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Abstract: Extracting buildings in urban scenes from remote sensing images is crucial for the con-
struction of digital cities, urban monitoring, urban planning, and autonomous driving. Traditional
methods generally rely on shadow detection or stereo matching from multi-view high-resolution
remote sensing images, which is cost-intensive. Recently, machine learning has provided solutions
for the estimation of building heights from remote sensing images, but challenges remain due to the
limited observation angles and image quality. The inherent lack of information in a single modality
greatly limits the extraction precision. This article proposes an advanced method using multi-source
remote sensing images for urban building height estimation, which is characterized by multi-level
cross-fusion, the multi-task joint learning of footprint extraction and height estimation, and semantic
information to refine the height estimation results. The complementary and effective features of
synthetic aperture radar (SAR) and electro-optical (EO) images are transferred through multi-level
cross-fusion. We use the semantic information of the footprint extraction branch to refine the height
estimation results, enhancing the height results from coarse to fine. Finally, We evaluate our model on
the SpaceNet 6 dataset and achieve 0.3849 and 0.7231 in the height estimation metric δ1 and footprint
extraction metric Dice, respectively, which indicate effective improvements in the results compared
to other methods.

Keywords: building height estimation; synthetic aperture radar (SAR); electro-optical (EO);
multi-level cross-fusion; semantic information to refine height results

1. Introduction

With the rapid development of global urbanization, urban management and plan-
ning [1,2] have become important issues in various countries. Accurate and efficient urban
building extraction and height estimation are crucial for applications such as the construc-
tion of digital cities [3], the study of human activities [4], urban monitoring and planning [5],
and autonomous driving [6]. Height information can reflect the structural indicators of a
building. In many emergency situations, the building structure as well as height estimation
are key to aid information retrieval. However, the dense distribution of buildings in urban
areas, complex structures, and the lack of sufficient high-precision observation data make
instance-level building height estimation [7] a critical and challenging task.

In recent years, remote sensing technology has experienced rapid development. Com-
pared with other sensors, such as LiDAR [8], the acquisition cost of remote sensing images
is obviously lower. Therefore, estimating building heights from remote sensing images has
become a credible idea [9]. However, since a single image may correspond to countless
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height structures, estimating the height of buildings from a single remote sensing image is a
challenging problem. In addition, high-precision building height estimation often requires
high-resolution remote sensing images. Blurred images greatly increase the difficulty of
estimating building heights, which makes estimating building heights from single-view
remote sensing images [10] a challenging issue.

EO and SAR [11] are the two main types of sensors for remote sensing applications.
EO sensors such as Quickbird, Worldview, etc., usually have meter-level or even sub-meter-
level resolution. They are passive optical systems and acquire images by illuminating the
ground with sunlight. SAR is an active imaging system that actively emits electromagnetic
waves and receives echoes to achieve imaging, which allows the acquisition of SAR images
not restricted by the climatic conditions and time. With the vigorous development of
SAR sensors, more high-resolution SAR sensors are being deployed, such as TerraSAR-X,
COSMO-SkyMed, etc. In optical images, the building structure, color, texture information,
and edges are clearer, generally achieving better building extraction results compared
with SAR images. However, the imaging mechanism of SAR allows the sensor to observe
the target at an oblique angle. The two dimensions of SAR images are the azimuth and
range, which means that SAR images contain the three-dimensional structure information
of the target. SAR images and optical images have different observation angles and
imaging dimensions, which makes the two modalities complementary and can provide
more target information. With the development of remote sensing detection technology, it
has become increasingly popular to detect the same area with different types of sensors.
In urban areas with both optical images and SAR images, improving the precision of
building height estimation by fusing optical images and SAR images has begun to attract
attention. Although there have been some studies [9,12] aiming to fuse SAR images and
optical images to estimate building heights, these methods ignore the exploration of fusion
methods adopting SAR images and optical images, which simply combine the features of
the two modalities. This simple combination of heterogeneous features often leads to a
decline in results and fails to achieve the purpose of complementing the feature information
of the two modalities. This article studies a more effective fusion method to improve the
precision of building height estimation.

Deep learning has seen rapid progress in the fields of computer vision and natural
language processing in recent years. The basic composition of the network has also evolved
from a CNN-based network to a Transformer-based network [13]. The Transformer network
was originally applied in the field of natural language processing, mainly in processing
sequence-to-sequence information reasoning tasks, due to its ability to realize information
interactions between long-distance patches. With the proposal of ViT [14] and DETR [15],
the Transformer network was introduced into the field of computer vision. Utilizing
the global self-attention mechanism provided by Transformer networks, there has been
a significant enhancement in the performance of various downstream tasks within the
field of computer vision. Compared with CNNs, the main advantage of the Transformer
network is that it can model long-distance attention, while a CNN pays more attention to
local information. Therefore, both have their own advantages when processing images.
In addition, the Transformer network does not need to stack too many layers and can focus
on global and local pixel information at the same time, eliminating the need for depth.
The complementary relationship between the global modeling ability of the Transformer
network and the local modeling ability of the CNN network provides a new idea for the
fusion of the heterogeneous features of optical images and SAR images.

Building height estimation from a single remote sensing image is similar to the monoc-
ular depth estimation task in the field of computer vision. Many studies [16,17] have
introduced depth estimation algorithms into the building height estimation task of remote
sensing images. Typically, the proposed network focuses on completing the specific task
of depth estimation or height estimation. Some researchers [18,19] have introduced other
different tasks to perform joint learning with the depth estimation task recently. This
idea is also applicable to the problem of building height estimation from a single remote
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sensing image. Building footprint extraction and height estimation are essentially two
downstream tasks with a strong correlation. The two tasks are interdependent, and the
introduction of the building footprint extraction task as an auxiliary task contributes to the
better generation of height estimation boundaries. Therefore, we explore ways to introduce
the building footprint extraction task to improve the precision of height estimation.

This study proposes an advanced method using multi-source remote sensing images
for urban building height estimation, called FusionHeightNet. It is characterized by the
multi-level cross-fusion of multi-source remote sensing data, the multi-task joint learning of
footprint extraction and height estimation, and the use of semantic information to refine the
height estimation results. The complementary and effective features of multi-source remote
sensing data are transferred through multi-level cross-fusion. We perform joint learning on
the building footprint extraction task and the height estimation task simultaneously under
the same framework. The semantic information of the footprint extraction branch is used
to refine the height estimation results, which helps to elevate the height estimation results
from coarse to fine. Our contributions can be summarized as follows.

1 We propose an advanced method for building height estimation by fusing multi-source
remote sensing images and refining the height results through building footprint
semantic information, achieving robust and effective instance-level building height
reconstruction in urban scenes.

2 We propose a multi-level cross-fusion module for multi-source remote sensing data.
Images of different modalities use independent backbone network parts and we apply
multi-level cross-fusion at different locations to achieve the transmission and fusion
of complementary and effective features.

3 The height results’ refinement by the semantic information framework adopts a joint
learning method for the height estimation task and the footprint extraction task.
Through joint learning, the hidden constraints of the building footprint semantic infor-
mation embedded in the height estimation task are mined, and the height estimation
precision is effectively improved by refining the height estimation results from coarse
to fine.

4 Experiments are conducted on the SpaceNet 6 dataset. The ablation results show the
effectiveness of the proposed method. The comparison results show that the proposed
method achieves higher height estimation metrics.

The remainder of this article is organized as follows. In Section 2, we introduce
related works. In Section 3, we explain the framework details of the proposed method.
In Section 4, we introduce and discuss the extensive experiments and results. Finally,
Section 5 summarizes this work.

2. Related Works
2.1. Building Footprint Extraction

Building footprint extraction is a pixel-level classification problem of remote sensing
images, dividing each pixel into two categories: building and non-building. Traditional
methods mainly rely on manually designed features, including methods based on classi-
fiers, segmentation, original geometry, and specific indices. Classifier-based methods, such
as that developed by Caglar Senaras et al. [20], combine the detection results of multiple
classifiers in a hierarchical structure, namely FSG, to improve the performance by fusing
the decisions of multiple classifiers. Konstantinos Karantzalos et al. [21] proposed a region-
based level set segmentation method. The essence of this method is to optimize the position
and geometry of the evolution curve based on its statistical description by measuring the
information in the area that makes up a specific image partition. Melissa Cote et al. [22]
exploited geometric information to generate roof contours based on candidate points and
further refined them through level set curve evolution enhanced by mean square error
maps. Xin Huang et al. [23] established a relationship between the implicit characteristics of
buildings (e.g., brightness, size, and contrast) and the properties of morphological operators
(e.g., reconstruction, granularity, and directionality), and they proposed a multi-scale mor-
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phological index using the automatic extraction of buildings from high-resolution remote
sensing images. Traditional methods generally have the problem of poor generalization,
and the extracted results are greatly limited by the hand-designed features.

With the outstanding performance of deep learning in the field of computer vision, it
has become a better solution to automatically extract image features through deep learning
to complete downstream segmentation tasks. Methods using semantic segmentation net-
works to extract building footprints are beginning to emerge. The mainstream architecture
of semantic segmentation is based on the structure of an encoder and decoder. The classic
algorithm starts from FCN [24], which considers the process of extracting features and
making the feature map smaller as the encoder and considers the subsequent upsampling
process as the decoder. Only the convolutional layer is used to achieve a large rise in
precision. Another commonly used model is UNet [25], which is a U-shaped symmetrical
network structure. The left side is an encoder composed of convolutional layers, and the
right side is an upsampling layer. In addition, the feature map of each level in the UNet
encoder will be cascaded with the corresponding decoder input. This jump connection
method achieves a great improvement in precision. The DeepLab series methods include
DeepLab v1 [26], which introduces the probabilistic graphical model, DeepLab v2 [27],
which uses a dilated convolution algorithm to expand the receptive field, DeepLab v3 [28],
which improves the ASPP module, and DeepLab v3+ [29], which is designed based on the
V3 decoder module and modified Xception [30]. PSPNet [31] improves on FCN, introduces
pyramid pooling, and makes full use of context information. Later, some variations based
on the above network structure began to appear.

2.2. Building Height Estimation

The task of building height estimation is to perform pixel-by-pixel height estimation
from remote sensing images. Some researchers have utilized shadow information (SFS) [32]
to estimate the height. The shadow information contains two parts, which are formed due
to occlusion and the unilluminated parts of the building itself. Some shadow detection
algorithms have been proposed. Jiahang Liu et al. [33] used a series of transformations to
separate shadow and non-shadow areas. Zhang Hong-ya et al. [34] excluded shadows based
on object attributes and the spatial relationships between objects. Mustafa Teke et al. [35]
proposed a shadow detection algorithm that combined near-infrared information with
RGB bands. Xiran Zhou et al. [36] proposed a shadow pattern classification system that
summarized different shadow shapes into many pattern categories and classified the
extracted shadows into patterns to automatically determine the edges of building shadows.

By calculating the set mapping relationship between detected shadows and building
heights, the height of the building can be estimated. Alexis Comber et al. [37] classified
building shadows according to their relative characteristics and the spatial background
within the scene, and they calculated the building heights through shadows. O. Benar-
chid et al. [38] used invariant color features to extract shadow information and implemented
building extraction in ultra-high-resolution multi-spectral images. P. L. N. Raju et al. [39]
used instance-based and rule-based methods to manually or automatically extract roofs and
shadow areas, and then they used the ratio method and sun–satellite geometric relationship
to associate roofs with shadows to estimate the height of the building. These shadow
detection methods have many restrictions regarding application scenarios. They achieve
better results in scenes with complete shadows and isolated building scenes, but have poor
results in densely distributed building areas. In addition, there are some studies using
statistical models and remote sensing data attribute methods. Chen Yang et al. [40] used
spatial information Gaussian process regression (Si-GPR). Xuecao Li et al. [41] proposed a
VVH index that integrates the dual polarization information (i.e., VV and VH) of Sentinel-1
SAR data. These methods are greatly affected by the characteristics of building targets in
remote sensing images.

With the advancement of deep learning, the majority of research has begun utilizing
deep learning methods to estimate the height of buildings. There are two main architectures
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of deep neural networks; one is based on the encoder–decoder architecture, and the other
is based on the GAN architecture [42]. The purpose of the network based on the encoder–
decoder architecture is to estimate the height value of each pixel in the image. Hamed
Amini Amirkolaee et al. [43] proposed an encoder–decoder architecture based on a CNN to
estimate the height values from a single aerial image. IM2HEIGHT [7] proposed a complete
convolution–deconvolution network architecture to model the fuzzy mapping between
monocular remote sensing images and height maps. The purpose of the architecture based
on the GAN network is to simulate and generate a height map of the scene. IMG2DSM [44]
used conditional generative adversarial networks to achieve image to DSM conversion.
U-IMG2DSM [45] used VAEs and GAN to simulate DSMs from optical images.

2.3. Multi-Source Remote Sensing Data Fusion

In the current field of remote sensing, various countries have begun to use various
types of sensors, bringing rich data sources to remote sensing data. Multi-modal data
are becoming more and more popular in remote sensing observations. Compared with
single-modal data, multi-modality provides observation data from a variety of sensors,
enriches the target information, and is beneficial to the extraction of complex targets. Multi-
modal data fusion combines a variety of different modal remote sensing data to achieve
complementary information between different types of remote sensing data, integrate
multiple types of information to achieve high-precision predictions, and obtain better
results than single-modal images. Current fusion methods for heterogeneous multi-modal
remote sensing data mainly fuse at the feature level and decision level. The simplest
method is the feature stacking method. Mattia Pedergnana et al. [46] superimposed the
height and intensity features extracted from LiDAR data to the spectral bands of multi-
spectral images. There are also some methods [47–49] that utilize morphological profiles,
attribute profiles, and extinction profiles to provide high-quality fusion results. Yuanyuan
Wang et al. [50] combined InSAR and optical images through 3D geometric fusion and
semantic texturing. Although this simple stacking of features takes into account multi-
modal data, it increases the dimensionality of features and does not always perform better
in more complex downstream tasks. Subspace-based methods project features into low-
dimensional subspaces to simplify the feature representation of downstream tasks and
improve the computational efficiency. Behnood Rasti et al. [51] used IHS transformation
for fusion, and some studies [52,53] have used the PCA method. In recent years, more
and more fusion methods based on deep learning [54–56] have been proposed. Deep
learning models are used to reason about the relationships between high-order features
of heterogeneous data. This fusion method has better robustness and generalization.
For example, Audebert et al. [57] used a dual-stream deep network to fuse optical and
OpenStreetMap data.

3. Methodology

In an area with both an EO image xopt ∈ RH×W×Copt and SAR image xsar ∈ RH×W×Csar ,
and the two modal remote sensing images have the same spatial resolution of H × W, our
goal is to extract the footprint results of the building Pred f ootprint ∈ RH×W×2 and estimate
the pixel-by-pixel height value results of the building Predheight ∈ RH×W×1 under the
same framework. We propose an end-to-end framework, called FusionHeightNet, which
applies independent encoders to remote sensing images of two modalities. The overall
structure of the proposed network is shown in Figure 1. The encoders have the same
structure but do not share parameters. First, we apply the basic feature extractor based
on a CNN and then perform the first cross-fusion of the two modal features. Next, we
introduce a Transformer-based encoder module to infer and encode the high-level features
of each of the two modalities. The output features are used as input for subsequent
footprint extraction and height estimation after a second cross-fusion. The two tasks of
footprint extraction and height estimation use independent decoder structures to achieve
pixel-level footprint segmentation and height estimation, respectively. Then, the semantic



Remote Sens. 2024, 16, 958 6 of 25

information of footprint extraction is input to the height estimation branch to guide the
refinement of the final height estimation results. Under the entire network framework,
joint learning is implemented for images of two modalities and two output tasks. The
experimental results prove that this joint learning method achieves better results than a
single modality and single task. In the remainder of this section, we first introduce the
multi-level encoder architecture based on CNN–Transformer in Section 3.1, and we then
introduce the multi-level cross-fusion module of multi-modal features at different levels of
the encoder in Section 3.2. Next, the two-task decoder module of footprint extraction and
height estimation is introduced in Section 3.3, and the design of height estimation refined
by footprint semantic information is introduced in Section 3.4. Finally, in Section 3.5, we
introduce the details of the loss function.

Opt Image

SAR Image

CNN

CNN
Cross-Fusion

Layer

Cross-Fusion
Layer

Transformer
Encoder

Transformer
Encoder

Fusion
Layer

Footprint
Decoder

Height
Decoder

Footprint
Head

Height
Head

Skip
Feature

Skip
Feature

Figure 1. Detailed architecture of the proposed network.

3.1. Encoder Module Based on CNN–Transformer

CNNs are mainly used to extract the local features of targets, and it is more difficult to
extract global receptive fields. The Vision Transformer network [14] is adept at reasoning
about the relationships between long-distance patches, especially the capture of global
features. However, the extraction of local features is ignored, and the foreground and
background are more difficult to distinguish. Before the Transformer network [58] was
applied to the field of computer vision, the most common method to improve the feature
representations of CNNs was to expand the receptive field, but this approach would
damage the pooling layer of the network.

Inspired by methods such as DETR [15] and TransUNet [50], the CNN and Transformer
networks have advantages in extracting the local adjacent features and global features of
the target, respectively. The CNN and Transformer networks can be combined to make
full use of their complementary effects. The method that we propose performs feature
extraction on optical images and SAR images through independent encoders, including
the basic feature extraction module based on the CNN and the high-level feature encoder
based on the Transformer network.

The basic feature extraction module is based on the CNN and uses skip connections to
extract high-level features while retaining the details of low-level features, fully mining the
local context information of the input images. The details of the basic feature extraction
module are shown in Figure 2. The input image xopt/xsar ∈ RH×W×C first goes through
the convolution layer and a maximum pooling operation is used to obtain the feature map
F0 ∈ RH/2×W/2×C0 . Next, we perform three levels of downsampling operations. At each
level, multiple convolutional layers and residual connection operations are used. The
output features F1 ∈ RH/4×W/4×C1 , F2 ∈ RH/8×W/8×C2 are input into the decoders of
height estimation and footprint extraction and are the same as F0, and the cascade of feature
maps corresponding to the same resolution in the decoder is jointly used as the input of the
next decoder block. The final output Fout ∈ RH/16×W/16×Cout of the basic feature extraction
module is used as the input of the next encoder block.
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Conv Block

DownSample

Conv Block

Conv Block

Conv Block

Relu

× 2

Max Pooling

DownSample

Conv Block

Conv Block

Conv Block

Relu

DownSample

Conv Block

Conv Block

Conv Block

Relu

× 2 × 2

/opt sarx x

Skip Feature

Figure 2. Structural details of the basic feature extraction module. The intermediate-level extracted
features F0, F1, and F2 are cascaded with the features of the same resolution in the decoder for height
estimation and footprint extraction.

The high-level feature inference module of the encoder is based on a Transformer block.
The structural details of the module are shown in Figure 3. The previous output features
of the encoder xpatch ∈ RP×P×C×N are first flattened and divided into N patches with the
size of P × P, where N = H×W

P×P . Next, we perform a patch embedding operation on xpatch

and encode and map it to the computable embedding space Epatch ∈ RP×P×D×N of the
Transformer encoder block. At the same time, like ViT [14], the position embedding Epos ∈
RD×N calculated for the input N patches is also added to the input of the Transformer
block. The input of the Transformer block is as follows:

Fencoder = Epatch + Epos (1)

The Transformer encoder block is based on multi-head self-attention (MSA). The input
is divided into multiple heads, and each head performs separate self-attention calculations.
The calculation process of the self-attention of the ith head is as follows:

Qi = WQ
i Epatch, Ki = WK

i Epatch, Vi = WV
i Epatch (2)

Headi(Qi, Ki, Vi) = So f tmax(
QiKT

i√
d

)Vi (3)

where Qi, Ki, Vi, respectively, represent the query matrix, key matrix, and value matrix
calculated by the self-attention of the ith head, and WQ

i , WK
i and WV

i , respectively, represent
the learnable weights of the query matrix, key matrix, and value matrix.

The output is obtained by the cascading of multiple self-attention heads:

MSA(Q, K, V) = Concat(head1W1, head2W2, · · · , headiWi) (4)

where Wi represents the ith learnable weight. The calculation process of the Transformer
encoder block is as follows:
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x1
k = xk−1 + MSA(LN(xk−1))

x2
k = x1

k + MLP(LN(x1
k))

(5)

where LN represents the layer norm and MLP represents the multi-layer perceptron.

Patch Embedding

Position 
Embedding

Layer Norm

MSA

Q K V

Layer Norm

MLP

× N

Layer Norm

patchE
posE

3F

Figure 3. The high-level feature inference module of the encoder. All processing is performed on the
feature with the lowest resolution of H/16 × W/16.

3.2. Multi-Level Cross-Fusion Module

Due to the different imaging mechanisms of the sensors, the features of optical images
and SAR images are heterogeneous. The direct cascade features of two modalities will cause
mutual interference, whether in the data domain or feature domain. Some key features
of targets will be buried beneath data from another modality. On the other hand, for the
same target, different sensors provide data with different angles, and the characteristics of
optical images and SAR images can complement each other. Therefore, inspired by the self-
attention calculation method of Transformer, we use multi-head cross-attention calculation
for the features of the two modalities, instead of using direct cascade or addition methods
to mine the complementary information between two modal features, while ignoring the
parts that interfere with each other.

The structure of the cross-fusion module is shown in Figure 4. The features of the SAR
image and optical image extracted by the encoder are first fed into the Layer Norm layer,
respectively, and then the multi-head cross-attention is calculated. The cross-attention
calculation of the ith head of the SAR encoder branch is as follows:

QSAR
i = WQSAR

i EOptical , KSAR
i = WKSAR

i ESAR, VSAR
i = WVSAR

i ESAR (6)

CrossAttnHeadSAR
i (QSAR

i , KSAR
i , VSAR

i ) = So f tmax(
QSAR

i KSART

i√
d

)VSAR
i (7)
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where QSAR
i , KSAR

i , and VSAR
i , respectively, represent the query matrix, key matrix, and value

matrix of the cross-attention of the ith head of the SAR encoder branch; WQSAR

i , WKSAR

i ,
WVSAR

i , respectively, represent the learning weights of the query matrix, key matrix, and
value matrix learned by the SAR encoder branch.

The output is obtained by the cascading of multiple cross-attention heads:

MCASAR(Q, K, V) = Concat(CrossAttnHeadSAR
1 WSAR

1 , CrossAttnHeadSAR
2 WSAR

2 , · · · , CrossAttnHeadSAR
i WSAR

i ) (8)

where WSAR
i represents the learnable weight of the SAR encoder branch.

SAR
Feature

Layer NormLayer Norm

Multihead Cross 
Attention

Multihead Cross 
Attention

Optical
Feature

key value query query value key

Layer Norm Layer Norm

Layer Norm MLP

× 2 × 2

Figure 4. Structural details of the cross-fusion module. In the encoder branch of each modality,
the features of this modality itself are used as keys and values in the cross-attention operation, while
the features of the other modality are used as queries.

The calculation process of the cross-fusion module of the SAR encoder branch is
as follows:

x1
k = xk−1 + MSASAR(LN(xk−1))

x2
k = x1

k + MLP(LN(x1
k))

(9)

In the same way, the cross-attention of the ith head of the optical encoder branch is
as follows:

QOptical
i = WQOptical

i ESAR, KOptical
i = WKOptical

i EOptical , VOptical
i = WVOptical

i EOptical (10)

CrossAttnHeadOptical
i (QOptical

i , KOptical
i , VOptical

i ) = So f tmax(
QOptical

i KOpticalT

i√
d

)VOptical
i (11)

where QOptical
i , KOptical

i , and VOptical
i , respectively, represent the query matrix, key matrix,

and value matrix of the cross-attention of the ith head of the optical encoder branch; WQOptical

i ,

WKOptical

i , WVOptical

i , respectively, represent the learning weights of the query matrix, key
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matrix, and value matrix that can be learned by the optical encoder branch. The output is
obtained by the cascading of multiple cross-attention heads:

MCAOptical(Q, K, V) = Concat(CrossAttnHeadOptical
1 WOptical

1 , CrossAttnHeadOptical
2 WOptical

2 ,
· · · , CrossAttnHeadOptical

i WOptical
i )

(12)

where WOptical
i represents the learnable weight of the optical encoder branch. The cal-

culation process of the cross-fusion module of the optical encoder branch is as follows:

x1
k = xk−1 + MSAOptical(LN(xk−1))

x2
k = x1

k + MLP(LN(x1
k))

(13)

3.3. Two-Task Decoder Module for Footprint Extraction and Height Estimation

In order to improve the estimation precision of the building height, our framework also
introduces a branch of footprint extraction while estimating the height map. The structure
of the decoder is shown in Figure 5. The two task branches share the output of the
previous encoder and perform inference from the lowest-resolution feature map Ff usion ∈
RH/16×W/16×C3 . In the decoder stage, the feature map Ff usion from the encoder is gradually
restored to the original resolution through three decoder blocks. The structure of the
decoder block is shown in Figure 6. In the inference process of the intermediate-resolution
feature map, the skip connection method is used. The feature map output by the previous
decoder block is upsampled and cascaded with the feature map of the same resolution
output by the basic feature extraction module in the encoder, which is the input of the next
decoder block. The processing procedure of the ith decoder block can be expressed by the
following:

Fdi
= Conv(Conv(Concat(Upsample(Fdi−1

), Fei ))) (14)

where Fdi
, Fdi−1

represent the output of the ith and i − 1th decoder block, respectively. Fei

represents the feature map output by the encoder’s basic feature extraction module. Conv
represents the convolution block, which consists of 3 × 3 convolution and ReLU layers.
Upsample represents a 2× upsampling operator. Through this method, different resolutions
of local and global features are simultaneously considered during the decoding inference
process. The architectures of the height estimation branch and the footprint extraction
branch in the decoder stage are the same, and the two branches do not share parameters.

Conv Block Conv Block

Decoder Block 1 Decoder Block 1

Decoder Block 3

Decoder Block 2 Decoder Block 2

Decoder Block 3

Footprint
Decoder

Height
Decoder

fusionF

Figure 5. The structure of the two-task branch decoder. The footprint extraction branch and the
height estimation branch share the features extracted by the encoder. Each branch contains three
decoder blocks, and skip connections are employed at different decoder stages.
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Figure 6. Structural details of decoder block.

3.4. Semantic Information to Refine Height Estimation

In order to generate the footprint map and height map, the outputs of the two decoder
branches are respectively processed by the footprint extraction head and the height esti-
mation head, as shown in Figure 7. The footprint extraction head can be expressed by the
following formula:

Pred f ootprint = Conv(Conv(Fd f ootprint
)) (15)

where Fd f ootprint
∈ RH×W×C f ootprint represents the output of the footprint extraction branch

of the decoder, which is input into the footprint extraction head, composed of two convo-
lution blocks. The first convolution block consists of a 3 × 3 convolution layer and a BN
layer. The dimension of the feature map remains unchanged after processing. The second
convolution block consists of a 1 × 1 convolution layer and a BN layer. After processing,
the dimension of the output is 2, which represents the two categories of footprint and
background. The output probability is used to perform loss calculations with the ground
truth of the footprint. The height estimation is expressed by the following:

Predheight = Sigmoid(Conv(Conv(Fdheight
)))× arg max(Pred f ootprint) (16)

where Fdheight
∈ RH×W×Cheight represents the output of the height estimation branch of the

decoder. Compared with the footprint extraction head, a sigmoid layer is added at the
output to limit the final height prediction to between 0 and 1.

In order to improve the precision of height estimation, we propose the use of semantic
information to refine the height estimation results. The building footprint semantic infor-
mation is processed by arg max and used as the correction information of the auxiliary
branch, which is pixel-wise multiplied with the height results to refine them and avoid
interference from background areas.

3.5. Loss Function

The proposed method consists of two tasks: height estimation and footprint extraction.
In the height estimation task, we use the Smooth L1 Loss, which is as follows:

Lheight = SmoothL1Loss(Predheight, GTheight) (17)

SmoothL1Loss(x, y) =
{

0.5(x − y)2 i f |x − y| < 1
|x − y| − 0.5 otherwise

(18)
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Figure 7. Semantic information used to refine height estimation.

The Smooth L1 Loss is smoother for zero points than the L1 Loss. Compared with
the L2 Loss, it responds more gently to outliers and has better robustness in regression
problems. The footprint extraction branch, as an auxiliary branch, is used to refine the
height estimation. The loss of footprint extraction consists of the Dice loss and cross-entropy
loss:

L f ootprint = Lcross−entropy(Predheight, GTheight) + Ldice(Predheight, GTheight) (19)

Lcross−entropy(x, y) = −[(y × log(x)) + (1 − y)log(1 − x)] (20)

Ldice(x, y) = 1 − 2 ∑N
i=1 xiyi

∑N
i=1 xi ∑N

i=1 yi
(21)

where N represents the number of pixels. The Dice loss is derived from optimizing the
Dice evaluation matrix, which is the abstract representation of the F1 score. Since the
proposed method involves the joint learning of two tasks, the final loss function is obtained
as the weighted sum of the losses of the two tasks. We assign different weights to the two
tasks, which improves the precision of the height estimation results while maintaining the
training of the footprint extraction auxiliary task. λ f ootprint is set to 1 and λheight is set to 0.5
in the experimental implementation. The final loss function is as follows:

Loss f inal = λ f ootprint × L f ootprint + λheight × Lheight (22)

4. Results and Discussion
4.1. Experimental Setup and Evaluation Metrics

All experiments in this article were conducted under the PyTorch 1.12.1 framework
on the Ubuntu 18.04 system. The CUDA version of the experimental platform is 11.3.
The hardware platform was equipped with an AMD Ryzen 7 5800X 8 core CPU processor
and an Nvidia GeForce RTX 3090 graphics card. The training optimizer was the SGD
optimizer, where the weight decay rate was set to 10−4 and the momentum weight was
set to 0.9. In our proposed framework, the inputs contain two modal data: EO images and
SAR image. The final output tasks include height estimation and footprint extraction. All
operations are jointly trained from scratch under the framework of joint learning.

For the two tasks of building height estimation and footprint extraction, we apply a
series of evaluation metrics to evaluate the performance of each method. For the building
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height estimation task, the evaluation metrics include MAE (mean absolute error), MSE
(mean square error), RMSE (root mean square error), and threshold precision indicators
δ1, δ2, δ3, which are used to measure the proportion of pixels that maintain error control
within a specified range and prioritize overall error stability. The evaluation metrics are
as follows:

MAE =
1
n

n

∑
i=1

∣∣∣Predheight − GTheight

∣∣∣ (23)

MSE =
1
n

n

∑
i=1

(Predheight − GTheight)
2 (24)

RMSE =

√
1
n

n

∑
i=1

(Predheight − GTheight)2 (25)

δ1 = max(
Predheight

GTheight
,

GTheight

Predheight
) < 1.251 (26)

δ2 = max(
Predheight

GTheight
,

GTheight

Predheight
) < 1.252 (27)

δ3 = max(
Predheight

GTheight
,

GTheight

Predheight
) < 1.253 (28)

For the building footprint extraction task, the evaluation metrics include the Dice
score, IoU (intersection over union), Precision, Recall, and Accuracy, which are defined as
follows:

Dice =
2TP

2TP + FP + TN
(29)

IoU =
TP

TP + FP + TN
(30)

Accuracy =
TP + TN

TP + TN + FP + FN
(31)

Precision =
TP

TP + FP
(32)

Recall =
TP

TP + FN
(33)

where TP represents the number of positive samples that are correctly classified as positive
samples, TN represents the number of negative samples that are correctly classified as neg-
ative samples, FP represents the number of negative samples that are incorrectly classified
as positive samples, and FN represents the number of positive samples that are incorrectly
classified as positive samples.

4.2. Datasets

All our experiments were conducted on the SpaceNet 6 [59] dataset, which is a multi-
sensor all-weather remote sensing dataset, including EO images as well as SAR images.
The EO images were collected by the WorldView2 satellite of Maxar with a resolution of
0.5 m. The SAR images were collected by Capella Space, with the same resolution of 0.5 m,
and contained four types of polarization data (HH, HV, VH, VV). The area of the SpaceNet
6 dataset was the city of Amsterdam, the Netherlands. The footprints and heights of the
buildings in the area were marked. The footprints were marked through the public 3D
Basisregistratie Adressen en Gebouwen (3DBAG) dataset, and we removed incorrectly
marked, lost, and destroyed buildings. The height annotation was derived from the digital
elevation model measured by LiDAR.
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In order to evaluate the performance of the methods, all images were uniformly
cropped to 512 × 512 pixels. At the same time, we split the dataset according to the
longitude and latitude of the area where the images were located, of which 2654 samples
were used as the train set and 747 samples were used as the validation set. We ensured that
there were no overlapping regions between the train and validation sets to evaluate our
method more accurately. In terms of data enhancement, for each sample, we only used
random horizontal inversion and did not perform other data enhancement methods.

4.3. Comparison Experiments

In order to evaluate our proposed method, FusionHeightNet, we compare it with
other deep learning-based SOTA methods, including ResUNet [60], DeepLabv3+ [29],
UperNet [61], PSPNet [31], SegNet [62], and DUC-HDC [63]. The results of all comparison
experiments are shown in Table 1. In the tables of this article, an upward arrow (↑)
signifies that a larger value corresponds to a better performance metric for the model.
Conversely, a downward arrow (↓) indicates that a smaller value is associated with a better
performance metric for the model. All methods include two tasks, footprint extraction
and height estimation. All methods use the same data enhancement and preprocessing
methods and we use the same hyperparameters to ensure the fairness of the comparison
experiments. The height maps estimated by the model are normalized to be between 0
and 1. The experiments show that our proposed method has advantages over other SOTA
methods.

Table 1. Comparison experiment results with EO and SAR images from the SpaceNet 6 dataset.

Method Dice ↑ IoU ↑ Accuracy ↑Precision ↑ Recall ↑ δ1 ↑ δ2 ↑ δ3 ↑ MAE ↓ MSE ↓ RMSE ↓
DeepLabv3+ 0.6996 0.4703 0.9635 0.6154 0.5601 0.3179 0.5069 0.5806 0.0596 0.0069 0.0805
ResUNet 0.5527 0.3102 0.9467 0.6149 0.3496 0.2053 0.3266 0.3821 0.0790 0.0107 0.0996
UPerNet 0.7029 0.4663 0.9622 0.6095 0.5628 0.3556 0.5226 0.5708 0.0578 0.0067 0.0789
PSPNet 0.6411 0.3978 0.9501 0.5632 0.4970 0.2156 0.3683 0.4469 0.0645 0.0070 0.0819
SegNet 0.4581 0.2165 0.9333 0.5291 0.2425 0.0784 0.1444 0.1999 0.0881 0.0112 0.1027
DUC-HDC 0.6660 0.4111 0.9562 0.6131 0.4837 0.2708 0.4180 0.4671 0.0671 0.0083 0.0879
FusionHeightNet 0.7231 0.4932 0.9660 0.6385 0.5844 0.3849 0.5531 0.6051 0.0540 0.0063 0.0763

Our method has more advanced performance in both footprint extraction and height
estimation, while the other SOTA pixel-level inference methods all exhibit certain per-
formance limitations. DeepLabv3+ and PSPNet are based on the encoder and decoder
architecture, using atrous convolution and pyramid pooling to capture long-distance con-
text information. However, there are disadvantages in fine-grained detail estimation,
and the pooling operation reduces the spatial resolution. ResUNet uses a U-shaped net-
work structure, which has more advantages in terms of the spatial resolution, but the
performance of the encoder backbone will greatly limit the final inference results. SegNet
adopts a more lightweight structure based on the U-shaped architecture. Although this
simple structure will improve the computational efficiency, it has weak fine-grained target
performance and performs poorly in pixel-level height estimation. DUC-HDC uses dense
convolution and pyramid pooling to improve the precision by stacking more complex
convolutional layers. This approach creates redundancies in computational efficiency and
limits the performance in height estimation. UPerNet achieves relatively good perfor-
mance among the other methods. It fuses multi-scale information through top-down and
bottom-up paths. The overall structure is relatively simple and it avoids redundancies in
computational efficiency. It achieves a score of 0.356 in δ1 for height estimation and 0.703 in
Dice for footprint extraction.
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Our proposed FusionHeightNet achieved the highest δ1 metric of 0.385 and the highest
Dice metric of 0.723, which shows that our method has better performance in both height
estimation and footprint extraction tasks. At the same time, our method achieved the
lowest errors of 0.0540, 0.0064, and 0.0763 in the MAE, MSE, and RMSE metrics for
height estimation, respectively. UPerNet and DeepLabv3+ are the methods closest to
ours. Compared with these two methods, our method has 6.9% and 10% improvements
in MAE, 4.3% and 7.6% improvements in MSE, and 3.2% and 5.2% improvements in
RMSE, respectively, which shows that the height estimated by our proposed method is
more accurate than that of others. In the footprint extraction auxiliary task, compared with
UPerNet and DeepLabv3+, our method has 2% and 2.3% improvements in the Dice metric
and 2.7% and 2.3% improvements in the IoU, which shows that our proposed method
can also extract building footprints more accurately while ensuring high-precision height
estimation. It is proven that the two tasks of height estimation and footprint extraction
are mutually reinforcing, and the two tasks have similar feature representations in the
high-dimensional feature space.

In summary, our proposed method effectively captures the correlation between height
estimation and footprint extraction tasks and demonstrates the ability to fuse the comple-
mentary feature information of EO images and SAR images, avoiding the interaction of the
heterogeneous feature information of the two modalities to the greatest extent. It achieved
better performance compared to other state-of-the-art pixel-level methods.

We show the visualization results of all methods in Figures 8 and 9 to evaluate all
methods from a quality perspective. It can be clearly seen from the visualization results
that the height results predicted by other methods have major flaws compared to our
method. Due to the limitation of the encoder backbone structure, ResUNet has many
missed detection problems, which will affect the height estimation results. There are many
jagged edges in the results of DUC-HDC, and the precision of edge details is insufficient.
Overly dense convolution will greatly reduce the efficiency of gradient backpropagation.
There are many holes in the results generated by SegNet, the estimated height results are
discontinuous, and the lightweight network structure will bring about insufficient receptive
fields. The height map structure generated by PSPNet has relatively smooth edges, but the
precision of the details is poor, and the height predictions of some structures will be lost.
Compared with the above-mentioned methods, DeepLabv3+ and UPerNet obtain better
footprint extraction precision, but the difference between the height predictions and the
ground truth is obvious, and buildings of different heights are not distinguished. Compared
with the above-mentioned SOTA methods, our proposed method is more accurate in
estimating the edge details of footprint extraction, and it can also clearly distinguish
buildings of different heights in height estimation. This reflects the ability of our method to
extract important features from EO images and SAR images, as well as the effectiveness of
semantic information to refine the height estimation results. In particular, the joint learning
of the two tasks is conducive to mining high-level features to make the final decision.



Remote Sens. 2024, 16, 958 16 of 25

EO Image

SAR Image Ours

ResUNet DeepLabv3+

SegNet

PSPNet

DUC_HDC UPerNet

EO Image ResUNet PSPNet

SAR Image OursSegNetDUC_HDC UPerNet

EO Image ResUNet PSPNet

SAR Image OursSegNetDUC_HDC UPerNet

High

Low

DeepLabv3+

DeepLabv3+

Figure 8. Visualization results of height estimation on SpaceNet 6 dataset (Part 1). In the height result
map, brighter pixel colors correspond to greater heights.
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Figure 9. Visualization results of height estimation on SpaceNet 6 dataset (Part 2). In the height result
map, brighter pixel colors correspond to greater heights.
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4.4. Ablation Experiment and Discussion

In the ablation experiments, we discuss the effectiveness of the multi-level cross-fusion,
independent encoders, and multi-task joint learning for semantic information in refining
the height estimation results. The experimental results are shown in Tables 2–4. In the
experiments, we applied different input combinations of remote sensing data modalities,
including only input EO images, only input SAR images, and the joint input of optical
images and SAR images. At the same time, we also performed ablation validation on
different tasks, including footprint extraction only and the joint learning of footprint
extraction and height estimation. Finally, we discuss the contribution of SAR images to the
model’s performance and the spatial variability of the model’s predictability.

Table 2. Ablation experiment results (Part 1). Here, ablation experiments were conducted on different
input types and different tasks to evaluate the effectiveness of our proposed method.

Method EO SAR Footprint Height Dice ↑ IoU ↑ Precision ↑ Recall ↑ δ1 ↑ MAE ↓ MSE ↓
EXP-A1

√ √
0.7105 0.4813 0.6249 0.5771

EXP-A2
√ √

0.4736 0.2445 0.4530 0.3150
EXP-A3

√ √ √
0.7208 0.4885 0.6269 0.5785

EXP-A4
√ √ √

0.7148 0.4863 0.6254 0.5804 0.3524 0.0542 0.0065
EXP-A5

√ √ √
0.4789 0.2501 0.4595 0.3193 0.1975 0.0801 0.0104

EXP-A6
√ √ √ √

0.6944 0.4844 0.6229 0.5790 0.3762 0.0549 0.0066
EXP-A7

√ √ √ √
0.7231 0.4932 0.6385 0.5844 0.3849 0.0540 0.0063

Table 3. Ablation experiment results (Part 2). Two different encoder designs are verified here, i.e.,
the two modal images share the same encoder or adopt independent encoders.

Method EO SAR Footprint Height Dice ↑ IoU ↑ Precision ↑ Recall ↑ δ1 ↓ MAE ↓ MSE ↓
EXP-B1

√ √ √ √
0.7093 0.4928 0.6293 0.5795 0.3741 0.0550 0.0065

EXP-B2
√ √ √ √

0.7231 0.4932 0.6385 0.5844 0.3849 0.0540 0.0063

Table 4. Comparison experiment results with only EO images from the SpaceNet 6 dataset.

Method Dice ↑ IoU ↑ Accuracy ↑Precision ↑ Recall ↑ δ1 ↑ δ2 ↑ δ3 ↑ MAE ↓ MSE ↓ RMSE ↓
DeepLabv3+ 0.6744 0.4605 0.9614 0.6126 0.5556 0.3112 0.4941 0.5605 0.0613 0.0073 0.0827
ResUNet 0.7090 0.4670 0.9634 0.6273 0.5536 0.3053 0.4952 0.5683 0.0621 0.0077 0.0839
UPerNet 0.6943 0.4544 0.9604 0.6108 0.5504 0.3220 0.4985 0.5614 0.0573 0.0065 0.0784
PSPNet 0.6286 0.3770 0.9470 0.5445 0.4828 0.2353 0.3873 0.4490 0.0672 0.0079 0.0861
SegNet 0.4873 0.2605 0.9422 0.6177 0.2825 0.0663 0.1470 0.2166 0.0862 0.0112 0.1018
DUC-HDC 0.6651 0.4102 0.9564 0.6381 0.4717 0.2382 0.3861 0.4371 0.0716 0.0091 0.0920
FusionHeightNet 0.7148 0.4863 0.9653 0.6254 0.5804 0.3524 0.5409 0.6009 0.0542 0.0065 0.0764

4.4.1. Effectiveness of Multi-Level Cross-Fusion Module

In the ablation experiment shown in Table 2, EXP-A1 only inputs optical images
for footprint extraction. Similarly, EXP-A2 only inputs SAR images. EXP-A3 adopts the
multi-level cross-fusion method that we propose, and it uses independent encoders for
optical images and SAR images. It can be seen from the results that the Dice and IoU
of footprint extraction, obtained by inputting only optical images, are 0.7105 and 0.4813,
respectively, while only inputting SAR images results in 0.4736 and 0.2445, respectively.
Optical images have better footprint extraction precision than SAR images. This is mainly
because the boundaries of targets in SAR images are more difficult to identify due to its
imaging mechanism. In addition, there is a large gap in the image quality of SAR images
compared with optical images, such as coherence speckle noise. These factors bring great
challenges to the footprint extraction of building targets in SAR images.

In EXP-A3, using multi-level cross-fusion, values of 0.7208 and 0.4885 are obtained
in Dice and IoU, respectively, which are 1% and 0.7% higher than in the method of only
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inputting optical images. This shows that our method can effectively fuse the features of
the two modalities. Next, we added the height estimation branch. In EXP-A4, only optical
images were input to predict the height maps and building footprints simultaneously,
achieving 0.3524 and 0.7148 in δ1 and Dice, respectively. In EXP-A5, only SAR images were
input to simultaneously predict the height maps and building footprints, achieving 0.1975
and 0.4789 in δ1 and Dice, respectively. In EXP-A6, a simple method of cascading two modal
feature maps was used to obtain 0.3762 and 0.6944 in δ1 and Dice. Although there is an
improvement in height estimation, the accuracy of footprint extraction will decrease. This
is because the direct cascading of two heterogeneous features will cause some redundant
features to interfere with each other, and complementary effective information will be
obscured by this interference.

In EXP-A7, a multi-level cross-fusion method is used to simultaneously predict height
maps and building footprints, achieving 0.3849 and 0.7231 in δ1 and Dice, respectively,
which are 3.25% and 0.8% higher than in the method of only inputting optical images. This
shows that our method effectively integrates the additional effective three-dimensional
information provided by SAR images. The three-dimensional information contained in
SAR images can provide a gain for height estimation, but when SAR images are input
only for height estimation, the poor footprint extraction results limit the precision of
height estimation. By fusing optical images, we take advantage of the optical image to
more accurately extract footprints and the SAR image to supplement three-dimensional
information, effectively improving the height estimation results.

4.4.2. Effectiveness of Multi-Task Joint Learning

We evaluate the effectiveness of joint learning for the two tasks of height estimation
and footprint extraction. In the ablation experiments provided in Table 2, both EXP-A4 and
EXP-A1 only input optical images. Compared with EXP-A1, EXP-A4 adds a height estimation
branch and adopts a joint learning method for the two tasks. It achieves improvements of
0.43% and 0.5% in the evaluation metrics Dice and IoU for footprint extraction. Similarly,
EXP-A5 and EXP-A2 only input SAR images. Compared with EXP-A1, EXP-A5 adds the
height estimation branch and adopts a joint learning method between the two tasks, achieving
improvements of 0.53% and 0.56% in the evaluation metrics Dice and IoU. In EXP-A7 and
EXP-A3, which use multi-level cross-fusion, EXP-A7 adopts a joint learning method for the
two tasks, and it achieves improvements of 0.23% and 0.47% in the evaluation metrics Dice
and IoU for footprint extraction. Thus shows that our multi-task joint learning method and
the use of semantic information to refine the height results achieve the mutual promotion of
the two tasks.

The footprint extraction and height estimation of buildings in a single image are
two different but closely related tasks. Although the final output results of the two tasks
are different, they complement each other in understanding the image content and scene
structure. Both tasks share feature representations and mutually promote each other in
the final output results. More accurate semantic information of footprints is beneficial in
inferring height results, and the provision of depth information can also help with more
accurate footprint extraction. Therefore, there is a strong correlation between the footprint
extraction task and the height estimation task in the high-level feature representation space.
The method designed in this article involves the end-to-end joint learning of the two tasks,
where they learn and optimize each other during the training process to achieve better
results. In the output of the height estimation branch, we employed footprint semantic
information to refine the height estimation results by exploring the relevance between the
two tasks in terms of understanding the image content and building structure, which can
effectively mine the feature representation shared by the two tasks.

4.4.3. Effectiveness of Independent Encoders

We evaluate the design of encoders for images from two modalities. In EXP-B1,
optical images and SAR images share the same encoder, including sharing the same basic
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feature extraction module and high-level feature inference module. In EXP-B2, independent
encoders are used for images of the two modalities. The comparison of the two methods
is shown in Figure 10. In Table 3, the evaluation results of the two designs are shown.
The design of two modalities sharing an encoder achieved scores of 0.3741 and 0.7093
in δ1 and Dice, respectively. The design of two modalities using independent encoders
achieved scores of 0.3849 and 0.7231 in δ1 and Dice, with improvements of 1.08% and 1.38%,
respectively, which shows that optical images and SAR images have obvious differences
in the feature space and independent encoders are conducive to the extraction of effective
features for their respective feature spaces.
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Figure 10. Two different designs of encoders for two modalities. The left is the design of EXP-B1,
where the input images of two modalities share the same basic feature extraction module and high-
level feature inference module in the encoder. The right is the design of EXP-B2, where the input
images of the two modalities use independent basic feature extraction and high-level feature inference
module in the encoder.

4.4.4. Contribution of SAR Images to the Model’s Performance

This section discusses the contribution of SAR images to model performance. The re-
sults of only inputting SAR images are generally poor, mainly due to the poor readability
and coherent speckle of SAR images, obvious geometric distortion, target overlap, and un-
clear edges of targets. These factors greatly increase the difficulty in extracting effective
features from SAR images by the model.

As two types of remote sensing images obtained by different sensors, EO images and
SAR images observe targets from different angles. EO images provide color and texture
details of building targets, imaged at an approximate top-down angle. SAR images are
different from EO images in that they are imaged from a side view angle. The two coordi-
nate axes of the image represent the azimuth and range directions, respectively, and the
pixel values represent the radar echo intensity rather than color information. These unique
characteristics enable SAR images to provide information that cannot be provided by EO
images, such as the lateral structure information of targets and distinguishing different tar-
gets based on the scattering characteristics of different surface materials, which is beneficial
in improving the estimation results of the building height.

The information between SAR images and EO images can complement each other.
Remote sensing images with different modalities have some heterogeneous features, some-
times even overwhelming the effective homogeneous features to be extracted. Therefore,
this article explores an effective fusion method to avoid heterogeneous feature interference
as much as possible, extract effective homogeneous features between SAR images and
EO images, and improve the performance of downstream tasks. Table 4 shows the metric
results of different models that only input EO images. Comparing the results of inputting
EO and SAR images in Table 1, different models perform differently under different inputs.
Most models perform better when inputting both EO and SAR images, while the ResUNet
and PSPNet methods perform worse. The difference in results depends on the different
feature extraction structures and multi-source data fusion methods. This indicates that SAR
does not always reduce the performance of the model. On the contrary, SAR images can
provide supplementary information for EO images.
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The results in Tables 1 and 4 show that the FusionHeightNet proposed in this article
designs effective multi-source remote sensing data fusion algorithms to avoid redundant
heterogeneous features as much as possible, extract effective homogeneous features of the
target, and improve the network model’s understanding of the target structure.

4.4.5. Spatial Variability of the Model’s Predictability

To further evaluate the spatial variability of the proposed model, we present the visual
prediction results and performance metrics of the model in different scenarios in Figures 11
and 12. Figure 11 shows scenes where the model performs well, with δ1 values exceeding
0.5. Figure 12 shows scenes with unsatisfactory model performance, with δ1 values below
0.2.

When comparing the two scenarios, the model generally performs better in scenarios
where the height distribution of the buildings is relatively average. However, in some
scenarios with significant height differences, the model may experience significant errors.
This is mainly because the loss of a single scene image is the accumulation of all pixel errors,
with higher buildings contributing more to the total loss, while lower buildings contribute
less. Therefore, the focus of model optimization will turn to higher buildings and it will
reduce the focus on lower buildings.

In addition, when estimating buildings with larger footprint areas composed of multi-
ple substructures, the model may also encounter the problem of uneven height estimation
and predict height values with significant deviations for individual buildings. This is
mainly due to some structural interference at the top of the building, which causes the
model to incorrectly identify a single building as multiple structures of different heights.

At the same time, we also found that good footprint extraction results can improve
the height estimation results, even in some scenarios with large height variance, which is
consistent with the correlation between footprint extraction and height estimation men-
tioned earlier.
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Figure 11. The scenes where the model performs well, with δ1 values exceeding 0.5. In the height
result map, brighter pixel colors correspond to greater heights.
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Figure 12. The scenes where the model performs unsatisfactorily, with δ1 values below 0.2. In the
height result map, brighter pixel colors correspond to greater heights.

5. Conclusions

In this paper, we propose an advanced method based on multi-source remote sens-
ing image fusion for building height estimation, named FusionHeightNet. The proposed
method introduces the auxiliary task of footprint extraction, aiming to achieve the joint
learning of building height estimation and footprint extraction under one framework.
In order to solve the problem of differences in the feature representations of the two modal-
ities, we propose a multi-level cross-fusion method. The images of the two modalities use
independent encoders; cross-fusion attention modules are designed at different positions
of the encoders to extract complementary and effective information of the two modalities
and avoid mutual interference between redundant features, preventing the flooding of
effective information. By fusing multi-source remote sensing images, we make full use
of the advantages of optical images to more accurately extract footprints and the sup-
plementary three-dimensional information from SAR images, effectively improving the
height estimation results. In addition, we also propose a two-task joint learning architec-
ture using semantic information to refine the height estimation, fully exploring the strong
correlation between the footprint extraction task and the height estimation task in the
high-level feature space. The experimental results show that our method outperforms other
deep learning-based methods in the evaluation metrics of height estimation and footprint
extraction. We also evaluate the effectiveness of the multi-level cross-fusion, independent
encoders, and multi-task joint learning of semantic information to refine the height results
through ablation experiments. Our study provides a new solution for the application of
multi-source remote sensing fusion in downstream tasks. In the future, we will explore
more effective fusion methods for the mining of multi-source remote sensing images to
improve the performance in downstream tasks, as well as better methods for the multi-task
allocation of footprint extraction and height estimation.
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The following abbreviations are used in this manuscript:

SAR synthetic aperture radar
EO electro-optical
CNN convolutional neural network
ViT Vision Transformer
DETR Detection Transformer
GAN generative adversarial network
DSM digital surface model
FCN fully convolutional network
ASPP atrous spatial pyramid pooling
InSAR interferometric synthetic aperture radar
IHS inverse hyperbolic sine
PCA principal component analysis
MSA multi-head self-attention
MLP multi-layer perceptron
LN layer norm
ReLU rectified linear unit
MAE mean absolute error
MSE mean square error
IoU intersection over union
RMSE root mean square error
LiDAR light detection and ranging
SOTA state of the art
FSG fuzzy stacked generalization
VAEs variational autoencoders
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