
outperforms six other comparative models in accuracy, with regional average RMSE values being
lower by 0.005, 0.007, 0.073, 0.062, 0.070, and 0.060, respectively, compared to the counterparts in
the other models. The developed method does not rely on MODIS images as input, and it has the
potential to reconstruct MODIS-like data prior to 2000 for retrospective studies and applications.

Keywords: spatiotemporal fusion; multi-scale convolutional neural network; MODIS-like data; image
correction; retrospective reconstruction

1. Introduction

Satellite remote sensing has been providing essential records of land surface and dy-
namics both synoptically and periodically for decades [1–3]. The long-term accumulations
of remote sensing data have facilitated numerous applications in Earth system sciences
and have enhanced our understanding of environmental changes [4,5]. Temporally and
spatially continuous products are favorable for various applications on large geographic
scales, such as land surface modeling and climate dynamics simulations [6–9].

Optical remote sensing data are extensively used, and such data often face a tradeoff
between temporal coverage frequency and spatial resolution when the data come from
a single sensor. Fine-spatial-resolution multispectral images, like Landsat (30 m) and
Sentinel (10–20 m) images, capture abundant geometric and texture features of the land
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surface [10,11], while their revisiting frequencies are relatively low [12]. Coarse-spatial-
resolution images, like Advanced Very-High-Resolution Radiometer (AVHRR) images,
are advantageous in providing daily global coverage but are limited in capturing spatial
details [13–15]. Moderate-spatial-resolution images, like the Moderate-Resolution Imaging
Spectroradiometer (MODIS) images, possess both sufficient spatial resolution and daily
temporal frequency [16–18]. MODIS products have good quality control and have accel-
erated a number of large-scale studies, such as land cover mapping [19,20] and carbon
budget calculation [21,22]. Since data with similar characteristics to MODIS were not
available before 2000, generating MODIS-like data prior to 2000 holds great value for scien-
tific studies. One way to produce continuous retrospective MODIS-like data is to blend
multi-source images, such as Landsat and AVHRR data, because they have been available
since 1982 and have similar characteristics in some bands. It is necessary to consider the
large spatial-scale gap between fine- and coarse-spatial-resolution data when generating
retrospective MODIS-like data using Landsat and AVHRR data.

Spatiotemporal fusion methods are widely applied to synergize multi-source remote
sensing images to generate continuous data with dense temporal stacks and high spatial
resolution [23,24]. Gao et al. [25] presented a rule-based data fusion model called the
spatial and temporal adaptive reflectance fusion model (STARFM), which blends MODIS
and Landsat data based on similar neighbor pixels and estimates well in relative homoge-
neous regions. Numerous research endeavors have further been devoted to enhancing the
modeling abilities in regions characterized by pronounced spatial heterogeneity [26,27];
however, they fail to predict abrupt changes. Zhu et al. [28] developed the feasible spa-
tiotemporal data fusion model (FSDAF) that incorporates the linear unmixing approach and
spatial interpolation and has shown advantages in capturing abrupt changes in land cover
types. Shi et al. [24] proposed the reliable and adaptive spatiotemporal data fusion method
(RASDF), incorporating a reliability index to reduce biases caused by sensor differences.
Commonly used rule-based spatiotemporal fusion methods were mainly developed to
produce fine-spatial-resolution data, such as Landsat or Sentinel data [29–34]. However,
these methods have not attempted to generate moderate-spatial-resolution data utilizing
both coarse- and fine-spatial-resolution images.

Deep learning models have been extensively tested for spatiotemporal fusion because
of their powerful nonlinear mapping capability. Tan et al. [35] presented the deep con-
volutional spatiotemporal fusion network (DCSTFN), inspired by the temporal change
hypothesis from STARTM, to integrate MODIS and Landsat data. Tan et al. [36] presented
an enhanced DCSTFN (EDCSTFN) using a brand-new network architecture and a com-
pound loss function, thus preventing the image blurring that occurs in the DCSTFN. To
maintain the reliability of temporal predictions, Liu et al. [37] designed a two-stream
spatiotemporal fusion network (StfNet) that accounts for temporal dependence and con-
sistency. Some scholars have proposed multi-scale convolutional approaches that use
various filter sizes to extract spatial information across different scales [38–41]. To en-
hance model efficiency, Chen et al. [42] additionally leveraged the dilated convolutional
method to expand the filter’s field-of-view, thereby better capturing multi-scale features.
Deep-learning-based spatiotemporal fusion models offer a potential solution for generating
MODIS-like data [43–46], and it is necessary to improve current spatiotemporal fusion mod-
els to address the large spatial resolution gaps and reduce biases among images acquired
from different sensors.

The development of spatiotemporal fusion methods to reconstruct MODIS-like data
using AVHRR and Landsat images faces some challenges. Spatial-scale issues arise due to
the substantial spatial resolution gap between AVHRR and Landsat data, which cannot be
addressed by current spatiotemporal fusion models without prior resampling procedures.
However, the resampling procedure that has been adopted in current data fusion models
involves unrealistic artificial assumption and loses fine spatial details. The current models
are typically designed to fuse MODIS and Landsat images with about 16 times resolution
difference, and they can hardly handle AVHRR and Landsat images, which have a spatial
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resolution difference of approximately 192 times. While the existing multi-scale spatiotem-
poral fusion methods aim to broaden the model’s receptive field, they also face challenges
in addressing such a significant spatial-scale gap. Furthermore, systematic deviations
caused by the spectral response function, viewing zenith angle, geo-registration errors,
and acquisition time inconsistency between AVHRR and Landsat with MODIS images
may introduce uncertainties into the fusion process. The existing spatiotemporal fusion
models aim to blend images obtained from two different sensors, and certain models, such
as BiaSTF, RASDF, and LiSTF [33], are designed to mitigate systematic deviations between
MODIS and Landsat data. The retrospective construction of MODIS-like data using AVHRR
and Landsat images has to deal with biases that originate from three different sensors.

In this study, we proposed a novel model, called the multi-scale convolutional neural
network for spatiotemporal fusion, to deal with spatial-scale gaps arising from the differ-
ences in spatial resolution between AVHRR and Landsat images by incorporating upscaling
and downscaling approaches. We designed an image correction module before fusion and
incorporated it into the model using deep supervision to alleviate the synthetic biases
between the AVHRR and Landsat images with the MODIS data. Considering that AVHRR
and Landsat images have been available since 1982, our model possesses the potential to
reconstruct MODIS-like data prior to 2000 to facilitate retrospective research.

2. Study Materials
2.1. Study Regions

Our study evaluated the performance of spatiotemporal fusion methods in five land-
scapes characterized by strong spatial heterogeneity, mixed land cover type, and obvious
seasonal changes across North America. The path/row combinations of the selected regions
are 045/028, 042/034, 023/037, 052/017, and 014/028 in the Landsat Worldwide Reference
System-2. These regions are located in The Dalles in Washington (WA), Mammoth Lake in
California (CA), Greenville in Mississippi (MS), Nahanni Butte in the Northwest Territories
(NT), and Sorel-Tracy in Quebec (QC) (Figure 1). WA predominantly comprises grasslands,
evergreen needleleaf forests, and croplands. CA primarily consists of grasslands, woody
savannas, and savannas. MS is predominantly characterized by croplands, mixed forests,
and deciduous broadleaf forests and it is situated along the Mississippi River’s riverbanks.
NT is primarily composed of evergreen needleleaf forests, woody savannas, and open
shrublands. QC is primarily composed of mixed forests, croplands, and cropland/natural
vegetation mosaics, with the Lac Saint-Pierre Lake and Saint Lawrence River situated at its
center. Information regarding these regions is detailed in Table 1.

Table 1. Information about the study regions.

Path Row Centered Town State/Province Code Extent (km2)

045 028 The Dalles Washington WA 160 × 160

042 034 Mammoth Lake California CA 160 × 160

023 037 Greenville Mississippi MS 160 × 160

052 017 Nahanni Butte Northwest Territories NT 156 × 156

014 028 Sorel-Tracy Quebec QC 160 × 160
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Figure 1. Locations and land cover distributions of the study regions, including areas in WA, CA, MS,
NT, and QC, respectively. The base map is the land cover distribution product based on the University
of Maryland land cover classification across North America. The enlarged sub-map displays the land
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2.2. Remote Sensing Data

The fine-spatial-resolution images that we used are Landsat images, containing Land-
sat 5 Thematic Mapper (TM) and Landsat 8 Operational Land Imager (OLI) Collection 1
Tier 1 surface reflectance products. These images underwent atmospheric corrections and
were calibrated for topographical correction using the UTM/WGS84 projection system
(https://earthexplorer.usgs.gov (accessed on 25 October 2022)). Both Landsat 5 TM and
Landsat 8 OLI are equipped with visible and NIR bands, providing a 30-m spatial resolution
and 16-day temporal frequency. The MODIS images possess a moderate spatial resolution
of 500 m and serve as the target outputs. We selected the MODIS Terra MOD09A1 Version 6
product, which supplies surface reflectance observation corrected for atmospheric contami-
nations (https://lpdaac.usgs.gov (accessed on 18 December 2023)). The MOD09A1 product
comprises an 8-day composite of surface reflectance data, primarily consisting of 7 surface
spectral reflectance bands and 2 quality control layers with a 500-m spatial resolution. The
coarse-spatial-resolution AVHRR data are Version 5 Land Long-Term Data Record (LTDR)
surface spectral reflectance products (AVH09C1) (https://ltdr.modaps.eosdis.nasa.gov
(accessed on 20 December 2022)). The AVHRR product has been available from 1981 to
the present and includes data for visible and NIR bands. We chose the daily AVH09C1
surface reflectance product provided by Wu et al. [14], which exhibits significantly better
quality compared to the original 1.1-km images. Its spatial resolution is 0.05◦ (around five
kilometers), and it was subjected to radiometric calibration and atmospheric correction.

We conducted spatiotemporal fusion experiments using vegetation index data. We
opted to focus on the enhanced vegetation index 2 (EVI2) in this study when considering
the constraints associated with commonly used vegetation indices such as the normalized
difference vegetation index (NDVI) and the enhanced vegetation index (EVI) in certain
scenarios. EVI2 is formulated to represent vegetation growth and aggregation situations
by calculating from the red and near-infrared (NIR) bands [47]. Compared to NDVI, EVI2
is relatively insensitive to aerosol contamination and soil background and does not easily

https://earthexplorer.usgs.gov
https://lpdaac.usgs.gov
https://ltdr.modaps.eosdis.nasa.gov
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saturate in densely vegetated areas; therefore, it has a broader range of applications. EVI2
remains functionally equivalent to EVI without a blue band, thus it is suitable for use to
analyze AVHRR data.

2.3. Data Preprocessing

The Landsat and AVHRR images were used from the time period spanning from 1981
to 2018, along with MODIS data from 2000 to 2018. Considering that the Landsat 7 images
suffered from striping artifacts caused by a malfunction of the Scan Line Corrector (SLC)
in the sensor, we used Landsat 5 and Landsat 8 images in the experiments. The cloud-
free Landsat surface reflectance data with a cloud cover of less than 0.5% were selected
from the Google Earth Engine (GEE) platform (https://earthengine.google.com (accessed
on 25 December 2022)) in the five study regions, serving as the fine-spatial-resolution
model input at the reference time. We acquired the available MODIS surface reflectance
products for the five study areas to serve as the target data. The cloud-covered pixels
within the Landsat and MODIS data were masked, and a linear interpolation method was
applied along the time-series dimension to fill the few masked pixels. To ensure time
consistency, the acquisition dates of the AVHRR images, which served as the inputs for
both the reference and target times, were aligned with those of the corresponding Landsat
images and MODIS images. The available cloud-free Landsat and AVHRR image pairs
with the closest acquisition time to the target MODIS image were selected as the input data
for the reference time. A total of 6, 5, 16, 11, and 16 samples from the available AVHRR–
Landsat pairs after 2000 and their corresponding reference AVHRR–MODIS pairs were
obtained for training purposes in the five regions, respectively. In the reconstruction of the
retrospective MODIS-like data, a total of 37, 32, 38, 5, and 11 AVHRR–Landsat pairs were
obtained from pre-2000 periods in the respective regions after excluding Landsat images
with clouds. The reference and target times of the data in the retrospective reconstruction
experiments are shown in Table 2, and those in the simulated experiments are shown in
Table 3. The AVHRR, MODIS, and Landsat images were spatially aligned by reprojecting
them to the UTM/WGS84 projection system and were clipped to match the spatial extent.
We resampled the AVHRR and Landsat images to 1/12th and 16 times the grid resolution of
the MODIS data, respectively, using the cubic spline interpolation method. Consequently,
the proposed model combined the inputs from an AVHRR and Landsat image pair at the
reference time, along with an AVHRR image at the target time. The MODIS images at the
target time were referred to as the target objects.

Table 2. The reference and target time of the model input and output in a retrospective reconstruction
experiment for generating pre-2000 MODIS-like data in five study areas. The italicized text represents
the target data.

Areas
Reference Time Target Time Reference Time Target Time

AVHRR Landsat AVHRR Landsat AVHRR Landsat AVHRR Landsat

WA 1985/7/15 1985/7/15 1985/8/16 1985/8/16 1996/7/13 1996/7/13 1995/6/25 1995/6/25
CA 1985/8/27 1985/8/27 1985/8/11 1985/8/11 1994/3/13 1994/3/13 1994/2/9 1994/2/9
MS 1988/4/24 1988/4/24 1988/5/10 1988/5/10 1990/8/20 1990/8/20 1990/11/24 1990/11/24
NT 1993/4/1 1993/4/1 1984/7/29 1984/7/29 1995/8/13 1995/8/13 1995/8/13 1995/8/13
QC 1991/5/20 1991/5/20 1992/3/3 1992/3/3 1992/3/3 1992/3/3 1993/8/29 1993/8/29

We selected the red (0.63–0.69 µm) and NIR (0.76–0.9 µm) bands from Landsat 5 images,
while the corresponding wavelengths in the Landsat 8 images were 0.64–0.67 µm, and
0.85–0.88 µm, respectively. The red (0.62–0.67 µm) and NIR (0.84–0.88 µm) bands from the
MODIS product were utilized. The red (0.58–0.68 µm) and NIR (0.73–1.00 µm) bands from
the AVHRR data were also included. The wavelengths associated with these three datasets
are comparable, with the Landsat data exhibiting the narrowest range of wavelengths
and the AVHRR data featuring the longest range of wavelengths. The wavelengths of the

https://earthengine.google.com
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corresponding bands in the Landsat 5 and Landsat 8 products differed, so we employed a
random forest method to independently calibrate the red and NIR bands of Landsat 5 to
ensure the alignment between the Landsat 5 and Landsat 8 data. Then, we calculated EVI2
based on the red and NIR bands and obtained the model inputs and targets as the AVHRR,
Landsat, and MODIS EVI2 data.

Table 3. The same as Table 2, but for a simulated experiment for generating post-2000 MODIS-like
data. There are three main columns of time data. The first two columns are linked to the comparison
between the fused results with MODIS and Landsat images in Section 4.2, necessitating the alignment
of the target time with the acquisition times of both MODIS and Landsat images. The third column is
associated with the comparison with other spatiotemporal fusion models and the module ablation in
Section 4.3 and 4.4, where the target times coincide with the acquisition times of the MODIS images.

Areas
Reference Time Target Time Reference Time Target Time Reference Time Target Time

AVHRR Landsat AVHRR MODIS AVHRR Landsat AVHRR MODIS AVHRR Landsat AVHRR MODIS

WA 2015/7/4 2015/7/4 2014/9/30 2014/9/30 2018/9/30 2018/9/30 2018/10/162018/10/162015/7/2 2015/7/2 2015/7/20 2015/7/20
CA 2014/9/14 2014/9/14 2014/8/29 2014/8/29 2016/9/21 2016/9/21 2018/9/06 2018/9/6 2004/8/27 2004/8/27 2001/9/14 2001/9/14
MS 2016/6/09 2016/6/09 2016/5/8 2016/5/8 2017/4/7 2017/4/7 2017/10/162017/10/162004/6/21 2004/6/21 2002/6/18 2002/6/18
NT 2014/4/15 2014/4/15 2013/8/29 2013/8/29 2014/8/5 2014/8/5 2014/4/15 2014/4/15 2013/8/30 2013/8/30 2012/7/3 2012/7/3
QC 2001/3/14 2001/3/14 2001/2/26 2001/2/26 2009/11/172009/11/172009/9/14 2009/9/14 2005/6/27 2005/6/27 2005/8/29 2005/8/29

3. Methods
3.1. MSCSTF

A multi-scale convolutional neural network for spatiotemporal fusion (hereafter re-
ferred to as MSCSTF) was proposed to generate MODIS-like data by blending the AVHRR
and Landsat images. The model incorporates a multi-scale feature extraction approach to
address the huge spatial-resolution gap between the AVHRR and Landsat images, and it
introduces an image correction module to mitigate the synthetic biases between the AVHRR
and Landsat and the MODIS data. Figure 2 shows an illustrative scheme of the MSCSTF
structure. MSCSTF can be described using a generalized equation, as follows:

F1 = STF(Correct(Upscale(L0)), Downscale(Correct(A0, A1))) (1)

where F, L, and A denote the fused MODIS-like data, the Landsat images, and the AVHRR
images, respectively. Here, 0 and 1 refer to the reference and target times, respectively.
Upscale() and Downscale() denote the upscaling and downscaling approaches, respec-
tively. Correct() denotes the image correction module. STF() refers to the deep learning
spatiotemporal fusion module.

MSCSTF encompasses the following three modules: a multi-scale feature extraction
module, an image correction module, and a spatiotemporal fusion module. The multi-scale
feature extraction module includes Landsat feature upscaling and AVHRR feature down-
scaling approaches, and the image correction module contains Landsat-based correction
and AVHRR-based correction approaches. The high-resolution Landsat data are first com-
pressed to moderate-resolution features by means of Landsat feature upscaling and are
then subjected to Landsat-based correction to reduce the biases between the Landsat and
MODIS images. The AVHRR images underwent AVHRR-based correction to mitigate the
deviations between the AVHRR and MODIS data, followed by downscaling to align with
the MODIS data’s spatial resolution. The extracted AVHRR and Landsat features were
concatenated and fed into the spatiotemporal fusion module to generate fused MODIS-like
data. MSCSTF is an end-to-end model where all modules are trained simultaneously to
achieve an optimal model.
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3.2. Multi-Scale Feature Extraction Module

There is an approximately 192-fold spatial-scale difference between the Landsat and
AVHRR data, where the difference between Landsat and MODIS imagery is 16-fold, and
12-fold between AVHRR and MODIS data. Due to the complexity of spatial distribution, the
differences in spatial detail among remote sensing datasets cannot be readily resolved using
empirical interpolation methods. A multi-scale feature extraction module was incorporated
by a learning way to address the spatial-scale issues between the Landsat and AVHRR
images. By incorporating both the upscaling and downscaling methods, the model has the
ability to construct nonlinear spatial pyramid mapping between fine- and coarse-resolution
data, thereby better addressing spatial-scale issues and capturing moderate-resolution
spatial details (Figure 3). During the upscaling stage, the stride-convolutional blocks
captured fine-grained spatial details from the Landsat data and integrated them to align
with the MODIS data’s spatial resolution. Transposed convolutional blocks were applied
in the downscaling phase to unmix the spatial patterns of the coarse-resolution AVHRR
features to moderate-resolution spatial features.
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The upscaling approach encompasses three stride-convolutional blocks. The first two
stride-convolutional blocks contain a stride-convolutional layer and an activation layer,
while the last block comprises only a stride-convolutional layer. The downscaling technique
consists of three transposed convolutional blocks, in which each of the first two blocks
comprise a transposed convolutional layer and an activation layer, while the last block has
a single transposed convolutional layer.

3.3. Image Correction Module

Correcting the biases between the images acquired from different sensors prior to the
spatiotemporal fusion phase is essential to enhance the performance of spatiotemporal
fusion. An image correction module was employed to alleviate the systematic biases
between the AVHRR and Landsat images and the MODIS images using AVHRR-based
correction and Landsat-based correction methods, respectively. The network incorporates
the image correction module in a deep supervision way to achieve an end-to-end model.

Deep supervision is primarily applied in image classification to optimize the deep
neural network and accelerate convergence [48,49]. Deep supervision adds an additional
auxiliary classifier, i.e., loss function, with a companion objective for each branch in some
intermediate hidden layers, aiding the weight adjustment of these layers.

For a learning-based neural network, we refer to M as the total number of layers, and
W(m) denotes the weight at the m th hidden layer, while ω(m) represents the weight of the
m th supervised hidden layer, distinguishing it from the normal layer. Specifically, for a con-
ventional network, the weights for all layers can be denoted as W =

{
W(1), . . . , W(M−1)

}
,

along with the weight of the output layer ω(out). The network’s objective function gives
the following:

P(W) = L(W, ω(out)) (2)

where L(W, ω(out)) denotes the loss function determined by ω(out), and ω(out) depends
on W.

As for the deep supervision network, where each intermediate layer is associated with
a supervisor, the corresponding weights are given as follows: ω =

{
ω(1), . . . , ω(M−1)

}
.

The summed companion objective function of all M − 1 hidden layers can be interpreted
as follows:

Q(W) =
M−1

∑
m=1

αml(W, ω(m)) (3)

where l(W, ω(m)) and αm are a companion loss function and a coefficient, respectively,
of the m th companion supervisor. The ground truth data for different supervisors are
commonly consistent, and the ultimate objective function is compounded by the sum of
each companion objective function and the last objective function and offer integrated
supervision to improve the network’s performance. Thus, the overall objective function for
a deep supervision network is as follows:

F(W) = P(W) + Q(W) (4)

Differing from traditional deep supervision methods, the image correction module
in MSCSTF has two independent companion supervisors with different ground truth
targets in the AVHRR-based correction and Landsat-based correction phases (Figure 4).
The target data in the AVHRR-based correction phase are the resampled low-resolution
MODIS images at both the reference and target times, and that in Landsat-based correction
is a moderate-resolution MODIS image at the reference time. The objective functions for
AVHRR- and Landsat-based corrections can be defined, respectively, as follows:

QA(W) = l(W, ω(mA)) (5)

QL(W) = l(W, ω(mL)) (6)
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where mA and mL denote the number of layers for the supervisors of AVHRR- and Landsat-
based corrections, respectively. The two correction networks independently adjust the
weight parameters to mitigate the systematic biases between the AVHRR and Landsat
inputs with their corresponding target MODIS data. The final objective function of the
spatiotemporal fusion module is only for the output layer, as follows:

Ff use(W) = P(W) (7)
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Figure 4. Schematic diagrams of traditional deep supervisions in a traditional form and in MSCSTF.

The AVHRR images at both the reference and target times were subjected to AVHRR-
based correction, and the upscaled Landsat features were subjected to Landsat-based
correction. Each image correction network comprises three convolutional blocks. The initial
two blocks have identical compositions, encompassing convolutional and ReLU activation
layers. The ultimate part diverges into two branches, in which a correction branch with one
convolutional layer is constructed to adjust the trainable weights of the image correction
network. The other branch is a backbone branch for transporting corrected high-level traits
to the subsequent layer.

3.4. Loss Function

A compound loss function that combines structural and pixel penalty functions was
implemented. Multi-scale structural similarity (MS-SSIM) [50] was used to calculate the
structural loss, and the relative Charbonnier function [51] was employed for pixel loss.

Lstructure(R, F) = 1 − min(MS − SSIM(R, F) + εs, 1) (8)

Lpixel(R, F) =
1
N∑N

i=1

√
(R, F)2 + ε2

p/µR (9)

Loss(R, F) = Lstructure(R, F) + λLpixel(R, F) (10)

where R denotes the reference and F denotes the fused feature or result. N refers to the
total number of pixels in the reference. µR denotes the mean value of the reference image
in a batch. εs and εp are very small values, in order to prevent abnormality during error
backpropagation, and were set to 0.001 and 0.05, respectively. λ is an empirical weight
coefficient between structure loss and pixel loss and was set to 0.6.
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Three loss functions were applied separately to the Landsat-based correction, AVHRR-
based correction, and spatiotemporal fusion processes, as follows:

LossL = Loss(M0, L̂0) (11)

LossA = Loss(rM0, Â0) + Loss(rM1, Â1) (12)

Lossfuse = Loss(M1, F1) (13)

where LossL, LossA, and Lossfuse denote the loss functions in the Landsat-based correction,
AVHRR-based correction, and spatiotemporal fusion processes, respectively. M denotes the
target MODIS image. rM denotes the resampled 500-m MODIS image, and L̂ and Â denote the
corrected features in Landsat-based correction and AVHRR-based correction, respectively.

3.5. Experimental Implementations

Regarding the Landsat upscaling phase, the initial stride-convolutional layer uses
4 × 4 convolution kernels and a stride of 4, and the last 2 layers employ kernels of size
2 × 2 with a stride of 2. In the downscaling process, the first transposed convolutional
layer uses a 32 × 3 convolution kernel and a stride of 3, and the last 2 layers use a kernel
size of 22 × 2 with a stride of 2. The other phases contain 3 convolutional layers with
kernel sizes of 92 × 9, 12 × 1, and 52 × 5, and strides of 1. We used 64, 128, and 1 channels
before fusion, during fusion phase, and at the final layer, respectively. The AVHRR and
Landsat inputs adopted patch sizes of 32 × 3 and 5762 × 576, respectively. The patch size
for moderate-resolution features was set at 362 × 36 before fusion and was cropped to
242 × 24 to avoid boundary effects.

We randomly divided the data into the proportion of 8:2 for training and validation and
employed augmentation via rotating and flipping operations to guarantee the randomness
of the training samples. The Adam optimization method was used to minimize the training
losses. We set the maximum number of iterations to 5000 and adopted an early stopping
mechanism to avoid overfitting issues caused by excessive training.

To comprehensively evaluate the capacity of MSCSTF, we conducted four experiments,
including a retrospective reconstruction experiment, a simulated experiment, a comparison
of spatiotemporal fusion models, and a modular ablation experiment. Firstly, we conducted
a retrospective reconstruction experiment to test the capacity of MSCSTF in generating
MODIS-like data prior to 2000 and resampled the Landsat images to a 500-m spatial
resolution to assist in verifying the reconstructed MODIS-like results. Secondly, a simulated
experiment was also deployed to evaluate the biases between our modeled results and the
MODIS and Landsat data after 2000.

Moreover, to compare the performances of MSCSTF and existing spatiotemporal fusion
models in generating MODIS-like data, we tested MSCSTF against the following six current
representative and advanced spatiotemporal fusion models: EDCSTFN, StfNet, BiaSTF,
FSDAF 2.0 (hereafter referred to as FSDAF2) [52], cuFSDAF [53], and RASDF. EDCSTFN,
StfNet, and BiaSTF are deep-learning-based spatiotemporal fusion methods, while FSDAF2,
cuFSDAF, and RASDF are hybrid fusion models using unmixing and weighting interpolator
methods. These deep-learning-based comparison algorithms were retrained in the same
deployed environment as the proposed model. To satisfy the input requirements of the
six models, we resampled the AVHRR and Landsat images using the cubic interpolator to
match the number of rows and columns of the MODIS images. To meet the requirements
of cuFSDAF, we classified the Landsat images and obtained land cover type classification
data. The parameters for EDCSTFN, StfNet, BiaSTF, cuFSDAF, and RASDF were used as
defined by default. For FSDAF2, cuFSDAF, and RASDF, the scale factors were set to 12.

Lastly, a modular ablation experiment was arranged to assess the effectiveness of
the multi-scale and image-correction modules with three comparative models, as follows:
MSCSTF without the multi-scale module (MSCSTF w/o multi-scale), MSCSTF without
the Landsat-based correction module (MSCSTF w/o Landsat-correction), and MSCSTF
without the AVHRR-based correction module (MSCSTF w/o AVHRR-correction).
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3.6. Evaluation Metrics

The fusion model’s accuracy was measured with the following four quantitative
metrics: root mean square error (RMSE), structural similarity index (SSIM), correlation co-
efficient (R), and average difference (AD). The RMSE metric evaluates the root mean square
error of pixels in two images and quantifies the difference between them. The SSIM metric
quantifies the similarity between images based on their luminance, contrast, and structure.
The R index indicates the degree of linear correlation between images. The AD metric
measures the average difference between two images by subtracting their corresponding
pixel values. The optimal values of the four metrics are 0, 1, 1, and 0, respectively.

RMSE =

√
1
N∑ (F − R)2 (14)

SSIM =
(2µfµr + c1)× (2σfr + c2)

(µ2
f + µ2

r + c1)× (σ2
f + σ2

r + c2)
(15)

R =
σfr

σf × σr
(16)

AD =
1
N∑ (F − R) (17)

where F denotes the fused result and R refers to the reference. µf and µr denote the mean of
the fused result and the reference, respectively; σf and σr represent the standard deviations
of the fused result and the reference, respectively; and σfr refers to the covariance between
them. c1 and c2 are constants to enhance the numerical stability, and were set to 0.01 and
0.03, respectively.

4. Results
4.1. Reconstructions of Retrospective MODIS-Like Data

Figure 5 showcases the spatial distributions of the results reconstructed by MSCSTF
and the resampled 500-m Landsat images at two dates prior to 2000 in the five study areas.
The outcomes generally show comparable spatial consistencies and also underestimations
between the MSCSTF results and the Landsat images, indicating that MSCSTF is capable
of capturing spatial detail variations and presents certain differences when compared
with Landsat data. The model succeeds in capturing significant phenological changes
during the non-growing and growing seasons, as illustrated by the results for MS and QC.
Table 4 presents the accuracy evaluation between the reconstructed MODIS-like results
and resampled Landsat data. These results show certain underestimations at high values
and overestimations at low values, resulting in general underestimation with negative AD
values and a regional average AD of −0.020. MSCSTF performs well in WA, CA, and NT,
achieving RMSE values of 0.069 and 0.090 in WA, 0.044 and 0.063 in CA, and 0.096 and 0.088
in NT on the two given dates. Our model aims to simulate MODIS data, while Landsat
data are used for validation. There exists a systematic bias between Landsat data and
real MODIS data, resulting in a relatively low SSIM achieved by the model. Nonetheless,
employing Landsat imagery for comparison provides an accurate reference, demonstrating
that our model can yield reasonable results for retrospective analysis.

Table 4. Quantitative accuracy evaluation of retrospective MODIS-like data reconstructed by MSCSTF
against Landsat images.

Metrics
WA CA MS NT QC

Average
1985.08.16 1995.06.25 1985.08.11 1994.02.09 1988.05.10 1990.11.24 1984.07.29 1995.08.13 1992.03.03 1993.08.29

RMSE 0.069 0.090 0.044 0.063 0.120 0.090 0.096 0.088 0.032 0.135 0.083
SSIM 0.670 0.522 0.731 0.484 0.508 0.263 0.601 0.606 0.706 0.394 0.549

R 0.868 0.769 0.904 0.727 0.797 0.336 0.720 0.745 0.748 0.640 0.725
AD −0.014 −0.013 −0.015 −0.002 −0.017 −0.022 −0.038 −0.052 −0.010 −0.013 −0.020
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Figure 5. Spatial distributions of Landsat and fused MODIS-like data in five regions at two dates
prior to 2000. As shown at subfigures (a–t), columns 1 and 3 refer the resampled Landsat images at
two dates, and columns 2 and 4 represent the MSCSTF results at the corresponding dates. Rows 1–5
represent data in WA, CA, MS, NT, and QC, respectively.

Figure 6 shows scatter density plots between all available cloud-free resampled Land-
sat data prior to 2000 and the corresponding MSCSTF results in the five regions. The
scatter distribution map illustrates that the overall reconstructed MSCSTF results have
relatively clustered scatter distributions, small errors, and high linear fitting degrees when
compared to the Landsat data. In WA and CA, the error between the MSCSTF results and
the validation data is small, with an RMSE of 0.082 and 0.066, respectively, thus indicating
robust agreement. In addition, the fitness between them is high, particularly within the
EVI2 values below 0.3, exhibiting a dense clustering along the 1:1 line. Note that the results
typically present underestimations, with specific underestimations at high values and
overestimations at low values, as revealed by the regression slopes of 0.740, 0.689, 0.636,
0.768, and 0.782, along with positive regression intercepts in the respective regions.
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Figure 6. Scatter density plots between all available cloud-free Landsat data prior to 2000 and
modeled MODIS-like data at corresponding dates for the study areas of WA, CA, MS, NT, and QC,
respectively. The dotted and blue lines denote the 1:1 line and linear regression line. The color bar at
the right-hand side refers to the relative scatter density.
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4.2. Comparisons of Fused Results with MODIS and Landsat Data after 2000

Figure 7 displays the spatial distributions of the MODIS, Landsat, and fused MODIS-
like data at two dates after 2000 in the five regions. The spatial distribution map illustrates
that the fused MODIS-like data are consistent with the MODIS data in terms of both
spatial details and spatial distribution, while they present underestimations compared
to the Landsat data. The fused results present considerable moderate-resolution-grained
details with the MODIS data. As shown in Figure 8, the fused results have low biases
and high linear correlations with the MODIS data, as demonstrated by the low RMSE
and high regression slopes, respectively. Compared with the Landsat data, the fused
results have certain underestimations, as indicated by the regression slopes of 0.595, 0.610,
0.503, 0.690, and 0.843 in the five regions. The situations of scatter clustering distribution
and underestimation are similar to those observed in the retrospective reconstruction
experiments, demonstrating that the modeled retrospective MODIS-like data can reflect
actual moderate-resolution land surface situations to some extent.
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Figure 7. The same as Figure 5, but for spatial distributions of MODIS, Landsat data, and the modeled
MODIS-like data after 2000. The subplots (a–c) correspond to the results of MODIS, Landsat, and
MSCSTF in WA on 30 September 2014. Subplots (d–f) correspond to WA on 16 October 2018. Subplots
(g–i) correspond to CA on 29 August 2014. Subplots (j–l) correspond to CA on 6 September 2018.
Subplots (m–o) correspond to MS on 8 May 2016. Subplots (p–r) correspond to MS on 16 October 2017.
Subplots (s–u) correspond to NT on 29 August 2013. Subplots (v–x) correspond to NT on 15 April 2014.
Subplots (y–aa) correspond to QC on 26 February 2001. Subplots (ab–ad) correspond to QC on
14 September 2009.
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As found in this study, the modeled MODIS-like results in MS are relatively worse
than those in other areas, which is primarily due to the complexity presented in MS. The MS
region, situated along the Mississippi River, is predominantly characterized by croplands.
The land surface reflectance of these croplands is significantly influenced by the variety of
crop types and phenological stages, leading to a pronounced surface spatial heterogeneity
and obvious seasonal variations. This intricate landscape poses a substantial challenge for
spatiotemporal fusion techniques.

4.3. Comparisons of Spatiotemporal Fusion Models

To demonstrate the effectiveness of MSCSTF and other models in simulating MODIS-
like data, Figure 9 compares the spatial distributions of the results modeled using MSCSTF
and six other spatiotemporal fusion models, including three deep-learning-based models
(i.e., EDCSTFN, StfNet, and BiaSTF) and three traditional rule-based models (i.e., FSDAF2,
cuFSDAF, and RASDF), across the five regions. The results obtained by MSCSTF are
consistent with the MODIS data in terms of spatial distribution and are more closely
aligned with the MODIS acquisitions than those modeled by other models, especially in
the MS, NT, and QC regions. StfNet and EDCSTFN perform well in CA, but they perform
worse in MS and NT. The fused results obtained by using BiaSTF, FSDAF2, cuFSDAF, and
RASDF exhibit significant differences in all of the regions and deviate from the MODIS
observations visually. These inconsistencies arise primarily because they simulate the
target MODIS-like data by directly adding temporal changes that have been generated
via spatiotemporal fusion to the reference high-resolution data, which, in this case, are
the resampled Landsat data. The systematic biases between the MODIS and Landsat data
have not been mitigated and are incorporated into the fused results simulated by these
four models.

Based on the synthetic analysis using scatter density plots (Figure 10) and the quanti-
tative assessment (Table 5), we found that the MSCSTF results exhibit small errors, high
similarities, and high correlations with the MODIS data. MSCSTF is superior to the other
models, with a regional average RMSE, SSIM, R, and an absolute AD of 0.058, 0.674, 0.865,
and 0.019, respectively. Compared to the other spatiotemporal fusion models, MSCSTF ex-
hibits strong performance in WA, NT, and QC, as evidenced by the low RMSE values (0.038,
0.051, and 0.058, respectively), high SSIM values (0.820, 0.719, and 0.605, respectively), and
high R values (0.943, 0.917, and 0.889, respectively). In CA, MSCSTF, StfNet, and EDCSTFN
display a comparable performance, with an RMSE of 0.029. BiaSTF, FSDAF2, cuFSDAF,
and RASDF show lower accuracies, as indicated by an average RMSE of 0.131, 0.120, 0.128,
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and 0.118, respectively, and exhibit a low correlation, with an average R of 0.609, 0.681,
0.659, and 0.679, respectively.
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gions after 2000. Columns 1–8 represent spatial distributions of results obtained by MODIS, MSCSTF,
EDCSTFN, StfNet, BiaSTF, FSDAF2, cuFSDAF, and RASDF, respectively. Rows 1–5 (subplots (a–h),
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Table 5. Quantitative evaluation of different spatiotemporal fusion models. The bold data denote the
best evaluation metrics. The regional average AD is the mean of each absolute AD values obtained
from the five regions.

Metrics Models WA CA MS NT QC Average

RMSE

MSCSTF 0.038 0.029 0.111 0.051 0.058 0.058

EDCSTFN 0.039 0.029 0.115 0.067 0.064 0.063

StfNet 0.041 0.029 0.117 0.067 0.070 0.065

BiaSTF 0.106 0.076 0.195 0.120 0.157 0.131

FSDAF2 0.106 0.068 0.192 0.103 0.131 0.120

cuFSDAF 0.103 0.064 0.187 0.107 0.179 0.128

RASDF 0.105 0.070 0.201 0.088 0.127 0.118

SSIM

MSCSTF 0.820 0.841 0.387 0.719 0.605 0.674

EDCSTFN 0.800 0.862 0.320 0.620 0.585 0.637

StfNet 0.773 0.834 0.373 0.678 0.525 0.636

BiaSTF 0.311 0.383 0.181 0.293 0.224 0.278

FSDAF2 0.390 0.478 0.171 0.347 0.253 0.328

cuFSDAF 0.400 0.494 0.175 0.319 0.174 0.312

RASDF 0.390 0.469 0.164 0.396 0.265 0.337



Remote Sens. 2024, 16, 1086 16 of 22

Table 5. Cont.

Metrics Models WA CA MS NT QC Average

R

MSCSTF 0.943 0.944 0.631 0.917 0.889 0.865

EDCSTFN 0.939 0.950 0.583 0.856 0.863 0.838

StfNet 0.934 0.946 0.639 0.889 0.835 0.849

BiaSTF 0.768 0.739 0.378 0.639 0.519 0.609

FSDAF2 0.814 0.828 0.398 0.734 0.629 0.681

cuFSDAF 0.822 0.839 0.394 0.718 0.520 0.659

RASDF 0.819 0.818 0.378 0.754 0.627 0.679

AD

MSCSTF 0.017 0.011 −0.026 −0.032 0.011 0.019

EDCSTFN 0.022 0.014 −0.042 −0.045 0.013 0.027

StfNet 0.017 0.009 −0.064 −0.059 0.011 0.032

BiaSTF 0.020 −0.031 −0.072 −0.004 −0.023 0.030

FSDAF2 0.048 0.032 −0.045 −0.023 0.011 0.032

cuFSDAF 0.049 0.031 −0.050 −0.030 0.009 0.034

RASDF 0.048 0.032 −0.049 −0.028 0.013 0.034
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Figure 10. Scatter density plots of results fused by different spatiotemporal fusion models.
Columns 1–7 represent scatter density comparisons between results modeled by MSCSTF, EDC-
STFN, StfNet, BiaSTF, FSDAF2, cuFSDAF, and RASDF with MODIS data, respectively. Rows 1–5
(subplots (a–g), subplots (h–n), subplots (o–u), subplot (v–ab), and subplot (ac–ai)) represent the
results in WA, CA, MS, NT, and QC, respectively.
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4.4. Modular Ablation

Figure 11 and Table 6 reveal that the MSCSTF results are more consistent with the
MODIS data in most regions when compared to the results of other models, with the
lowest RMSE values of 0.038, 0.029, 0.051, and 0.058 in WA, CA, NT, and QC, respectively,
while MSCSTF w/o AVHRR-correction performs slightly better in MS, with an RMSE
of 0.110. MSCSTF w/o multi-scale shows the worst performances in most regions, as
evidenced by the assessment metrics, thus demonstrating that the multi-scale module used
to address the spatial-scale issues is effective in avoiding introducing unrealistic errors and
enhancing the robustness of the fusion models. The models without Landsat or AVHRR-
correction perform comparably, illustrating that bias mitigations of AVHRR and Landsat
data are of importance. In conclusion, the introductions of multi-scale and image correction
modules are essential to resolve the spatial-scale gap and systematic biases among the
images acquired from three distinct sensors and to achieve a robust model for generating
MODIS-like data.
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Table 6. The same as Figure 5, but for comparisons with modular ablation. The bold data denote the
best evaluation metrics.

Metrics Models WA CA MS NT QC Average

RMSE

MSCSTF 0.038 0.029 0.111 0.051 0.058 0.057

MSCSTF w/o multi-scale 0.040 0.035 0.118 0.060 0.069 0.065

MSCSTF w/o Landsat-correction 0.039 0.030 0.115 0.055 0.058 0.059

MSCSTF w/o AVHRR-correction 0.040 0.034 0.110 0.052 0.061 0.059

SSIM

MSCSTF 0.820 0.841 0.387 0.719 0.605 0.674

MSCSTF w/o multi-scale 0.792 0.817 0.370 0.691 0.500 0.634

MSCSTF w/o Landsat-correction 0.810 0.832 0.378 0.710 0.613 0.669

MSCSTF w/o AVHRR-correction 0.811 0.799 0.378 0.719 0.629 0.667

R

MSCSTF 0.943 0.944 0.631 0.917 0.889 0.865

MSCSTF w/o multi-scale 0.940 0.915 0.617 0.897 0.832 0.840

MSCSTF w/o Landsat-correction 0.943 0.945 0.631 0.907 0.892 0.864

MSCSTF w/o AVHRR-correction 0.942 0.933 0.638 0.915 0.894 0.864

AD

MSCSTF 0.017 0.011 −0.026 −0.032 0.011 0.019

MSCSTF w/o multi-scale 0.021 0.003 −0.055 −0.045 −0.004 0.026

MSCSTF w/o Landsat-correction 0.014 0.016 −0.049 −0.038 0.021 0.027

MSCSTF w/o AVHRR-correction 0.015 0.018 −0.035 −0.033 0.033 0.027

5. Discussion

The biggest difference in MSCSTF when compared to existing spatiotemporal fusion
models lies in the reference high-resolution Landsat data input and the target MODIS data,
which are acquired by different sensors, thus leading to differences in spatial resolution
and quality. The generation of MODIS-like data can also be conducted by blending AVHRR
and MODIS image pairs, and MODIS images at the reference time are required. In this way,
a method for reconstructing pre-2000 MODIS-like data is to take MODIS images after 2000
as high-resolution inputs at the reference time. However, long time intervals between the
reference and target time may not guarantee the attainment of inter-annual variations in
fused moderate-resolution data. Landsat data have been available since 1972 and provide
much finer spatial details than MODIS images, making them suitable fine-spatial-resolution
inputs for reconstructing MODIS-like data. Thus, the proposed scheme that blends AVHRR
and Landsat images to reconstruct MODIS-like data is reasonable.

The performance of MSCSTF surpasses that of comparative spatiotemporal fusion
models in this study, mainly because the comparative models were not designed to address
the issues arising from the substantial differences in spatial scale between the inputs and
the inherent systematic biases among the images obtained from three different sensors.
Errors may be introduced if the biases between the Landsat and AVHRR data and the
MODIS data are not eliminated before fusion. Additionally, the inaccuracies observed in
the results of BiaSTF, FSDAF2, cuFSDAF, and RASDF are primarily attributed to the fact
that they create MODIS-like data by simulating temporal changes between the reference
and target times, and by adding the modeled changes to the reference Landsat image,
rather than the reference MODIS images.

While MSCSTF demonstrates superior simulation performance compared to the rule-
based models in this study, it is imperative to critically acknowledge the strengths of
rule-based models. Advanced rule-based spatiotemporal fusion models commonly in-
tegrate mixed pixel decomposition, spatial interpolation, and distributed residuals to
accurately simulate fine-grained temporal changes, which are supported by a robust phys-
ical foundation that enhances our comprehension of spatiotemporal patterns. Notably,
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rule-based models do not require extensive training data, while deep learning models
rely heavily on high-quality training data. Furthermore, deep learning models demand
substantial computational resources during training, thereby presenting challenges in terms
of hardware and time constraints for executing large-scale experiments.

In some results, the modeled MODIS-like data appear slightly blurrier than the MODIS
data. However, the MODIS-like data can still reasonably capture spatial details at 500-m
resolution, similar to MODIS data. Spatiotemporal fusion models typically operate in two
types of simulation. The first involves simulating temporal changes and then adding these
changes into the high-resolution images captured at the reference time to derive fusion
outcomes. The second way entails directly integrating the input images to simulate fusion
results. The former method excels in preserving spatial details within high-resolution
images, whereas the latter often results in blurriness. In our study, significant differences
exist between the reference high-resolution Landsat images and the target MODIS data.
Consequently, uncertainty may arise in employing the first method, prompting us to
resort to the second method, thus leading to the blurriness issue. Some scholars have
tested models based on generative adversarial networks and have found that they have
the potential to overcome the blurriness issue caused by convolutional neural networks,
warranting further exploration in the future.

One point that cannot be ignored is that using resampled Landsat data as validation
data to assess the accuracy of MODIS-like data before 2000 may not be accurate, as Landsat
5 TM sensor and MODIS sensor differ in wavelengths and imaging quality, resulting in
some discrepancies between the resampled Landsat images and the actual MODIS im-
ages. While common linear or nonlinear mapping methods (such as linear transformation,
random forests, and support vector regression) can be utilized to calibrate the resampled
Landsat data and fit them to the MODIS data, there remains significant uncertainties. Using
these uncertain Landsat data as the ground truth could further impact the conclusions of
the research. Therefore, we directly used the Landsat images that were resampled using
the moving average method as the validation data.

In addition to retrospective reconstruction, it is worth considering the generation of
future MODIS-like data after the retirement of MODIS sensors. The MODIS sensors have
already far exceeded their design lifespan of six years, and they may not provide high-
quality data in the near future. The latest Landsat 9 and Metop-C satellites were launched in
September 2021 and November 2018, respectively, and, although their design lifetimes are
both five years, it is highly possible that their actual service periods will surpass a decade.
The proposed model seems to offer a reliable solution for producing future MODIS-like data
by blending Landsat and AVHRR images. Of course, the differences in sensor generations
present great challenges, and there is still much room for improvement during modeling.

6. Conclusions

MODIS products with moderate spatial resolution and frequent temporal coverage
are favorable to use in large-scale land surface studies. The lack of MODIS data prior
to 2000 hinders the retrospective simulations and analyses that use moderate-spatial-
resolution data. Herein, we have presented a multi-scale spatiotemporal fusion model
based on a convolutional neural network to generate MODIS-like data by combining Land-
sat and AVHRR data. The model blends AVHRR and Landsat images using a multi-scale
feature extraction module, aiming to address the large spatial resolution difference between
them. An image correction module was incorporated into the network using deep supervi-
sion to mitigate the synthetic deviations between the AVHRR and Landsat images and the
MODIS data. The fused MODIS-like results show comparable spatial distributions with
the observed MODIS data when comparing the results with the MODIS data in five study
regions. The proposed model displays good performance in reconstructing retrospective
MODIS-like data. Compared to six existing data fusion models, the developed model
presented a robust performance in terms of spatiotemporal distributions. The proposed
model attained regional average quantitative indicators of 0.058, 0.674, 0.865, and 0.019 for
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RMSE, SSIM, R, and AD, respectively, and surpassed the six comparative models in most
regions. The proposed MSCSTF avoids using MODIS data during the prediction phase and
possesses the capability to reconstruct spatiotemporal continuous MODIS-like data prior to
2000 to facilitate retrospective research.
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