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Abstract: The deep seabed is composed of heterogeneous ecosystems, containing diverse habitats
for marine life. Consequently, understanding the geological and ecological characteristics of the
seabed’s features is a key step for many applications. The majority of approaches commonly use
optical and acoustic sensors to address these tasks; however, each sensor has limitations associated
with the underwater environment. This paper presents a survey of the main techniques and trends
related to seabed characterization, highlighting approaches in three tasks: classification, detection,
and segmentation. The bibliography is categorized into four approaches: statistics-based, classical
machine learning, deep learning, and object-based image analysis. The differences between the
techniques are presented, and the main challenges for deep sea research and potential directions of
study are outlined.

Keywords: deep sea; seafloor characterization; deep learning; underwater sensors

1. Introduction

The deep ocean is one of the largest and least explored ecosystems on Earth [1,2]. It
starts around 200 m in depth and reaches approximately 11,000 m. In addition, the deep sea
contains heterogeneous ecosystems featuring vast marine flora and fauna. Therefore, com-
prehending the geological and ecological characteristics of the seabed is a fundamental pro-
cess for several applications. The conventional methods of seabed sediment classification
use sampler types, such as towed samplers, bottom samplers, and seafloor photography [3].
Nevertheless, these techniques have some drawbacks, including the requirement for heavy
equipment, time consumption, and intensive manual labor. Consequently, applying remote
sensing technology to characterize seabeds has received substantial attention within the
academic community [4].

Underwater sensing is the acquisition of data from underwater environments. With
the rapid development of technology, a broad set of sensors have been used to perform
various tasks in marine research [5,6]. The most commonly used sensors are based on
optics and acoustics, each designed for specific applications and scenarios, such as seafloor
mapping [7], object inspection [8], navigation [9], and many others. Considering acoustics
sensors, there are Single-beam Echosounders (SBESs), Multibeam Echosounders (MBESs),
side-scan Sound Navigation and Ranging (SONAR), and sub-bottom profilers. For optical
sensing, typical sensors are underwater cameras, three-dimensional (3D) underwater struc-
tured light sensors, and hyperspectral sensors. In this context of deep and potentially large
areas of the sea, underwater vehicles are fundamental for carrying out such operational
missions. Sensors are attached to these mobile robots, namely Autonomous Underwater
Vehicles (AUVs) and Remotely Operated Vehicles (ROVs), enabling the collection and
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processing of a large amount of data at depths unreachable by humans, thus achieving
real-time data processing.

Recently, the deep sea has been the focus of significant research efforts due to the
presence of mineral resources, including polymetallic nodules, cobalt-rich crusts, and
massive sulfides, thus presenting great importance to deep sea mining [10–14]. Specifically,
polymetallic nodules are small gravel-sized encrustations with spheroidal or ellipsoidal
shapes that are found on the deep seafloor, containing critical metals such as nickel, copper,
cobalt, manganese, and rare earth elements. These nodules have attracted interest due to
their potential as a source of raw materials for various industries [15].

Conversely, the deep sea is a unique and fragile environment, and the effects of mining
on marine life have yet to be fully explored and understood [16]. Hazard assessment
studies, such as [16,17], indicate the environmental impact of current mining technologies.
The collector mechanisms are typically seabed sweeping [18] or pump systems [3]. Fur-
thermore, polymetallic nodules are also part of the ocean ecosystem; consequently, their
exploration can harm the habitat. For instance, a large quantity of nodules is required
for exploration to have an economic benefit. Given that the nodules are generally located
at great depths, underwater vehicles are essential for the perception and awareness of
nodules. Thus, deep sea mining is a complex and challenging topic, and an improved
seafloor characterization can lead to better resource management and nodule assessment,
reducing environmental impact.

Another important application that can be enhanced with improved seabed classi-
fication is deep coral reef monitoring. Coral reefs are extremely related to the oceans’
health, harboring a diverse variety of species [19]. However, due to human impacts and
climate change, those coral species are endangered [20]. For instance, recent studies have
indicated that some coral species are hastily decreasing, being subjected to bleaching and
the degradation of reef structures [21,22]. Hence, being able to monitor these species and
perform constant assessments of their status becomes fundamental in order to achieve
sustainable development.

Characterizing the seabed is a major goal in several robotic tasks. There are consider-
able surveys regarding different techniques, especially deep learning (DL) and machine
learning (ML). However, these surveys only focus on one modality, such as acoustic [23,24],
optical [25,26], or hyperspectral sensors [27]. Furthermore, the previous research generally
covers only one type of method, machine learning, for instance. Hence, a survey that covers
a comprehensive study of multiple sensing methods and technologies is still needed. The
objective of this research was to identify a variety of seabed characterization techniques,
considering three levels of detail: classification, detection, and segmentation (as depicted
in Figure 1). The study also focused on identifying the primary technologies for data
collection, rather than solely focusing on one, resulting in a more broad study.

Figure 1. Three levels of tasks for seabed characterization.
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Following this motivation, the paper outline is as follows. In Section 2, we define
seafloor characterization and the environmental challenges. Then, Section 3 presents
common technologies used for seafloor characterization. Section 4 focuses on the related
work, identifying the key approaches for seabed classification and mapping. Next, Section 5
provides a comparative analysis of the surveyed papers, presenting the main advantages
and drawbacks and suggesting potential research directions. Finally, the main conclusions
are presented in Section 6.

2. Seafloor Characterization

Seafloor characterization can be defined as describing the topographic, physical,
geological, and biological properties of the seabed. To achieve this, multiple sensors and
sensing methodologies are used to obtain data for processing. Additionally, the knowledge
of seabed characteristics is important for several applications in the field of marine robotics,
such as geological surveys, underwater inspections, habitat mapping, object detection,
and others.

Underwater Environment Challenges

Although significant advances have occurred in sensor technology for underwater
scenarios to overcome technical challenges such as high pressure, power consumption, and
data processing and transmission, the underwater environment still presents itself as a
challenging scenario for underwater robotics and sensing [28,29]. Figure 1 illustrates some
issues in underwater images, and Figure 2 was obtained at the kaolin mine in Lee Moor,
United Kingdom, during the VAMOS project [30]. Typical underwater computer vision
systems face the following issues.

• Lighting conditions: Light is absorbed by water across almost all wavelengths, although
it typically attenuates blue and green wavelengths to a lesser extent. Furthermore, the
degree of color change resulting from light attenuation varies based on several factors,
including the wavelength of the light, the amount of dissolved organic compounds,
the water’s salinity, and the concentration of phytoplankton [31,32]. Recently, there has
been an increase in image-enhancement algorithms that can be categorized into three
approaches: statistical [33], physical [34], and learning-based [35,36].

• Backscattering: The diffuse reflection of light rays can lead to image blurring and
noise. Suspended particles cause light from ambient illumination sources to scatter
towards the camera [37].

• Image texture: Textures significantly help in the identification of given features of
the image. However, in underwater imagery, textures may not be discernible, which
makes it difficult to calculate relative displacement or accurately determine the scene
depth [38].

• Vignetting effect: This refers to a reduction in the brightness or saturation of an image
towards its periphery, as compared to the center of the image, as observed in Figure 2 [39].

• Nonexistence of ambient light: The unavailability of ambient light in the deep sea
introduces additional problems related to the need to provide artificial lighting, such
as uneven distributions, and sources of light generally close to the imaging sensors
add difficulties in varying the incident angle [40].

Similarly, acoustic sensors also present issues in underwater scenarios, such as the
following.

• Noise: Underwater environments can be noisy due to currents, and other sources of
interference, making it difficult for acoustic systems to accurately transmit and receive
signals [41]. In general, noise is described as a Gaussian statistical distribution through
a continuous power spectral density [42].

• Signal attenuation: The two main factors that influence this property are the absorption
and the spreading loss. Absorption refers to the process of signal attenuation due
to the conversion of the acoustic energy to heat [41]. On the other hand, spreading
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loss refers to the decreasing of acoustic energy as the singla spreads through the
medium [43].

• Multi-path propagation: Reception of a single acoustic signal in multiple instances
due to its transmission via multiple paths such as through refraction. For this reason,
false positives can occur since the same signal is received at different instants [41].

(a) Artificial light effects. (b) Water turbidity.
Figure 2. Examples of underwater environment constraints.

3. Underwater Sensing
3.1. Acoustic Ranging/Imaging Sensors

Standard sensors for geological survey applications, such as seafloor mapping and
resource exploration, are based on SONAR data. They provided a non-invasive way to
generate seafloor maps. The most common are the following:

• Single-beam Echosounder: SBES uses transducers, typically ceramic or piezoelectric
crystals, to transmit and receive acoustic signals. The principle of operation of this
sensor is to calculate the signal travel time, that is, the time difference between signal
emission and reception. Knowing the propagation speed of sound c and the time of
flight t, the distance d is calculated as

d =
c × t

2
(1)

The main advantage of this sensor is that it is relatively easy to use and has a low cost
compared with other sensors. On the other hand, the coverage area is small, generally
between 2–12 degrees [44], preventing it from obtaining broad coverage. Figure 3
illustrates the principle of operation.

Figure 3. Single-beam echosounder (Adapted from [45]).
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• Multibeam echosounder: As the name implies, the principle of operation of MBES
corresponds to multiple beams emitted simultaneously. Consisting of an array of trans-
ducers, this system emits multiple acoustic beams and captures the echoes reflected
from the seabed, covering a wide swath of the seafloor. The subsequent processing of
the received echoes results in the generation of detailed bathymetric maps. Conform-
ing to [43], the sensors can also be divided into narrow and wide systems. In narrow
systems, there is a trade-off of obtaining high spatial resolution and a limited coverage
area with each transmission. Figure 4 illustrates the sensor. The bathymetric data,
or water depth, provided by echosounders depends on the range detection, which is
surveyed in swaths. If the sensor position and orientation are, the beam angle is also
known, and a point cloud can be generated. Consequently, the terrain model can be
obtained from a point cloud [46,47]. For this reason, bathymetry data are essential to
obtain seafloor topography and morphology information [48,49].

Figure 4. Multibeam echosounder (Adapted from [45]).

• Side-scan sonar: A side-scan sonar has seabed surveying missions as typical appli-
cations. Like other echo-sounder sensors, it has two transducer arrays emitting the
acoustic signal and recording the reflections. Some studies have shown that the echoes
from the sensors that the sediments present in the seafloor are correlated [50]. How-
ever, the seabed’s characteristics directly influence the echo’s strength. For instance,
rough surfaces have stronger echoes than smooth surfaces [51]. Side-scan sonar de-
vices emit sound waves in a fan-like pattern perpendicular to its central axis. This
creates a blind area directly beneath the sensor, as depicted in Figure 5.

• Sub-bottom profilers: Contrary to the aforementioned sensors, sub-bottom profilers
can obtain information from sediments and rocks under the seabed. The principle
of operation is to send a low-frequency signal capable of penetrating deeper into the
seabed than high-frequency signals, which are quickly absorbed due to the sound
properties in the water medium. After that, the variations in acoustic impedance
among distinct substrates are employed to produce the echoes [51]. In order to obtain
a profile map, a large number of signals must be sent.

• Backscattering: Backscattering refers to the strength of the echo reflected from the
bottom [49,52]. Different sediments and seabed structures will have different backscat-
tering intensities. In this regard, backscattering is a helpful tool for seafloor classifi-
cation. Generally, to generate acoustic images, the acoustic backscatter intensity is
converted into the pixel value of a grayscale image (called the backscatter mosaic).
Finally, the backscatter strength is complex data, depending on several factors, such as
the incident angle of the sound waves, the roughness of the detected object/material,
and the medium [53,54]. While side-scan sonar provides high-resolution images of
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the seafloor, backscattering provides data about the composition of the seabed based
on the intensity of echoes.

Figure 5. Side-scan sonar coverage (adapted from [45]).

Table 1 presents some typical variables that can be obtained from backscattering and
bathymetry data. Bathymetric derivatives such as the Bathymetric Position Index (BPI)
and rugosity have shown close relations with benthic ecosystem processes such as shelter
availability and species abundance [55]. Backscatter statistics are used to classify seabed
sediments regarding textural information [56].

Table 1. Backscatter statistics and bathymetric derivatives commonly found in the literature (adapted
from [57]).

Backscatter Statistics

Mean Average backscatter value within a spatial neighborhood of cells

Median Median backscatter value within a spatial neighborhood of cells

Mode Most frequently occurring value within a spatial neighborhood of
cells

Standard deviation Dispersion from the mean backscatter value of the spatial
neighborhood

Bathymetric Derivatives

Slope A measure of the rate of bathymetry change along a path

Rugosity A measure of the irregularity of a surface

Bathymetric Position Index
The relative topographic position of a central grid cell to a spatial
neighborhood defined by a rectangular or circular annulus with an
inner and outer radius

Standard deviation Dispersion from the mean depth of the spatial neighborhood

Planar curvature Curvature perpendicular to the direction of maximum slope

Profile curvature Curvature parallel to the direction of maximum slope

3.2. Optical Sensors

The most common optical sensors for underwater seafloor classification are cameras.
They can deliver various visual data at high spatial and temporal resolutions, such as
color, intensity, texture, and contours. Camera models map 3D world point spaces as
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two-dimensional (2D) image representations. The pinhole projective model is the most
common camera model used in this context. Generally, cameras are calibrated in order to
obtain the extrinsic and intrinsic parameters [58]. With these parameters, it is possible to
define the intrinsic properties of the camera and also its position in the world against a
previously defined coordinate system. However, considering the underwater environment,
subaquatic images present high distortion due to the air–glass–water refraction. Figure 6
presents a simple scheme of the refraction caused by the air–glass–water interface. It is
noted that an angular deviation occurs when the light beam passes through two media
with different refractive indices [59].

Figure 6. Simple scheme of refraction caused by the air–glass–water interface (adapted from [59]).

According to Snell’s Law [60], the incident and emergent angles are given by Equation (2).

nair · θ3 = nwater · θ1 → θ3 > θ1 (2)

Since that the emergent angle θ3 > θ1, the scene image will look wider.
Regarding sensor classification, 3D optical sensors are often divided regarding their

measuring method: time of flight, triangulation, and modulation [59].

• Time of flight: These sensors use Equation (1) to calculate the depth of a point. A light
ray is emitted, and the time until its reception is measured. To determine the 3D posi-
tion, the point position in all three axes must be located. There are three configurations
to obtain the spatial configuration: a single detector used with a punctual light source
steered in 2D; a 1D array of detectors with a linear light source swept in 1D; and a 2D
array of detectors to capture information about a scene illuminated by diffuse light.
One example of time-of-flight-based optical sensors is Pulse-Gated Laser Line Scan-
ning (PG-LLS). The main principle of the PG-LLS sensor is illuminating a small area
with a laser light pulse while keeping the receiver’s shutter closed. After that, the
object distance is estimated by measuring the time it takes for the light to return.
Furthermore, it captures only the light reflected from the target by opening the re-
ceiver’s shutter.

• Triangulation: Triangulation methods rely on measuring the distance between multi-
ple devices to a common target with known parameters. One drawback of triangula-
tion sensors is the requirement of an overlapping region between the emitters’ and
receivers’ fields of view. Additionally, nearby features have a larger disparity, hence
presenting better z resolution for closer distances. Moreover, the camera baseline
affects the z resolution of the device. Structured Light Systems (SLSs) are one of the
multiple technologies that utilize triangulation to calculate 3D information. These sen-
sors usually consist of a camera and a projector. Knowing both the planes and camera
rays (see Figure 7), a known pattern, commonly a set of light planes, is projected onto
the scene. Binary patterns are typically used due to simple processing and ease of use.
Binary patterns employ only two states of light, with white light being one of the most
common representations.
Another type of Structured Light Systems is Laser-based Structured Light Systems
(LBSLSs). In these sensors, a laser plane pattern is projected onto the scene. In addition,
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the projector is swept across the camera’s field of view. As a result, a motorized element
is required besides the laser system. Furthermore, it is mandatory to know the camera
and laser’s relative position and orientation to carry out the triangulation process.

• Modulation: Regarding modulation-based sensors, they use the frequency domain to
discern multiple scattered, diffused photos by using the differences in the amplitude
and phase of a modulated signal. For instance, a modulated laser line scanning (LLS)
system utilizes the frequency domain rather than the spatial or temporal domain to
detect changes in the transmitted signal. Since amplitude modulation is the only viable
modulation technique for underwater scenarios, the original and returned signals are
subtracted, and the distance is calculated by demodulating the remainder.

Figure 7. Triangulation geometry principle for a Structured Light System (adapted from [61]).

3.3. Hyperspectral Imaging

Recent advances in hyperspectral sensing and related technologies have allowed these
sensors to be employed in several marine robotic tasks, such benthic mapping, mineral
exploration, and environmental monitoring [62]. Hyperspectral imaging differs from
conventional red–green–blue (RGB) cameras by capturing the spectral composition of
incident light, generating an image with additional information. Hence, hyperspectral
imaging systems are able to obtain a large amount of data, gathering data across the
electromagnetic spectrum. There are two main scanning approaches, namely:

• Whisk-broom scanner: Uses several detector elements, and the scanning is carried
out in the cross-tracking direction by using rotating mirrors. In order to avoid image
distortion, this approach is preferably used in the case of robotic vehicles operating at
low speeds [63].

• Push-broom scanner: In contrast to the whisk-broom method, push-broom scanners
do not need a rotating element. These sensors capture an entire line in their field
of view, obtaining multiple across-track wavelengths [63]. Conversely, it requires a
higher calibration effort in order to ensure accurate data.

3.4. Other Sensors

Although acoustic and optical sensors are the main sensors used to perform seafloor
classification, it is important to mention other sensors, namely seismic and magnetic. In the
context of deep sea mining, for example, deploying seafloor seismometers can improve the
knowledge of magnetic and hydrothermal volcanic sources in coastal and off-shore regions [64].
By analyzing and comparing ongoing seismic and gravitational data, it is possible to verify the
presence of hydrothermal activity. Seismic data can also be used to generate numerical models
that simulate the convection of seawater and thermodynamic properties [65].

On the other hand, magnetic sensors can provide insights regarding sub-seafloor
properties, such as magnetization and conductivity [64]. Usually, magnetic sensors use
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magnetometers or magnetic gradient meters to sense variation in magnetic signals [66].
The development of perception methods for magnetic sensing is influenced by the task in
which they are applied. For instance, the simple processing of detected magnetic fields
can be used for buried underwater mines detection, as described in Clem et al. [67]. In
addition, for more advanced methods, Hu et al. [68] use magnetic gradient tensors to
localize multiple underwater objects.

4. Related Work

This section presents an overview of related work in the field of seabed classification.
Each subsection introduces the theoretical background of the technique and the main
results presented in the literature.

4.1. Statistical

Simons and Snellen [69] introduced a Bayesian method for seafloor classification us-
ing MBES-averaged backscatter data per beam at a single angle. The study area was at
Stanton bank area, located north of Ireland. First, a nonlinear curve-fitting algorithm is
applied to the histogram of measured backscatter strengths in order to fit a model. Once
the probability distribution function for each seafloor type has been determined, the data
are subjected to classification using the Bayes decision rule. The Bayesian classification was
used through the assumption that the backscatter intensities followed a Gaussian distribu-
tion. Alevizos et al. [70] improved this approach by simultaneously using a combination of
beams to obtain the optimal number of classes for unsupervised classification. Furthermore,
this method can be used as a reliable tool for long-term environmental monitoring [71].

Later, Gaida et al. [72,73] proposed the use of multi-frequency backscatter data col-
lected from MBES in the Cleaver Bank area, located on the west coast of the Netherlands.
The authors employed a Bayesian approach for the classification of seabed substrates using
multi-frequency backscatter data. In their results, the use of multiple frequencies was
demonstrated to significantly improve the acoustic discrimination of seabed sediments in
comparison to single-frequency data.

Fakiris et al. [74] used an MBES and a dual-frequency side scan SONAR. The data
were combined to map shallow benthic habitats of the National Marine Park of Zakynthos,
Greece. To mitigate the overfitting of the feature space, supervised classification was carried
out utilizing a Naive Bayes classifier. It was observed that the identification of seagrass
was influenced by the operating frequency, indicating the discriminatory capability of a
multi-frequency dataset. Table 2 summarizes the presented approaches.

Table 2. Recent statistical-based approaches.

Reference Year Data Type Task Sensors Type Technique

Simons and Snellen [69] 2009 Backscattering Seafloor Sediment
Classification MBES Bayesian Classification

Alevizos et al. [70] 2015 Backscattering and
Bathymetry

Seafloor Sediment
Classification MBES Bayesian Classification

Snellen et al. [71] 2018 Backscattering and
Bathymetry

Seafloor Sediment
Classification MBES Bayesian Classification

Gaida et al. [72],
Gaida et al. [73] 2018, 2020 Backscattering Seafloor Sediment

Classification Multi-frequency MBES Multispectral Bayesian
Classification

Fakiris et al. [74] 2019 Backscattering Shallow Benthic
Mapping MBES and Side Scan Bayes Classifier

4.2. Machine Learning

There are multiple methods in the literature based on conventional machine learning al-
gorithms. These approaches range from kernel methods and decision trees to neural networks.
A brief description of those strategies is presented as follows for better comprehension.
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• Support Vector Machine (SVM): The main concept for the SVM algorithm is defining
a hyperplane in an n-dimensional space in order to perform data classification. Given
the defined hyperplane, the support vectors are determined as the closest data points,
i.e., points that are on the margin of the hyperplane. The method only uses the
closest samples to the hyperplane. Thus, by maximizing the margin distance from
the hyperplane to the supports in the learning process, the decision boundary is
determined. Generally, SVM is used for classification tasks but can also be performed
for regression problems [75,76]. Conversely, this approach can lead to greater training
time and less effectiveness for larger datasets or overlapping classes.

• Random Forest (RF): The RF algorithm involves several decision trees uncorrelated
with each other that generate a final prediction through a majority vote. Recursive
partitioning divides the input data into multiple regions at each decision tree. Addi-
tionally, the cutoff thresholds used in the partitioning step are obtained by learning
subsets of training data chosen uniformly from the training dataset. This procedure
occurs for each decision tree [75,76]. Typically, two parameters are defined to obtain
an RF model: the number of trees and predictor variables.

• The k Nearest Neighbor (kNN): The kNN classification method is a simple algorithm
that determines the class of a sample based on a majority vote of its k nearest neighbors
within the training set. However, one major hindrance of this technique is its poor
scalability since the model must keep the complete training dataset in memory in
order to make a prediction [77].

Regarding recent approaches, Lawson et al. [78] analyzed the performance of two ma-
chine learning algorithms to classify noisy seamount feature sets obtained from bathymetry
data: Random Forests (RFs) and Extremely Randomized Trees. In the authors’ study, the
feature metrics used were slope, aspect, plan curvature, profile curvature, and fractal
dimension. In their analysis, the Extremely Randomized Trees presented the best results,
with 97% accuracy. The results suggested that topography is the most important data
representation for classification tasks.

Ji et al. [79] proposed a Selecting Optimal Random Forest (SORF) algorithm for
seabed classification. The research region is situated along the southern shoreline of the
Jiaodong Peninsula. First, the authors applied the pulse-coupled neural network image-
enhancement model to improve the MBES image quality. Besides seafloor topography,
seabed roughness was also considered in the feature extraction algorithm. A total of
40 features were obtained to improve the intensity description. By using the SORF, the
author’s method can automatically select input features and optimize model parameters
to further improve classification efficiency and accuracy. The model is compared with RF
and SVM classifiers. The results showed that the proposal outperforms the RF and SVM, in
addition to having better computational efficiency for high-dimensional features.

Ji et al. [80] used a Back-Propagation Neural Network (BPNN) as a classifier for
seabed sediments with MBES backscatter data obtained at the Jiaozhou Bay, China. The
study selected 8 out of the 34 extracted dimensions of the initial feature vector in order to
reduce workload, hence enhancing efficiency and accuracy. The authors proposed multiple
optimization techniques, including Particle Swarm Optimization (PSO) and Adaptive
Boosting (AdaBoost), to prevent the network from getting trapped in local minimums.
These optimization methods can lead to better results. In their experiments, the authors
combined both optimization methods with the BPNN classifier and compared them to
SVM models and a one-level decision tree, achieving better accuracy.

Zhao et al. [81] used the Weyl Transform to characterize backscatter imagery provided
by MBES obtained in the Belgian section of the North Sea. The authors’ proposal focused
on the textural analysis of seafloor sediments and used the Weyl Transform to obtain the
features. The method divides the acoustic images into patches and carries out the feature
extraction for each patch. The used dataset corresponded to four types of sediments: sand,
sandy mud, muddy sand, and gravelly sand. Finally, a Random Forest classifier was
designed to classify the features.
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Zelada Leon et al. [82] assessed the repeatability of seafloor classification algorithms
using data from the Greater Haig Fras area, in the southern part of the Celtic Sea. In the
authors’ study, three classifiers were used: RF, KNN, and K-means. Based on the results,
only the RF and KNN algorithms were statistically repeatable, with the Random Forest
approach being the more robust. In the low-relief test area, backscatter statistics obtained
from the side-scan sonar had more importance than the bathymetric derivatives for seabed
sediments classification.

Generally, techniques based on optical sensors are based on computer vision. Tradi-
tional ML algorithms involved the design of hand-crafted features, such as shape, color, or
texture features [83]. For instance, Beijbom et al. [84] extracted texture and color features
from underwater corals based on an SVM classifier. Similarly, Villon et al. [85] used an
SVM model to detect fish in coral reefs.

Dahal et al. [86] compared Logistic Regression, KNN, Decision Trees, and RF models
on a coral reef monitoring dataset. In the experimental results, the RF presented the best
results. However, the authors stated that the parameters chosen can significantly impact
the performance of each model.

Mohamed et al. [87] proposed a methodology for the 3D mapping and classification
of benthic habitats. First, the video recordings, obtained at Ishigaki Island, Japan, were
converted into geolocated images, and each was labeled manually. Then, the Bagging of
Features, Hue Saturation Value, and Gray Level Co-occurrence Matrix algorithms were
applied in order to obtain image attributes. Given the image attributes, the authors trained
three machine learning classifiers, namely KNN, SVM, and bagging. The outputs of these
classifiers were combined using the fuzzy majority voting algorithm. The Structure from
Motion and Multi-View Stereo algorithm is applied to generate 3D maps and digital terrain
models of each habitat. Table 3 presents related work regarding machine learning techniques.

In order to explore high-resolution imagery, Dumke et al. [88] applied an SVM to
detect manganese nodules in image data provided by an underwater hyperspectral camera.
The survey was carried out at the Peru Basin, southeast of the Pacific Ocean. The SVM was
compared with a spectral angle mapper approach, with the former presenting better results.

Table 3. Recent machine-learning-based approaches.

Reference Year Data Type Task Sensors Type Technique

Lawson et al. [78] 2017 Bathymetry Seamounts Features
Classification MBES RF and Extremely

Randomized Trees

Ji et al. [79] 2020 Backscattering Seafloor Sediment
Classification MBES SORF, RF, SVM

Ji et al. [80] 2020 Backscattering Seafloor Sediment
Classification MBES BPNN, SVM

Cui et al. [89] 2021 Backscattering and
Bathymetry Seafloor mapping MBES SVM

Zhao et al. [81] 2021 Backscattering Seafloor Sediment
Classification MBES RF

Zelada Leon et al. [82] 2020 Backscattering and
Bathymetry

Seafloor Sediment
Classification Side-scan RF

Beijbom et al. [84] 2012 RGB Images Coral Reef Annotation Camera SVM

Dahal et al. [86] 2021 RGB Image Coral Reef Monitorting Camera
Logistic Regression,
KNN, Decision Tree,

and RF

Mohamed et al. [87] 2020 RGB Image Benthic Habitats
Mapping Camera SVM, KNN

Dumke et al. [88] 2018 Spectral Image Manganese Nodules
Mapping Hyperspectral Camera SVM

4.3. Deep Learning

Convolutional Neural Networks (CNNs) have been extensively used in computer
vision due to their performance. The key concept of CNNs is the use of multiple layers of
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feature detectors to automatically identify and learn patterns within the data. The hidden
layer of a CNN typically comprises three components: the convolutional layer, where
feature extraction occurs through convolution with filter matrices followed by activation
using Rectified Linear Units (ReLU); the pooling layer, which reduces dimensionality by
aggregating the output of the ReLU layer, thus enhancing computational efficiency; and
the fully connected layer, which learns nonlinear combinations of features acquired from
previous layers [75,90].

Considering object detection, state-of-the-art architectures are divided into two types:
one-stage and two-stage. Two examples of one-stage approaches are SSD (Single-Shot multi-
box Detector) and You Only Look Once (YOLO), which use a CNN to obtain prediction-
bounding boxes along probabilities for objects’ classes [91].

SSD comprises a backbone model, typically a pre-trained image classification network
serving as a feature extractor, and an SSD head, consisting of additional convolutional
layers interpreting outputs as bounding boxes and object classes. YOLO, in contrast,
generates multiple bounding boxes per object and suppresses redundant boxes to obtain
final coordinates [92,93].

On the other hand, two-stage detectors have a stage for the proposal of regions of
interest. First, regions of interest with potential objects are proposed. Subsequently, the
second stage performs object classification. Examples of these architectures are the Fast
R-CNN, Faster R-CNN, and Mask R-CNN [93,94].

Regarding deep learning approaches, Luo et al. [95] studied the feasibility of CNNs for
sediment classification in a small side-scan sonar dataset of the Pearl River Estuary in China.
To achieve this, the authors used a modified shallow CNN pre-trained on LeNet-5 [96] and
a deep CNN modified based on AlexNet [97]. The dataset contained three classes (reefs,
sand waves, and mud), and, for classification purposes, the acoustic images were divided
into small-scale images. The numbers of classified reef, mud, and sand wave images were
234, 217, and 228, respectively. From each sediment type, 20% of the images were randomly
selected as test samples: 46, 43, and 45 images of reef, mud, and sand waves. The results
showed that the shallow CNN had better performance than the deep CNN, achieving
87.54%, 90.56%, and 93.43% accuracy for reefs, mud, and sand wave on the testing dataset,
respectively. Later, Qin et al. [98] used common CNNs, such as AlexNet-BN, LeNet-BN,
VGG16, and others, to classify seabed sediments in a small side-scan sonar dataset. The
model was pre-trained on the grayscale CIFAR-10 dataset containing 10 classes of images
with almost no similarity to the sonar images. Data enhancement based on Generative
Adversarial Network (GAN) was carried out, thus expanding the dataset. The authors
applied a conditional batch normalization and altered the loss function in order to enhance
the stability of the GAN. Finally, the proposal was compared with the SVM classifier.
The results showed that data-optimization techniques can overcome the problem of small
datasets in sediment classification. However, the use of GAN is computationally expensive.
The authors suggested that fine-tuning the CNNs is fundamental in small datasets.

Jie et al. [99] presented an Artificial Neural Network (ANN) with a two-hidden-layer
feed-forward topology network to estimate polymetallic nodule abundance using side-scan
backscatter from the Clarion and Clipperton Fracture Zone (CCFZ) in the Pacific Ocean,
obtaining average accuracy of 84.20%. Later, the method was improved by Wong et al. [100]
by adding bathymetry data. Their proposal aimed to determine the correlation of side-scan
sonar backscatter and terrain variations. Assuming a constant density of nodules in the
bathymetry pixels, variations in bathymetry can indicate the density and abundance of
nodules. The ground truth labels for the ANN were estimated from seabed photographs.
The results using the testing dataset presented an accuracy of 85.36%, demonstrating that
combining backscatter and bathymetry data can improve the performance. However, the
network was not tested on a different dataset.

State-of-the-art deep learning models have also been used to classify objects in acoustic
images. Aleem et al. [101] proposed the use of the Faster R-CNN architecture to classify
submerged marine debris in a forward-looking sonar dataset captured at a lab water tank.
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In order to improve the model performance, the authors proposed a median filter and
histogram equalization for noise removal. A transfer learning approach was used by
combining the Faster R-CNN with ResNet 50 for feature extraction.

The one stage model YOLOv5s was used by Yu et al. [102] for real-time object detection
in side-scan sonar images. First, the authors down-sampled the echoes of the images while
keeping the aspect ratio between the along-track direction and the cross-track direction. The
aim of the downsampling technique employed is to improve recognition accuracy while
reducing computational costs. During the network training, transfer learning was used by
pre-training the model on the COCO dataset. Similarly, Zhang et al. [103], proposed YOLOv5s
pre-trained on the COCO dataset for target detection in a forward-looking sonar dataset. In
their proposal, the k-means clustering algorithm was used to fine-tune the network.

Dong et al. [104] used Mask R-CNN pre-trained on the COCO dataset to segment deep
sea nodule minerals in camera images. The performance of the network was compared to
that of other learning models, such as U-Net and GAN. The dataset comprised 106 images
of nodules with diverse abundance and environmental conditions. The authors stated
that due to the similarities of the nodules and the seafloor sediments, image processing
methods, including threshold segmentation, clustering segmentation, and multispectral
segmentation, cannot distinguish them. When compared with the U-Net and GAN models,
the Mask R-CNN had better performance in terms of three metrics: accuracy (97.245%),
recall (85.575%), and IoU (74.728%).

Quintana et al. [105] proposed an algorithm to detect manganese nodules automatically.
The dataset comprised data obtained at the Peru basin in the Pacific Ocean. First, potential
areas with nodules are identified using bathymetry data provided by an MBES. Then, visual
detection is carried out. The images are filtered in order to reduce noise and apply lighting
corrections. For comparison, two state-of-the-art models are used, YOLO and Fast R-CNN, with
the latter presenting better performance. Initial nodule images were obtained in preliminary
pool experiments, and the algorithms were able to detect nodules in situ [106,107].

Fulton et al. [108] developed the Trash-ICRA19, a marine litter dataset, for robotic
detection composed of approximately 5700 images obtained in the Sea of Japan. The dataset
defines three classes: rov (man-made objects), bio (fish, plants, and biological deposits
generally), and plastic (marine debris). For evaluation, the authors applied the YOLOv2,
tiny YOLOv2, SSD, and Faster R-CNN models. The algorithms were executed on NVIDIA
Jetson TX2, and the results indicate that those architectures can potentially be used to detect
marine litter disposed on the seafloor in real time. The performance metrics utilized to
assess the networks were Mean Average Precision (mAP) and Intersection Over Union
(IoU). Considering litter detection, the mAP values for the YOLOv2, tiny YOLOv2, SSD,
and Faster R-CNN models were 47.9%, 31.6%, 67.4%, and 81.0%, respectively. The IoU
results were 54.7%, 49.8%, 60.6%, and 53%. A new version of the dataset called TrashCan
was presented by Hong et al. [109]. Compared to the previous version, this dataset is
more varied, containing more images and classes, and the Mask R-CNN and Faster R-
CNN models were used as a baseline. Table 4 summarizes recent approaches based on
deep learning.



Remote Sens. 2024, 16, 1163 14 of 23

Table 4. Recent deep-learning-based approaches.

Reference Year Data Type Task Sensors Type Technique Performance
Metrics

Luo et al. [95] 2019 Sonar Images Seafloor Sediments
Classification Side-scan DL, CNNs

Accuracy deep
CNN:

66.75% (reef)
73.80% (mud)

79.58% (sand wave)
Shallow CNN:
87.54% (reef)
90.56% (mud)

93.43% (sand wave)

Qin et al. [98] 2021 Sonar Images Seafloor Sediments
Classification Side-scan CNNs

Error rate:
AlexNet-BN: 4.769%

LeNet: 4.664 %
VGG16: 6.831 %

Jie et al. [99] 2017 Backscattering Nodule abundance Side-scan ANN Accuracy: 84.20%

Wong et al. [100] 2020 Backscattering and
Bathymetry Nodule abundance Side-scan ANN Accuracy: 85.36%

Aleem et al. [101] 2022 Sonar Images Marine Litter
Detection

Forward looking
sonar DL, Faster R-CNN Accuracy: 96%

Yu et al. [102] 2021 Sonar Images Underwater Target
Detection Side-scan YOLOv5s mAP: 85.6%

Zhang et al. [103] 2022 Sonar Images Underwater Target
Detection

Forward Looking
Sonar YOLOv5s mAP: 97.4%

Dong et al. [104] 2021 Optical Image Manganese Nodules
Segmentation RGB Camera Mask R-CNN Accuracy: 97.245%

Quintana et al. [105],
Sartore et al. [106],
Simetti et al. [107]

2018–2020 Optical Image Manganese Nodules
Detection RGB Camera YOLO and Fast

R-CNN
True Positive Fraction:

69% and 94%

Fulton et al.,
Hong et al. [108,109] 2019, 2020 Optical Image Marine Litter

Detection RGB Camera
YOLOv2, SSD,

Faster R-CNN and
Mask R-CNN

mAP:
YOLO 47.9%

SSD 67.4%
Faser R-CNN 81%

Mask RCNN 55.3%

4.4. Object-Based Image Analysis (OBIA)

OBIA is a feature-extraction technique comprising two stages: segmentation and
feature extraction. In the segmentation step, pixels with similar spectral, spatial, and
contextual characteristics are grouped together to define objects, as described by Hossain
and Chen [110]. Then, a feature extraction or classification algorithm is used on the objects.

Menandro et al. [111] applied a supervised classification technique called OBIA in
side-scan sonar backscatter data in order to perform seabed reef mapping. The evaluated
data were gathered in the continental shelf of Abrolhos, located in the eastern region of
Brazil. OBIA defines image/vector objects, which are sets of image pixels arranged into
different levels. At the pixel level, image objects are identical to the pixels themselves.
Segmenting the image starting from the pixel level results in a higher level of image
objects known as “Fine”, which can be further segmented to create “Medium” and “Coarse”
levels of image objects. Moreover, statistics can be computed for each image object to
generate image object features. Then, those features are used for classification. Then,
the authors compared the OBIA approach with the morphometric classification method
benthic terrain modeler (obtained from MBES bathymetry) and a mix of both. The results
showed that both overestimated the reef area compared to the reference map, with the
OBIA method presenting 67.1% alignment while the benthic terrain modeler approached
69.1%. Conversely, the combination of techniques presented improved results, achieving
alignment of 75.3% with the reference dataset.

Another OBIA approach is presented by Koop et al. [112]. The authors proposed two meth-
ods that only use bathymetry and bathymetric derivatives to classify the seafloor sediments.
The first is based on textural analysis and uses only texture-related image object features, while
the second method utilizes additional image object features. In their experiments, the latter
algorithm had better performance, with classification accuracy of 73%, and 87%, respectively.
Besides this, the authors also analyzed the transferability of their proposal by testing it on
different datasets (Røstbanken area, Norway, and Borkumer Stones, Netherlands), finding that
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the method remains applicable to new datasets as long as image objects are allowed to conform
to the shapes of small-scale seafloor features at lower levels.

Janowski et al. [113] applied an OBIA approach for nearshore seabed benthic mapping
based on multi-frequency multibeam data gathered at the Rowy site in the southern Baltic
Sea. The authors’ method was able to distinguish six nearshore habitats using backscatter-
ing and bathymetry data. The results were compared to traditional ML approaches such as
Random Forest and k-Nearest Neighbors. Table 5 displays the discussed approaches.

Table 5. Recent OBIA-based approaches.

Reference Year Data Type Task Sensors Type Technique

Menandro et al. [111] 2020 Backscattering Seabed Reef Mapping Side-scan OBIA

Koop et al. [112] 2019 Backscattering and
Bathymetry Seafloor Sediments MBES OBIA

Janowski et al. [113] 2018 Backscattering and
Bathymetry

Nearshore Benthic
Habitat Mapping Multi-frequency MBES OBIA

4.5. Data Generation

Due to the challenge of underwater environments and the difficulty of obtaining ground
truth data, another research direction that has been explored is data generation, i.e., apply-
ing techniques to create synthetic data. These synthetic data are then used to improve the
performance of classification algorithms. The main techniques presented in the literature are
as follows

• Generative Adversarial Networks: GANs are a type of neural network that consists of
two components. The generator component is trained to replicate the patterns found
in the input data, thereby producing synthetic data points as output. On the other
hand, the discriminator component is trained to differentiate between input data from
the real dataset and synthetic data generated by the generator. Both components are
trained in parallel, and the training process stops once the discriminator accurately
classifies most of the generated data as real [114].

• Autoencoder (AE) Neural Network: normally stacks two identical neural networks
to generate an output that aims to replicate the input data. Initially, the autoencoder
converts the input data vector into higher- or lower-dimensional data representation.
The encoder network encodes the data and produces intermediate embedding layers
as compressed feature representations. In addition, the decoder network takes the
value from the embedding layer as input and reproduces the original input [114]. The
lower-dimensional encoded data are often denoted as latent space.

Table 6 summarizes the related work to data generation. Kim et al. [115] introduced
a novel approach involving the application of an AE for the purpose of mitigating noise
in SONAR images. This approach enabled the generation of a high-quality image dataset
derived from SONAR images by implementing the learned AE structures.

Kim et al. [116] proposed a data-augmentation procedure based on CNN and discrete
wavelet transform. The authors’ algorithm convolves an acoustic signal and an impulse
response signal and subsequently introduces white Gaussian noise to generate extended
signals. Finally, a comprehensive dataset comprising 30,000 images belonging to 30 distinct
categories of underwater acoustic signals was produced.

In the literature, GANs models have been used to generate synthetic images, which can
overcome the issues caused by the typical scarcity of acoustic images in datasets. For instance,
Phung et al. [117] employed a GAN model to produce additional sonar images to increase the
training dataset of a hybrid CNN and Gaussian process classifier. The network’s classification
rate increased by 1.28% when trained with the augmented dataset, achieving a total of 81.56%.
Jegorova et al. [118] were able to accurately replicate the data distortions obtained by a
moving vessel.
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Table 6. Recent techniques for data generation.

Reference Year Data Type Task Sensors Type Technique

Kim et al. [115] 2017 Backscattering Image Noise Reduction SONAR AE

Kim et al. [116] 2021 Underwater Acoustic
Signal

Underwater Acoustic
Signal classification SONAR CNN + Discrete Wavelet

Transform

Phung et al. [117] 2019 Sonar Images Mine-Like Object Synthetic GAN

Jegorova et al. [118] 2020 Sonar Images Seafloor images Side-scan GAN

5. Discussion

Most of the presented works related to seabed classification and mapping tasks use
acoustic sensors. This is due to the fact that these sensors present a higher sensing range
despite the lower resolution. Optical sensors, on the other hand, are limited due to their
generally small field of view and effective range. The majority of supervised techniques
rely on traditional ML algorithms and require significant labeled data. Furthermore, these
strategies depend on the thorough preprocessing of the collected data to achieve optimal
outcomes. However, these processing tasks can be computationally intensive and may
hinder the feasibility of real-time solutions. Moreover, ground-truth sampling can be a
difficult task, as in deep sea scenarios.

Nevertheless, there is a lack of acoustic data from echosounders, particularly data that have
been labeled. Some authors have tackled this issue by using synthetic images or data-augmentation
techniques [95,98,117,118]. One advantage of using synthetic data is enabling the training of other
models by transfer learning. However, few studies analyze the transferability of their models.

Traditional machine learning techniques are normally used for classification tasks for
both acoustic data and optical images. Considering vision-based techniques, state-of-the-art
architectures [105–109] have been shown to be effective for object detection. However, in
the case of underwater robotics, it is necessary to have great computational power to run
these models. In this sense, there is a scarcity of approaches that seek to develop lightweight
models. Furthermore, these approaches are limited by the cameras’ field of view, requiring
vehicles to be close to the target to be detected. Conversely, considering the presence of
other sensors attached to the vehicle, it is difficult to obtain the optimal distance so that the
approach to the seafloor does not affect the performance of the other sensors.

Considering deep learning approaches, the models are usually dependent on the relationships
between training datasets and the object domain. Additionally, few specify the ability of the proposal
to operate in real-time scenarios, with many presenting offline post-processing approaches.

5.1. Challenges

Currently, one of the main drawbacks to deep sea research is the lack of data diversity
and massive datasets. Although there are a large number of datasets in the literature,
such as images of coral reefs [84,119], marine debris [108,109], marine animals [120–122], or
acoustic datasets [123,124], these datasets are for object detection and are simple in the sense
that they are task-dependent. Moreover, they correspond to only one modality, making
a multimodal approach impossible. Datasets such as the ETOPO 2022 [125] are designed
to create a global relief elevation model. However, it is not appropriate for characterizing
specific objects such as marine litter, polymetallic nodules, corals, and other classes. The
Aurora dataset [126] is one of the first attempts to create a multimodal dataset. However,
the samples are not annotated, which makes the annotation process exhaustive.

Besides this, the size of the targets presents another challenge for underwater object-
detection tasks [127]. In vision-based systems, for example, detection algorithms are not
able to obtain discriminative features for small objects. Additionally, the objects tend to
gather in dense distributions (manganese nodules and corals).

The more recent approaches are mainly based on deep learning. An important factor
to consider for deep learning models is the consumption of computational and energy re-
sources, particularly for small mobile robots, which may necessitate significant optimization
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for optimal functionality. In order to enhance the efficiency of inference processing, every
opportunity for parallelization must be explored, even in the absence of GPU hardware,
which is frequently the case with these robots. The efficient deployment of learning-based
algorithms is closely linked to the available hardware.

Another challenge for DL models in underwater environments relates to their ability to
adapt to new data. Considering the large heterogeneity of the seafloor, there is a large discrepancy
between different areas of the ocean, creating a major generalization problem. For instance,
object-detection models suffer a great loss of accuracy when applied to other domains [128].

5.2. Future Directions

Besides the challenges already presented in the discussion, there are still areas to be explored.

• Multimodal Dataset: One of the main challenges to improving the performance
of the algorithms presented in the dataset used. In this regard, the generation of
a multimodal and public dataset could be a powerful tool for improving seabed
characterization approaches, thus overcoming some challenges, such as obtaining
ground truth, specifically in deep sea scenarios, unbalanced data, and others.

• Multimodal learning: Multimodal learning means applying ML and DL techniques
to fuse multisource data with different modalities, obtaining more complete and
accurate features. However, other challenges arise when attempting to integrate
sensors from different modalities. The maximum range is different for optical and
acoustic sensors. For instance, optical sensors have lower ranges than acoustic ones, and
the vehicle must be close to the seabed to obtain images. Furthermore, the sensors have
different temporal and spatial resolutions, which can hinder data alignment and, hence,
data fusion. Recently, there has been an increase in research using multimodal fusion
in underwater environments. For instance, Ben Tamou et al. [129] proposed a hybrid
fusion that combines appearance and motion information for automatic fish detection.
The authors employed two Faster R-CNN models that shared the same region proposal
network. Farahnakian and Heikkonen [130] proposed three methods for multimodal
fusion of RGB images and infrared data to detect maritime vessels. Two architectures are
based on early fusion theory, including pixel-level and feature-level fusion.

• Edge Intelligence (EI): EI is a recent paradigm that has been widely researched [131–133].
The main idea is to bring all data processing close to where the data are gathered. In the
literature, some studies presented definitions for EI. For instance, Zhang et al. [134] define
edge intelligence as the capability to enable edges to execute artificial intelligence algo-
rithms. EI leverages multimodal learning algorithms by enabling real-time processing,
leading to the development of novel techniques for several applications. EI can enable
the neural network to be trained while the data are being gathered [135,136].

6. Conclusions

This survey presented papers related to seabed characterization. The challenges
associated with this topic were presented. Moreover, it was noted that several approaches
can be used to tackle this problem. However, there is a trend toward the use of deep
learning techniques, mainly based on CNNs.

The ability to perceive and characterize the elements present in the sea floor is crucial
for several robotic applications. Despite recent advances, some challenges remain, such
as the lack of a public dataset that can serve as a benchmark and the capacity of the
developed methods to be applied to different systems. Finally, there are still paths to be
explored, such as multimodal fusion. Multimodal learning may be able to obtain a better
feature representation from multiple sensors when compared to a single modality. Another
potential direction concerns the use of edge intelligence to improve seabed classification. By
bringing data processing closer to the sources, certain advantages appear, such as real-time
processing and the possibility of making decisions.
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The following abbreviations are used in this manuscript:

AdaBoost Adaptive Boosting

AE AutoEncoder

ANN Artificial Neural Network

AUV Autonomous Underwater Vehicle

BPNN Back-Propagation Neural Network

CCFZ Clarion and Clipperton Fracture Zone

CNN Convolutional Neural Network

DL Deep Learning

GAN Generative Adversarial Network

kNN K Nearest Neighbours

LBSLS Laser-based Structured Light Systems

MBES Multibeam Echosounder

MDPI Multidisciplinary Digital Publishing Institute

ML Machine Learning

OBIA Object-based Image Analysis

PG-LLS Pulse Gated Laser Line Scanning

PSO Particle Swarm Optimization

RF Random Forest

RBG red-green-blue

SONAR Sound Navigation and Ranging

SORF Selecting Optimal Random Forest

SSD Single-Shot multi-box Detector

SVM Support Vector Machine

YOLO You Only Look Once
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