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Abstract: In the automated modeling generated by oblique photography, various terrains cannot
be physically distinguished individually within the triangulated irregular network (TIN). To utilize
the data representing individual features, such as a single building, a process of building monomer
construction is required to identify and extract these distinct parts. This approach aids subsequent
analyses by focusing on specific entities, mitigating interference from complex scenes. A deep
convolutional neural network is constructed, combining U-Net and ResNeXt architectures. The
network takes as input both digital orthophoto map (DOM) and oblique photography data, effectively
extracting the polygonal footprints of buildings. Extraction accuracy among different algorithms is
compared, with results indicating that the ResNeXt-based network achieves the highest intersection
over union (IOU) for building segmentation, reaching 0.8255. The proposed “dynamic virtual
monomer” technique binds the extracted vector footprints dynamically to the original oblique
photography surface through rendering. This enables the selective representation and querying
of individual buildings. Empirical evidence demonstrates the effectiveness of this technique in
interactive queries and spatial analysis. The high level of automation and excellent accuracy of this
method can further advance the application of oblique photography data in 3D urban modeling and
geographic information system (GIS) analysis.

Keywords: deep convolutional neural network; dynamic virtual; building monomer construction;
oblique photographic modeling

1. Introduction

Three-dimensional (3D) building modeling involves selecting a single building in the
aerial image and the queries for building information, which has significant implications in
various fields [1,2]. For instance, 3D building modeling can aid architects, urban planners,
and policymakers in making informed decisions about the development, design, and
sustainability of buildings and urban spaces [3–5]. The accurate 3D models of buildings
can help in civil engineering and construction by detecting potential design conflicts, and
in disaster management and emergency response by assessing vulnerability or planning
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evacuation routes [6–8]. Three-dimensional modeling is closer to human visual habits,
providing more information than two-dimensional (2D) modeling and expressing more
spatial relationships. Both group users and individual users have an urgent need for a 3D
geographic information system (GIS) [9–11]. Three-dimensional building modeling is one
of the major functions in 3D GIS applications, the development of which is affected by
various factors [12]. The economic cost and time cost of 3D data acquisition were the most
critical constraints affecting the wide application of 3D GIS in the early days. With the
continuous development of various theories and technologies, such as computer graphics,
virtual reality technology, and mapping technology, 3D GIS has gradually become one of
the mainstream directions of GIS research in recent years. Instead of manual modeling of
3D data production, new 3D data acquisition methods, such as oblique photogrammetry,
have emerged. Oblique photogrammetry uses aircraft to move from vertical to tilt, with
multiple sensing devices capturing images simultaneously. The oblique photographic
model is generated by automatic batch modeling. The oblique photographic model has
the potential to become an important data source of 3D GIS with the advantages of high
precision, high efficiency, high realism, and low cost [13–15].

The oblique photographic model constructs a continuous triangulated irregular net-
work (TIN) grid. The objects, such as buildings, roads, trees, etc., cannot be selected and
expressed singularly in this model [16]. Thus, the basic GIS capabilities, such as query
attributes, topical expressions, and spatial queries, are challenging to operate on oblique
photographic modeling data. Resolving the problem of building monomer construction
using oblique photography has become a hurdle for oblique photographic modeling data
used in 3D GIS applications [17]. The traditional method to select a singular building from
oblique photography is to separate individual objects by a cutting algorithm [18]. However,
this cutting method faces several dilemmas: (1) The cutting operation of the enormous
volume of data in the oblique photographic model takes time. The data are often larger
than tens or even hundreds of GB. (2) The cutting algorithm brings a lot of redundant
data, which affects the performance of browsing. (3) The segmentation of the buildings
is difficult because of the unclear boundary between the building and its surrounding
environment. (4) Most importantly, after partitioning or segmenting a three-dimensional
model or geographic data, the triangulation of the resulting individual three-dimensional
model does not meet the topological closure requirements, rendering it unsuitable for
spatial computational analysis [16]. Therefore, there is a need for a more efficient and
feasible method of building monomer construction using oblique photography.

This study proposes a dynamic virtual method of building monomer construction
using oblique photography, which addresses two technical problems: the need to automati-
cally obtain the polygonal building footprint from the oblique photography and the need to
visualize the selected building dynamically. Some researchers proposed a semi-automatic
human–computer interaction method to detect the objects [19], such as an improved Canny
edge detection operator [20], and extraction of building information in 3D data based on
the random forest algorithm [21]. However, the semi-automatic human–computer inter-
action method has a large labor cost. In addition, the extraction accuracy based on the
edge detection operator and the random forest algorithm cannot fully meet the application
requirements [22,23].

In the field of computer vision, deep convolutional neural networks are widely applied
to tasks such as image classification [24], image target detection [25], target tracking [26],
and segmentation [27]. The deep convolutional neural network extracts low-level visual
features through the alternate connection of multiple convolutional and pooled layers [28].
Its feature extraction and feature expression capabilities have been greatly improved
compared to the previous traditional methods [29,30]. The deep convolutional neural
network has provided new and effective solutions for some problems in earth science
and remote sensing (RS) [31]. Several researchers proposed remote sensing image target
recognition and pixel-level classification based on deep convolutional neural networks so
as to automatically obtain the semantic information of remote sensing images and realize
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the query and analysis of remote sensing images [32–34]. Like extracting information
from remote sensing images, building modeling aims to acquire semantic information
from oblique photographs and visualize and analyze the 3D data. Therefore, inspired by
the successful application of deep convolutional neural networks in computer vision and
remote sensing, this study constructs a deep convolutional neural network to automatically
calculate the underside polygon of the building and then dynamically highlight the singular
buildings chosen in oblique photographs.

In addition to the building footprint extraction by deep learning method, Section 2
provides a summary and overview of current related work. Section 3 introduces the
shadow volume rendering technique, which is used to attach and correlate the vector
bottom surface obtained by deep learning to the surface of the building generated by the
oblique photographic model. Section 4 presents the results of three algorithms for building
footprint extraction. Section 5 visualizes the monomer building, discusses the advantage
and disadvantages of the dynamic virtual method of building monomer construction using
oblique photography based on a deep convolution neural network, and provides some
perspectives on future work. Section 6 concludes the findings of this study.

2. Literature Review
2.1. Evolution of Three-Dimensional Reconstruction and Extraction

Three-dimensional reconstruction and extraction are ground object information extrac-
tion technologies based on remote sensing data [35]. They mainly realize the extraction and
reconstruction of three-dimensional spatial information of ground objects by processing
and analyzing remote sensing images. In the past few decades, 3D reconstruction and
extraction have undergone rapid development from traditional manual interpretation to
semi-automatic and fully automated algorithms. With the continuous advancement of
aerial photography and satellite technology, high-resolution orthophotos, digital surface
model images, panoramic images, and other data sources can obtain more accurate 3D
information. At the same time, the algorithm method has also been greatly developed.
The early 3D reconstruction and extraction mainly relied on manual interpretation, which
required a lot of time and energy. From semi-automatic and fully automatic algorithms
to the application of deep learning and artificial intelligence technology in recent years,
some algorithms based on point clouds have emerged, such as light detection and ranging
(LiDAR) and Synthetic Aperture Radar (SAR) technology [36]. Through the application
of these technologies, three-dimensional information of the ground can be directly ob-
tained and processed and analyzed using computer programs. The emergence of these
technologies greatly simplifies the process of data acquisition and improves the efficiency
of data acquisition.

2.2. Advancements in Remote Sensing Technology for 3D Data Acquisition

Since the 1960s, people have used remote sensing data such as aerial photography and
satellite images to extract ground feature information and established some basic remote
sensing image classification methods. Subsequently, in the 1970s, LiDAR technology was
applied to 3D data acquisition and gradually became one of the main 3D data sources [37].
With the rapid development of computer vision technology, people began to study remote
sensing image classification and target detection methods based on computer vision. In
the 1980s, SAR was widely used in fields such as topographic elevation measurement
and land cover classification and became an important means of remote sensing image
processing. By the 1990s, due to the rapid development of computer technology, these
remote sensing image classification and target detection methods based on computer vision
were further studied and applied. For example, in satellite image classification, people
started to use support vector machines (SVM) [38], neural networks, and other algorithms
for image classification. In the early 21st century, deep learning has been widely used
in remote sensing image classification and object detection. In recent years, with the
continuous development and popularization of technologies such as big data and cloud
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computing [39], 3D point cloud processing technology and remote sensing technology
combined with artificial intelligence algorithms have also been developing rapidly [40].
The 3D point cloud automation algorithm based on deep learning has gradually become
mainstream and can process large amounts of data quickly and accurately. For example,
using a convolutional neural network (CNN) [41] and recurrent neural network (RNN) [42]
in deep learning algorithms can identify and classify different ground objects in 3D point
cloud data.

2.3. Applications of 3D Reconstruction and Extraction and RS AI Algorithms across Various Fields

Three-dimensional reconstruction and extraction and remote sensing technology com-
bined with artificial intelligence algorithms have been widely used in urban planning,
smart transportation, smart security, smart agriculture, and other fields. In urban planning,
3D building models can be used for urban renewal and environmental planning; in the
field of smart transportation, 3D reconstruction and remote sensing technology combined
with artificial intelligence algorithms can be used to optimize road network planning and
management and realize traffic flow prediction and regulation. For example, in urban
transportation planning, 3D building models and digital terrain models can be used to de-
sign and optimize road networks to improve the efficiency and reliability of transportation
systems [43]. In addition, in terms of traffic safety monitoring, according to the exist-
ing foundation pit excavation construction plan and the situation of the subway tunnel
structure, a three-dimensional, large-scale numerical calculation model was established
to calculate the internal force and deformation changes of the tunnel structure during the
foundation pit excavation preparation stage law. The model can guide the construction
process and provide a reference for the corresponding safety monitoring program [44]. In
the field of smart security, 3D reconstruction and remote sensing technology combined with
artificial intelligence algorithms can be used for real-time monitoring and early warning of
the security situation in an area. For example, in urban public places, commercial areas,
industrial parks, and other areas, 3D reconstruction can be used to monitor and analyze the
density of people, action paths, abnormal situations, etc., to warn and deal with potential
safety risks in a timely manner [45]. In the field of smart agriculture, 3D reconstruction and
extraction and remote sensing technology combined with artificial intelligence algorithms
can be used for the precise management and monitoring of farmland. For example, the
monitoring and analysis of farmland soil quality, moisture content, and crop growth sta-
tus can be realized through 3D models to accurately implement agricultural production
management and improve agricultural production efficiency and quality [46]. In the future,
with the continuous development of deep learning and artificial intelligence technology,
these algorithms will further improve accuracy, speed, and precision, and will be applied to
more fields and industries, such as traffic flow prediction in smart city construction, urban
green coverage monitoring, and other aspects.

3. Materials and Methods

The buildings could be selected and queried within the overlayed area between the
created polygon and the remote sensing image on Google Earth, as shown in Figure 1.
This selection and query approach inspired the research on improving the oblique photo-
graphic model. The oblique photographic dynamic virtual method of building monomer
construction proposed in this study conceives that 3D buildings can be selected singularly
by underlying polygon data with attributes under the oblique photographic data in the
oblique photographic model.

The deep convolution neural network was applied for building bottom extraction, and
the shadow volume rendering technique was proposed for attaching the bottom polygon
to the building surface provided by the oblique photographic model.

Firstly, the oblique photography model data was preprocessed by conversion into
DOM and digital surface model (DSM) raster data, serving as the input for a deep con-
volutional neural network. Then, a deep convolutional neural network based on U-Net
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was constructed, with ResNeXt50 serving as the backbone network. It was employed to
automatically extract building outlines from oblique aerial photography data, comparing
its accuracy with that of different algorithms. Following this, shadow volume rendering
techniques were utilized to bind the extracted vector base data to the building surfaces of
the oblique photography model, thereby realizing the dynamic virtual method of building
monomer construction using oblique photography (Figure 2).
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Figure 2. Overall workflow.

3.1. Study Area

The research area of this study is located in Tieling County, Tieling City, Liaoning
Province, China. All the data used by the research institution were captured from high-
precision oblique aerial imagery taken by unmanned aerial vehicles (UAVs) over the study
area. During the data collection process, both the along-track and across-track overlaps
were set at 80%, with a flying height of 500 m, achieving a spatial resolution of 1 m. The
oblique photography model includes images captured from five different angles, with an
image resolution of 1 m and horizontal and vertical positioning accuracies both at 1 m,
ensuring the accuracy of the data. To enhance the information value of the data, manual
annotation was performed, categorizing targets in the images into two classes: “buildings”
and “non-buildings”. The annotation process strictly followed the definition of buildings
and excluded targets not belonging to the building category, such as vehicles and vegetation.
The images were divided into two parts, with one used for training and the other for testing
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and evaluation. The training area represents 70% of the total area, while the testing area
represents 30%, as shown in Figure 3.
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3.2. Deep Convolution Neural Network for Automatic Acquisition of the Polygonal Underside of
a Building
3.2.1. Oblique Photographic Data Preprocessing

Oblique photographic data are in the form of a triangulated irregular network (TIN)
and are created with a multi-level detail grid (LOD) [47,48]. The distribution of these grids
is irregular and difficult to input directly as a deep convolutional neural network. Therefore,
the oblique photographic data have to be converted into a regular grid pixel format that
is easily processed by the convolutional neural network. In order to preserve the original
features of oblique photographic data to the maximum extent during conversion, the
oblique photographic modeling data were transformed into a visible light-based DOM and
DSM with a similar resolution to the original oblique geographic modeling data. The pixel
format of the DOM and DSM is suitable as an input to the convolutional neural network;
in addition, these data include both visual and elevation features of the oblique data.

3.2.2. Convolutional Neural Network

A convolutional neural network (CNN) is a regularized version of the multi-layer
perceptron, which is a fully connected network [49,50]. The upper layer of neurons is
completely connected to the next layer of neurons, and it is often prone to over-fitting.
A CNN, through local connections and weight sharing, using hierarchical patterns in data,
combines smaller and simpler patterns into complex patterns. Figure 4 shows the basic
structure of a commonly used picture classification network, which extracts the low-level
features of the image to obtain the picture category by combining the convolutional layer
and the pooling layer [24].

A CNN was initially used to solve the image classification problem. However, many
problems in the field of computer vision need to rely on semantic segmentation [51]. U-
Net [52] is a network structure based on a CNN for image semantic segmentation (as shown
in Figure 5). Adding upsampling layers in very deep convolutional networks for large-scale
image recognition (VGG) can provide more accurate semantic segmentation results on less
training data. U-Net architecture constructs the connections between its upsampling layer
and the corresponding feature layer in the classification network [53,54].
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The backbone network, which refers to the initial layers of a neural network, is
responsible for feature extraction from input data [55,56]. These features are then passed
on to the subsequent layers for further processing and prediction. The choices of backbone
networks in U-Net architecture are various. The VGG-19 network, one of the major CNN
architectures developed by the Visual Geometry Group, is popular because of its simplicity
and effectiveness [57]. VGG-19 contains multiple convolutional layers followed by pooling
layers and a fully connected layer, known for its deep architecture with up to 19 layers [58].
VGG networks are used for various image processing tasks, including image classification,
object detection, and image generation, which could be used in U-Net architecture as
a backbone classification network for providing extracted features.
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However, the VGG-based network faces the problems of gradient disappearance and
gradient explosion when there are too many layers. ResNeXt (Residual Next) is a new
network structure generated by the combination of Resnet [60,61] and Inception network
structure. With the same parameter quantity of Resnet, ResNeXt can obtain higher precision
in the image classification task. Figure 6 illustrates the basic structural unit of ResNeXt.
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Compared with the VGG network, ResNeXt is a more complex architecture with parallel
paths or branches within each residual block. The multiple paths with different filter sizes
allow ResNeXt to capture diverse and discriminative features, which can enhance the
model’s representation capacity. This study used ResNeXt50 as the backbone network of
the U-Net network. ResNeXt50 [62] is a specific variant of the ResNeXt architecture, a deep
CNN architecture that introduces the number of branches in the residual blocks. ResNeXt50
has 50 layers and is known for its good trade-off between accuracy and computational
efficiency, making it a popular choice for various computer vision tasks.
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Figure 6. Basic structural unit of ResNeXt.

The combination of the classification network, i.e., VGG-19 and ResNeXt50, with the
segmentation network U-Net, was designed for this study to acquire the polygonal footprint
of the building from the oblique photographic model automatically. This combined deep
convolution neural network architecture replaces the fully connected layer in the original
classification network structure with a convolutional layer, which has an encoder–decoder
structure with skip connections, allowing it to capture both local and global contextual
information for accurate segmentation. The input layer is extended from the RGB visible
band to RGB+DSM, the corresponding upsampling layer is added, and the corresponding
feature extraction layer is connected. Finally, logistic regression is used to classify pixels
based on the extracted image features to obtain the building area in the image, as shown in
Figure 7.
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3.2.3. Loss Function

The binary cross entropy (BCE) loss function is used to train the U-Net network, which
can quickly fit the training data [63–65]. However, in the unbalanced data, the BCE results
often cannot reflect the actual results of less data. In oblique photography, the building area
usually only accounts for 20% or less of the whole image; that is, the ratio of the building
area to the non-building area is highly unbalanced, and thus it is difficult to obtain the
optimal building extraction results using only the BCE loss function. Dice loss can establish
the balance between different categories correctly based on the distribution of training
data [66], so the BCE loss and dice loss function were combined to ensure that the loss
function could obtain the optimal result faster in this study.

The loss function is as follows:

Loss = BceLoss + DiceLoss (1)

BceLoss = −
n

∑
i=1

(piloggi + (1 − pi)log(1 − gi)) (2)

DiceLoss = 1 − 2∑n
i=1 pigi

∑n
i=1 pi

2 + ∑n
i=1 gi

2 (3)

where pi and gi are the corresponding predicted values and true values, respectively.

3.3. Oblique Photographic Dynamic Virtual Method of Building Monomer Construction

On the visualization level, the oblique photographic dynamic virtual method of
building monomer construction uses the shadow volume rendering technique to attach
the vector building footprint to the building surface and realizes the monomer of the
oblique photographic modeling data without cutting the data. In addition, at the data level,
the dynamic association between the vector building footprint and oblique photographic
modeling data facilitates data updating and enables oblique photographic modeling data to
be associated with business data by using attribute query and spatial query capabilities on
the underside of the vector. This oblique photographic dynamic virtual method of building
monomer construction solves the problem of applying oblique photographic modeling
data in GIS. This technique also effectively promotes the broad application of oblique
photographic modeling data in surveying, planning, smart cities, and other industries.

One key step of the oblique photographic dynamic virtual method of building monomer
construction is the connection between the polygonal building footprint and the building
surface. The polygon and the core of the earth are connected to form a closed shadow
volume. Through the stencil shadow volume rendering technique, the bottom surface of the
polygon is attached to the building surface, as recorded by the oblique photographic model.
Thereby the surface of the selected building is highlighted, and the identity document (ID)
and the attribute information are returned simultaneously, thus realizing the goal of 3D
building selection. This technique could help produce object segmentation maps and other
thematic maps. The set of polygons expressed by the classification is attached to the oblique
photographic modeling data by rendering the stencil shadow volume, and the classified
color is mixed with the corresponding building surface, thereby realizing the single value
and segmentation of the oblique photographic modeling data expression.

4. Results

The extraction of buildings by different algorithms, including random forest and
deep convolution neural networks, are compared, and the optimal extraction method is
applied in the dynamic virtual method of building monomer construction. The results of
the comparison and building monomer effect visualization are presented.
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4.1. The Comparision of Building Extraction Method

The comparison experiments are designed to examine the feasibility of applying
a CNN on oblique photographic modeling data. The experimental data are sourced from
geometrically corrected satellite imagery (DOM) and the oblique photographic image. The
algorithms, including random forests [67,68], U-Net architecture based on VGG-19, and the
ResNeXt50, are applied to the experimental data for building bottom extraction. The Jakarta
index is used as the experimental evaluation index. Random forest and VGG19-based U-Net
represent two different categories: traditional machine learning and deep learning. They
demonstrate the advantages of deep learning in image semantic segmentation tasks. When
compared to U-Net based on ResNeXt50, they provide a more comprehensive assessment of
the effectiveness of deep learning models. The Jakarta index, also known as the intersection
over union (IOU), is widely used in the remote sensing image feature extraction data
competition [69]. The formula is as follows:

Jaccard =
TP

TP + FP + FN
=

|A ∩ B|
|A ∪ B| (4)

TP is the predicted building area, FP is the false reported building area, and FN is the
unpredicted building area.

Table 1 presents the results of using different methods to extract buildings from
different experimental data.

Table 1. Experimental results.

Algorithm IOU for Extraction from DOM IOU for Extraction from Oblique Photography

Random forest [21] 0.5024 0.7532
U-Net based on VGG-19 [70] 0.7163 0.8143

U-Net based on ResNeXt50 (Ours) 0.7652 0.8255

From the experimental results in Table 1, it can be seen that, for each algorithm, the
accuracy of extracting buildings based on oblique photographic modeling data is higher
than that of extracting buildings using DOM alone. The gap of IOU between the DOM and
oblique photographic modeling data in random forest experiments is larger than in the
other two algorithms. The gap of IOU under U-Net based on the ResNeXt50 experiment
has the smallest number. Since the oblique photographic modeling data can provide a more
detailed feature for deep learning, the IOU of three algorithms for oblique photographic
data are compared. The IOU for the extraction building footprint using U-Net based on the
ResNeXt50 has a value of 0.8255, which is higher than the 0.8143 in U-Net based on the
VGG-19 and also higher than that in random forest, which is 0.7532. This result indicates
that the accuracy of extracting the building footprint polygon using the U-Net based on the
ResNeXt50 is higher than the accuracy of the other two algorithms. The above findings
prove that the extraction from an oblique photograph by U-Net based on the ResNeXt50
would be the most accurate and optimal.

4.2. Visualization of Dynamic Virtual Building Monomer Construction

Since the U-Net based on the ResNeXt50 performs better than the other two algo-
rithms in accuracy, it is chosen as the building extraction method in the dynamic virtual
building monomer construction. The initial idea of highlighting a singular building in
oblique photography by selecting the underlaid polygon is achieved. Figure 8a displays
oblique photographic modeling data as a 3D scene base map, which cannot support se-
lection, editing, etc. Figure 8b illustrates the extraction of buildings by U-Net based on
the ResNeXt50. Each polygon bottom surface datum corresponds to a building on the
oblique photographic model that needs to be selected, and the polygon bottom surface data
have attribute information. The blue polygon is the target building which is expected to
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be selected in the oblique photograph. Figure 8c demonstrates that the polygonal bottom
surface and the oblique photographic modeling data are matched.
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The successful selection of the building by the dynamic virtual method of building
monomer construction using oblique photography proposed in this study provides a solid
base for its various applications with different functions. One of the applications is the
interactive query of the oblique photographic model. Clicking the building in the 3D scene
with the mouse obtains the intersection point O. The point O in the Cartesian coordinate
system is converted into the point P in the geographic coordinate system. The geometric
data, including ID value and attribute information of the found polygon, are returned by
finding the underlying polygon where point P is located (as shown in Figure 9a).
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In addition, the implementation of the structured query language (SQL) query and
spatial query of the oblique photographic model can also be realized by the dynamic
virtual method of building monomer construction using oblique photography (as shown
in Figure 9b,d). The set of polygon objects satisfying the SQL query and the spatial query
condition in the database is selected, the polygons are attached to the oblique photographic
modeling data by rendering the stencil shadow volume, and the corresponding building
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surface is highlighted with a specific color. This function contributes to the thematic map
and other productions (as shown in Figure 9c).

5. Discussion

With several advantages, the oblique photographic dynamic virtual method of build-
ing monomer construction using oblique photography realized the dynamic selection
and expression of singular buildings in oblique photographs. The workflow designed
in this research, which proposes an alternative method to avoid processing the oblique
photographic model data, is effective and efficient.

Distinguishable from traditional oblique photography, which cuts the data to extract
individual buildings, this method has many problems. Deep-convolutional-neural-network-
based dynamic virtual whole technology for tilt images uses deep learning methods to
extract building footprints, associates polygonal building footprints with the building
surface construction of the image, and forms a closed shadow body within the 3D im-
age extraction to ensure the overall realization of the data, which has the advantages of
easy segmentation, data streamlining, and automation. In addition, unlike the traditional,
straightforward cutting algorithm, the virtual method of building monomer construction
using oblique photography saves data processing time. By dynamically extracting the
building footprint from the oblique photographs, updating the polygon becomes more
convenient, and the whole monomer process becomes flexible. Additionally, as shown in
Section 3, the dynamic virtual method of building monomer construction using oblique
photography can fully use the attribute query, spatial query, and spatial computing ca-
pabilities of the polygon bottom surface, which support more powerful two-dimensional
integrated GIS applications and can conduct more advanced analysis.

Furthermore, as shown in Figure 5, the visualization effect shows high quality. U-
Net is a simple, structured extraction method commonly used for semantic segmentation,
consisting of upsampling and downsampling to form a left–right symmetric network
structure. The edge of the complete translucent wrapping of the object calculated by
the model is accurate to the pixel level, and the edge is straight and has no jaggedness.
Theoretically, the dynamic virtual method of building monomer construction applies to
oblique photographic model data and the single representation of point cloud data.

In order to find the most suitable backbone network for a U-Net architecture, this
study designs experiments to extract the bottom of buildings by random forest algorithm
and VGG-19-based and ResNeXt50 algorithms and rates them by Jakarta index to compare
the extraction results. VGG-19 and ResNeXt50 are both convolutional neural network
architectures used in deep learning, but they have some key differences in architecture,
cardinality, computational efficiency, training and loss function, and applications. The
differences are revealed by the results as listed in Table 1. VGG is a series of CNN ar-
chitectures with a fixed and simple structure, while ResNeXt has a deeper architecture
with multiple branches or pathways, each with different filter sizes. Compared to the
limited layers in VGG, the complex architecture of ResNeXt enhances its representation
capacity. The computational efficiency of ResNeXt is higher than that of VGG because of
its complex structure. Although VGG can be computationally expensive due to its deeper
architecture with a large number of parameters, the architecture of ResNeXt can lead to
improved performance compared to traditional deep networks with a similar number of
parameters by utilizing parallel paths with reduced filter sizes. By analyzing the differences
from the view of theory and comparing the differences by the remote sensing image feature
extraction data competition index, the ResNeXt50 is more suitable for being the backbone
network of U-Net architecture in this technique.

U-Net has a U-shaped network structure and utilizes skip connections that connect
corresponding encoder and decoder layers. The choice of backbone network depends on
various factors such as the specific task, dataset, and computational resources available
and should be evaluated and optimized for the specific use case. In this research, by using
ResNeXt50 as the backbone network of a U-Net architecture, the features extracted by the
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ResNeXt50 encoder can be used as the input to the U-Net decoder for segmentation. The
encoder–decoder path allows the network to preserve fine-grained spatial information
and capture both local and global contextual information, which helps in improving the
accuracy and localization of segmentation masks. The other CNN architectures with high
accuracy and efficiency could be tested by combining with U-Net for image segmentation
in future work, such as DenseNet (Densely Connected Convolutional Networks), a CNN
architecture with the features of dense connections [71,72] where each layer receives input
from all previous layers, allowing for efficient feature reuse and reducing the number
of parameters.

6. Conclusions and Future Work

Fully automated oblique photographic modeling technology solves the problem of
3D data sources for 3D GIS applications. However, oblique photographic modeling data
are full-element slice data, which makes it impossible to operate on a single building. This
research proposes a dynamic virtual monomer method for oblique photographic modeling
data. The vector building footprint is attached to the surface of the oblique photographic
modeling data by the shadow volume rendering technique, and the dynamic correlation
between the vector underlying data and the oblique photographic modeling data is built.
In the case of not cutting data, the singular expression and object-oriented query of oblique
photographic modeling data are realized. A deep convolutional neural network based on
a U-Net deep convolution neural network structure is proposed to extract the underside
of the building from the oblique geographic image and thus improve the effectiveness of
the fully automated oblique photographic model monomer process. This study proposes
a deep-learning-based approach for extracting monomeric data from oblique photography,
thereby achieving dynamic virtual monomerization of oblique photographic modeling data.
The deep learning network employed in this method is based on the U-Net architecture,
with ResNeXt50 serving as the backbone network for the U-Net structure. Comparative ex-
periments indicate that this method is efficient and feasible, with higher extraction accuracy
compared to traditional algorithms. It achieves full automation in representing oblique
photography singularly, supports the two-dimensional integration of oblique photographic
modeling data into GIS applications, and effectively promotes the widespread application
of oblique photographic modeling data in industries such as surveying, planning, and
smart cities.

U-Net, with its distinctive U-shaped network structure, is a convolutional neural
network. The choice of backbone network can be influenced by various factors such
as specific applications, dataset characteristics, and computational resource availability,
and should be assessed and optimized based on individual use cases. In this study, by
employing ResNeXt50 as the backbone network for the U-Net architecture, the features
extracted by the ResNeXt50 encoder can be utilized as input for the U-Net decoder to
perform segmentation. In future work, other CNN architectures with high accuracy and
efficiency could be tested for integration with U-Net to enhance image data extraction.
Improvements could focus on reducing model size and computational complexity, as well
as enhancing U-Net’s performance in handling complex details.
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