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Abstract: Cross-view geolocation is a valuable yet challenging task. In practical applications, the im-
ages targeted by cross-view geolocation technology encompass multi-domain remote sensing images,
including those from different platforms (e.g., drone cameras and satellites), different perspectives
(e.g., nadir and oblique), and different temporal conditions (e.g., various seasons and weather con-
ditions). Based on the characteristics of these images, we have designed an effective framework,
Image Reconstruction and Multi-Unit Mutual Learning Net (IML-Net), for accomplishing cross-view
geolocation tasks. By incorporating a deconvolutional network into the architecture to reconstruct
images, we can better bridge the differences in remote sensing image features across different do-
mains. This enables the mapping of target images from different platforms and perspectives into a
shared latent space representation, obtaining more discriminative feature descriptors. The process
enhances the robustness of feature extraction for locating targets across a wide range of perspectives.
To improve the network’s performance, we introduce attention regions learned from different units
as augmented data during the training process. For the current cross-view geolocation datasets, the
use of large-scale datasets is limited due to high costs and privacy concerns, leading to the prevalent
use of simulated data. However, real data allow the network to learn more generalizable features. To
make the model more robust and stable, we collected two groups of multi-domain datasets from the
Zurich and Harbin regions, incorporating real data into the cross-view geolocation task to construct
the ZHcity750 Dataset. Our framework is evaluated on the cross-domain ZHcity750 Dataset, which
shows competitive results compared to state-of-the-art methods.

Keywords: geo-localization; multi-domain; IML-Net; ZHcity750

1. Introduction

Cross-view geo-localization technology, as one of the most important and widely
applied tasks, involves retrieving the most relevant images of a target from remotely sensed
images acquired through different sources. The technology has extensive applications
in various fields, such as precision navigation, landmark recognition, trajectory tracking,
and unmanned delivery. For instance, when provided with a drone-view image, the
system searches for satellite images of the same location from a remote sensing database.
Since satellite-view images come with automatic geographic annotations, we can geolocate
buildings by accomplishing the matching task between drone-view images and satellite-
view images.

In recent years, cross-view geo-localization technology has made significant progress,
with its core goal being to learn discriminative and highly generalizable feature descriptors.
Cross-view geo-localization works by utilizing deep neural networks (DNNs) with metric
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learning to acquire discriminative features [1–5]. Specifically, the network learns a feature
space of distances between image pairs that closely match, while increasing the distance
between mismatched image pairs [6–8]. Attention mechanisms and directional information
are also widely incorporated into network designs [1,2,9]. In the context of remote sensing
image matching, where extreme viewpoint changes result in substantial visual appearance
alterations, adjacent regions can serve as auxiliary information to enrich discriminative
clues for geo-localization [10].

In practical application scenarios, cross-view geo-localization technology is not solely
targeted at single remote sensing images but rather encompasses multi-domain remote
sensing images. The multi-domain remote sensing images originate from diverse platforms,
such as drones and satellites, including images of targets from different perspectives, such
as nadir and oblique angles, as illustrated in Figure 1. Additionally, these images may
be captured in different seasons, varied weather conditions, and even diverse lighting
conditions. Due to the aforementioned characteristics of multi-domain remote sensing
images, cross-view geo-localization tasks often pose significant challenges. For instance, in
the matching task between drone-view images from different perspectives and satellite-
view images, difficulties may arise from incomplete target features due to factors such
as changes in perspective and occlusion. To address these issues, we have developed a
framework based on real-world application scenarios that can effectively accomplish the
task of matching multi-domain remote sensing images.
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Figure 1. This is a sample collection of multi-domain remote sensing images. (a) displays images
from various platforms, encompassing satellite views and drone views. The substantial differences
between these images pose a challenge for matching. (b) showcases drone-view images from different
perspectives. Due to the variations in angles, each image may not capture all the information of the
target. (c) includes satellite-view images captured in different seasons and under varying lighting
conditions, which may exhibit significant color variations and instances of occlusion.

Throughout the continuous evolution of cross-view geo-localization technology, datasets
tailored for cross-view geo-localization tasks have also emerged. Some early datasets typi-
cally provided image pairs, such as those from mobile phone cameras and satellites [2,11].
However, with the rapid development of drone technology, drone-view data are more
advantageous in capturing rich information about the target location, as drones flying
around the target can provide a comprehensive view with almost no obstacles. Therefore,
drones have become the main source for collecting data for cross-view geo-localization
tasks. Zheng and others introduced a new dataset, University-1652, to bridge the visual
gap between viewpoints [12]. Their work was based on research that increased the training
sample size through synthetic data [13–16]. Therefore, the current mainstream datasets for
cross-view geo-localization are generated using synthetic drone-view images rather than
real images. In fact, there is a significant difference between synthetic and real data. For
instance, real drone-view images may face issues such as occlusion due to the large size of
the target and a scarcity of training samples due to the high cost of building large-scale real
drone datasets. Therefore, widely employed datasets for cross-view geo-localization tasks
only include remote sensing images from a single region. Meanwhile, the satellite-view im-
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ages in these datasets only consist of single-temporal images, lacking variations in season,
weather, and lighting conditions. Such datasets make it challenging to build robust models
suitable for real-world scenarios. In real-world applications, the majority of cross-view
geolocation tasks involve matching images from different platforms, perspectives, seasons,
domains, and styles. In summary, to construct a comprehensive and effective framework
for performing cross-view geo-localization tasks in real-world application scenarios, we
need a dataset comprising remote sensing images of various cities with different archi-
tectural styles. This dataset should include real drone-view images and multi-temporal
satellite-view images to learn more comprehensive features of the target.

In this paper, the prominent contributions are as follows:

• A framework named IML-Net, designed to effectively perform the multi-domain
remote sensing image-matching task, has been developed. To enhance the stability
and robustness of the network, we have created the ZHcity750 Dataset specifically for
the task of multi-domain remote sensing image matching. The target areas covered by
this dataset encompass two regions with completely different architectural styles. Ad-
ditionally, the dataset comprises multi-domain remote sensing images, incorporating
both real drone-view images and multi-temporal satellite-view images;

• To accomplish the image-matching task for real drone data, the Image Reconstruction
Network (IRN) has been proposed, which mainly utilizes the method of reconstructing
images to build feature descriptors;

• To enhance the ability of the IRN to construct more discriminative feature descriptors,
we have incorporated the Multi-Unit Mutual Learning (MUML) module. This module
divides the process into several units and employs the method of mutual learning
between different units. This enables the identification of regions with discriminative
power in the original image for cropping, using them as augmented data for training.

The rest of this paper is organized as follows. Section 2 reviews and discusses related
work. In Section 3, we propose a framework called IML-Net, which can construct cross-
domain descriptors through the IRN, and use the MUML to construct augmented training
data. Then, in Section 4, we detail the information and process of constructing our multi-
domain dataset. Section 5 includes extensive experiments and ablation studies, followed
by discussions. In Section 6, we draw conclusions.

2. Related Work

In this section, we will introduce the recent work on cross-view geo-localization and
relevant datasets. Next, we will briefly introduce the development of cross-domain feature
descriptors and review the methods of learning features in the diverse depths of the layers
through neural networks.

2.1. Cross-View Geo-Localization Work and Review of Datasets

The cross-view geo-localization issue is generally viewed as a sub-issue of image
matching and retrieval in the field of computer vision. Most previous work is based on two
platforms, mobile phone cameras and satellites, to capture datasets for target matching.
Oxford5k [17] and Paris6k [18] are the first widely used datasets applied to landmark
retrieval. Oxford5k is collected from Flickr and it consists of 5062 images that belong to
11 iconic Oxford buildings, and Paris6k, also from the Flickr platform, differs in that it
contains 6412 images of 12 specific Parisian landmarks. One of the earliest works [19]
chose to utilize aerial imagery rather than ground views as a geo-reference in order to
overcome the shortcomings of ground views that make it difficult to cover a large area
of the target region, and constructed a new dataset by selecting both ground-view and
aerial-view images from publicly available datasets. The dataset comprises 78,000 pairs of
images captured from dual perspectives, 45◦ bird’s eye view and top view. Arandjelovi
et al. [20] proposed a method to learn weights based on the image context, allowing the
network to focus on regions that contribute positively to the task. Weyand T et al. [21]
creatively used geo-grid profiling to transform image matching for a geo-localization issue
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into a classification issue; at the same time, it outputs a probability distribution while intro-
ducing a dataset containing arbitrary images. This dataset is an arbitrary object taken at the
same location with similar characteristics in terms of temporal features. Later, in a similar
spirit, Tian et al. [22] borrowed the Google Street View Dataset to build a new dataset and
obtained location information by matching the bird’s eye view with geographic information
to the street view. Differently, they believed that buildings can play an important role in
urban localization mandates, so they integrated building detection seamlessly into the
entire network architecture and constructed a dataset for urban localization consisting of
paired street-view and bird’s eye-view images. In addition, the datasets CVUSA [11] and
CVACT [4] investigated the challenge of aligning panoramic ground-view images with
satellite-view images. The completion of this challenge can be used for user localization
when the Global Positioning System (GPS) is not available. The validity of the drone view
is confirmed through the introduction of the newly proposed dataset University-1652 [12],
which collects 1652 buildings from 72 universities around the world, with data from three
views: street view imagery, satellite imagery, and drone imagery, which achieve two
new mandates, drone visual localization (Drone→Satellite) and drone visual navigation
(Satellite→Drone). Wang T et al. [10] proposed an end-to-end approach to mining environ-
mental information because currently existing approaches usually focus on coarse-grained
feature extraction for mining geographic targets at the center of the image while often
ignoring the environmental information in the area surrounding the geographic location.
Zhang et al. [23] revisit re-ranking and demonstrate that re-ranking can be reformulated
as a high-parallelism Graph Neural Network (GNN) function. Tian et al. [24] propose an
end-to-end cross-view matching method that integrates a cross-view synthesis module and
a geo-localization module, which fully considers the spatial correspondence of drone views
and satellite views and the surrounding area information. Dai et al. [25] introduced a simple
and efficient transformer-based structure, FSRA, to enhance the model’s ability to com-
prehend text. The structure automatically delineates specific regions based on the weight
distribution of the feature map, and these regions can still be delineated and aligned even
when there are significant shifts and scale changes in the image. Lin et al. [26] proposed a
new framework, RK-Net, to jointly learn discriminative representations and detect saliency
key points; the structure contains few learning parameters but significantly improves the
performance, and is able to facilitate end-to-end joint learning. Fabian Deuser et al. [27]
proposed an orientation-guided drone viewpoint localization training framework based
on the estimation of drone image orientations through hierarchical localization to match
with satellite images. In the same year, they [28] argued that polar transformations help
in matching between different views. However, polar transformations lead to distorted
images. So, they proposed contrast learning based on the symmetric InfoNCE Loss. The
proposed framework eliminates the need for an aggregation module and avoids further
preprocessing steps. It also improves the model’s ability to generalize to unknown regions
and outperforms the current state-of-the-art results.

Most of the current cross-view geo-localization work is based on the University-
1652 [12] dataset, which contains simulated drone-view images, and our real drone images
have a series of problems such as incomplete target capture and occlusion due to the angle
problem when compared with the simulated images. Meanwhile, the satellite-view images
in this dataset only contain one time phase, and there is a lack of satellite images with
multiple time phases to assist in different types of tasks. Therefore, we believe that a dataset
containing real drone-view images and multi-temporal satellite-view images is needed for
cross-view geo-localization, for which the current cross-view geo-localization work still
lacks a more effective framework.

2.2. Cross-Domain Feature Descriptors

For the task of cross-view geographic localization, constructing more robust cross-
domain feature descriptors is a key challenge. Image feature descriptors, initially designed
manually [29–31] and through local feature learning [32,33], have been extensively studied
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in the early development of computer vision. With the continuous progress in deep learn-
ing, this methodology has been applied to the end-to-end learning of two-dimensional
image feature descriptors [34]. In the context of image-matching methods, feature descrip-
tors obtained through self-supervised learning exhibit stronger robustness compared to
manually designed descriptors. For example, Zagoruyko et al. [35,36] proposed a Siamese
architecture to learn similarity scores between a given set of images. However, these meth-
ods incur a relatively high cost as images need to be passed in pairs through networks with
the same structure. To address the problem, Simo-Serra et al. [37,38] introduced a method
where feature descriptors are learned using the same Siamese architecture but matched
using Euclidean distance. The emergence of the highly effective and cost-efficient method
has led researchers to replace manually designed descriptors with those obtained through
self-supervised learning, and they found that nearest-neighbor queries can be efficiently
performed in matching. Compared to network architectures with two images as inputs, a
triple network that uses three images as inputs for learning descriptors [39] demonstrates
stronger discriminative capability. These triple networks suggest that learning in the ab-
sence of Triplet Loss [8,40] results in a better embedding space. Further research has been
conducted on enhancing the performance of Triplet Loss [41,42].

Building upon the ideas mentioned above, a cross-dimensional 2D-3D descriptor has
been proposed [43], aiming to learn the feature space composed of 2D and 3D descriptors.
In recent work, a method was investigated that utilizes Triplet Loss to preserve intra-
class similarity and inter-class differences for learning local features, while employing
cross-entropy loss to learn globally semantic discriminative features [44].

Our work is rooted in these ideas, with a distinction that we aim to construct a
cross-domain feature descriptor. Typically, most efforts in constructing feature descriptors
involve taking images from the same domain as inputs, focusing on learning feature
spaces containing more useful information for the given task. In contrast, our work
concentrates on learning a shared latent space for cross-domain feature descriptors. In
addition to employing metric learning, we utilize image reconstruction to learn a more
discriminative space.

2.3. Features Learned in the Diverse Depths of the Layers in Neural Networks

Convolutional Neural Networks (CNNs) have demonstrated exceptional achievement
in image-matching tasks. Attention learning, as a crucial task in fine-grained recogni-
tion [45], helps the model solve a series of problems arising from inherent inter-class
similarity and intra-class dissimilarity by capturing more discriminative clues, reducing the
importance of semantic information in local regions of target objects. For image-matching
tasks, the key is to better capture distinctive feature regions in images and direct the model’s
attention to these regions. Therefore, it is necessary and effective to understand the diverse
levels of semantic information recorded by both deep and superficial layers and to extract
information containing distinctiveness through attention learning. Based on this, Zeiler
et al. [46] suggested a multi-tiered deconvolutional network to delve into the functions of
various feature layers. They discovered that superficial layers acquire low-level details,
whereas deep layers acquire high-level semantic information. Jiang et al. [47] pointed out
that different layers of CNNs can be used to predict discriminative regions for specific
categories. They visualized features extracted from different layers of the network, and
the results showed that CNNs gradually shift the model’s attention from local details
to local regions as the network deepens. Zhang et al. [48] proposed a sequence-diverse
network by inserting multiple lightweight sub-networks into the backbone network, en-
abling information interaction between local regions of fine-grained images, and greatly
facilitating the effective learning of different target features. Niu et al. [49], by studying
the attention learning process, found that the regions the model focuses on are perceived
through attention transfer mechanisms over time. Based on this, they proposed a DNN
based on attention transfer mechanisms to find key attention areas and iteratively encode
the semantic relevance between the found areas, effectively improving network perfor-
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mance. Du et al. [50] focused on which granularity of target regions contributed the most to
improving model classification performance and proposed a progressive training strategy
to effectively integrate information from different granularities.

Unlike the aforementioned research methods, our approach differs in that we empha-
size mutual learning using features extracted from different depths of the network layers.
Initially, we use features extracted from layers of varying depths to predict distinct attention
areas. The information obtained from these attention areas is then reintroduced into the
network for further training, thereby enhancing the model’s performance. Through this
mutual learning approach utilizing features extracted from different depths of the network
layers, we not only assist in training but also increase the quantity of training data.

3. Principle and Methods

In this section, we first provide a detailed discussion of our proposed IML-Net. Subse-
quently, we illustrate the methodology and principles behind constructing cross-domain
descriptors using the IRN. Finally, we present the architecture of the MUML module for
building augmented training data.

3.1. IML-Net

The key focus and challenge of cross-view geo-localization technology lie in extracting
as complete features of the target building as possible from input drone-view images taken
at different angles. Based on this, as illustrated in Figure 2, we proposed the IML-Net to
better accomplish cross-view geo-localization tasks.

The framework is primarily composed of the IRN and the MUML module which can
assist the model in achieving better cross-domain matching between multi-angle drone
images and satellite images. The detailed introductions to these two modules are as follows.

The IRN. The IRN consists of a decoder composed of a 2D encoder and a deconvo-
lutional network. As our research focuses on the multi-domain image-matching problem
for geographic localization, our input images can be obtained from drone perspectives
at different angles. The images taken at different angles reconstructed by the IRN from
the input images are compared to satellite images corresponding to the buildings, and the
reconstruction loss is calculated. This process is utilized to construct feature descriptors
extracted by the 2D encoder.

Our task is to construct a more robust and distinctive feature descriptor di from
input images of drone views at different angles. It can be confirmed that building the
feature descriptor di can be achieved by increasing the similarity between the reconstructed
images and the corresponding satellite views of the target buildings. In short, when
the reconstructed images closely resemble the features of the original images captured
from a vertical perspective., the extracted feature descriptors from the original images
can encompass more comprehensive details. The IRN is influenced by the multi-layer
deconvolution network proposed by Zeiler et al. [46], which reconstructs the original
images through the reverse process of the backbone network, utilizing the transpose of
convolution kernels and the reverse feature map calculation. In the deconvolution process,
the transpose of the convolution kernels and the reverse feature map calculation are used
to return to the previous layer. As for the un-pooling process, we adopt an approximate
method, activating the value at the coordinate position of the maximum activation in the
pooling process and setting other values to 0. Regarding the activation function, the ReLU
function ensures that the activation values of each layer’s output are positive. Therefore,
for the reverse process, we also use the ReLU function to guarantee that the feature maps of
each layer are positive. Our current backbone network employs ResNet50. Due to ResNet50
having residual blocks, it cannot achieve a completely symmetrical reverse process, but the
image reconstruction strategy still yields good results.
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Figure 2. This network model is primarily composed of the IRN and the MUML. The IRN is utilized
to construct feature descriptors extracted by the 2D encoder, which consists of a decoder composed
of a 2D encoder and a deconvolutional network. The modules A and B in the diagram together
constitute the IRN. Due to the insufficient volume of training data to build a more robust model, we
employ the MUML to leverage feature information at diverse depths as augmented data during the
training process to assist the task. Therefore, we divide the backbone network into four different
units to categorize the feature layers of the MUML, as shown in module C in the figure. Module D is
the loss function used for computing similarity in the final calculation; we will introduce it in the
following sections.

The MUML module. Modern CNNs typically focus on extracting deep-level image
features. However, we contend that the shallow-level features extracted by the network are
equally important. By facilitating mutual learning between shallow-level and deep-level
features, we believe the network can acquire more valuable information. Meanwhile, a
small training dataset makes it challenging to build a more robust model, so we employ
the MUML to leverage feature information at diverse depths as augmented data during
the training process to assist the task. Therefore, we divide the backbone network into
four different units to categorize the feature layers of the MUML. The input image passes
through different units, generating feature maps of varying sizes. At each step (step i),
regions of interest are identified in these feature maps, and these regions are cropped from
the original image. The cropped images are then reintroduced into the training process
as augmented data. Theoretically speaking, through the MUML module, features in the
diverse depths of the layers are utilized to learn from each other, constructing attention
maps, learning more noteworthy details, and then expanding the training data. This
approach serves as a means to enhance the training process and cope with challenges
associated with limited training data for building a more robust model.
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Through the above two modules, it is possible to effectively extract key details of the
target buildings while expanding the training data. This approach can achieve good results.

Our final training loss consists of the reconstruction loss and distance regularization
constraint loss:

Reconstruction Loss. The reconstruction loss, defined by mean squared error, repre-
sents the loss of the autoencoder network. Specifically, it is the mean squared error between
the reconstructed multi-angle drone images D and the corresponding target satellite images
S, formulated as follows:

LMse =
1

W × H ∑W×H
i=1 ∥ Si − Di ∥2 (1)

In this formula, Di and Si represent the i-th pixel in the reconstructed multi-angle drone
images and the corresponding target satellite images.

Distance Regularization Constraint Loss (DRCL). To enhance the similarity between
target buildings in different domains, i.e., ensure that the multi-angle drone images and
their corresponding target satellite images have similar embeddings, most researchers have
employed the Triplet Loss function. This type of loss function minimizes the distance
between positive samples and the anchor sample while maximizing the distance between
negative samples and the anchor sample.

For incorrectly matched noisy samples, when different target buildings are erroneously
considered as the same target building, the optimization objective of the Triplet Loss would
force the model to learn an infinitely small distance between them. This can lead to
overfitting to the noise samples, resulting in a deteriorated final matching performance.
To address this issue, we were inspired by [51] to introduce L2 regularization and applied
distance regularization constraints to optimize the Triplet Loss. We normalize the L2 Triplet
Loss feature descriptors under the L2 norm to lie on a hypersphere with a fixed radius;
the aim is to prevent the distance between positive samples and the anchor sample from
being minimized, and likewise, to avoid the maximization of the distance between negative
samples and the anchor sample, as illustrated in Figure 3:
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The DRCL is expressed in the following formula:

LDRCL = ∑N
i
(
max

(
F
(
da, dp

))
− min(F(da, dn)) + m, ∥ f (xi) ∥2

)
+

∥ f (xi) ∥2 = α, ∀i = 1, 2, · · · , N
(2)

where m is the margin, F is the distance function, and
(
da, dp, dn

)
represent the distances

corresponding to the anchor sample, positive sample, and the most difficult negative
sample, respectively.
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Training Loss. Our overall training loss is obtained by multiplying the reconstruction
loss and the DRCL by different weights.

L = α · LMse + β · LDRCL (3)

3.2. IRN for Cross-Domain Descriptors

In the context of multi-angle drone-view images, where the loss of building details is
particularly severe, our main objective is to enable the model to learn and construct a more
robust feature descriptor. This feature descriptor should contain more detailed information
and be able to find the mapping relationship between different views of remote sensing
images. Inspired by the deconvolutional network [46], we believe that reconstructing the
original input image using a deconvolutional network and calculating the reconstruction
loss can help build descriptors that are more favorable for matching. It is important to
reconstruct the original image through a deconvolutional network using such feature
descriptors. As the reconstructed image features become closer to the target image features,
the feature descriptor can contain more comprehensive target information.

The following introduces how the mapping relationship between cross-domain data
and feature descriptors is constructed.

Let {I1, I2, · · · , IN} be a set of multi-domain images for the same target location,
where In ∈ RWn×Hn×3 is a color image block of size Wn × Hn, represented in the tra-
ditional RGB color space. Each point is represented by its coordinates (x, y, z) ∈ R3

and RGB color. The goal of learning cross-domain descriptors is to find multiple map-
pings {W1 (.), W2(.), · · · , Wn(.), · · · , WN(.)}, Wn(.) : RWn×Hn×3 → D , which map the
data space of different domains to a shared latent space D ⊆ R. Here, R contains common
features of different domain data, ensuring that for each set of corresponding relationships
between different domains, their mappings are as similar as possible. Mathematically,
given the distance function F(.) and descriptors {d1, d2, · · · , dn, · · · , dN}, where dn ∈ D,
if I and P represent the same underlying geometry,

F(d1, d2, · · · , dn, · · · , dN) < m (4)

where m is a pre-defined margin.
In addition to constructing the mapping relationship between data in different do-

mains and descriptors, we also aim to learn the inverse functions f ′ : D → RWn×Hn×3 and
g′ : D → RWt×Ht×3 . Since these inverse mappings can reconstruct data from descriptors,
they prove beneficial in downstream applications, such as visualizing features extracted
from diverse depths of the network. In this paper, we utilize the learned cross-domain
feature descriptors to reconstruct the original images. Reconstruction is achieved by mini-
mizing the reconstruction loss between the original images and the reconstructed images,
serving the downstream task of cross-view geo-localization.

3.3. The Method of MUML for Constructing Augmented Training Data

Modern CNN architectures are typically composed of units [50–52], where a unit
refers to a set of layers processing on feature maps with identical spatial dimensions. As
depicted in Figure 4, we use units to divide feature layers of diverse depths. The spatial
dimensions of the feature maps progressively reduce from the superficial layers to the
profound stages. As an illustration, the ResNet50 layers (excluding the fully connected
classifier) are organized into four distinct units. When presented with an input image
of size 256 × 256 for ResNet50, the spatial dimensions of the output feature maps for
layers within the four units decrease from 128 × 128, 64 × 64, 32 × 32, to 16 × 16. After
generating discriminative regions through Class Activation Maps (CAMs) [52] on these
feature maps of different sizes, attention maps are produced through down-sampling. By
normalizing the attention maps of these four units, we can identify and crop regions in the
original image that are discriminative. These regions are then used as augmented data in
the training process. The specific principles are as follows:
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Figure 4. (a) shows the drone images from the publicly available dataset provided by the “Benchmark
on High Density Aerial Image Matching” project of ISPRS and EuroSDR, as well as the cropped
drone-view images; (b) contains the satellite images of the target area from Google Maps, along with
the preprocessed satellite-view images.

Let C be the backbone network of a neural convolutional network, which can be
any CNN developed to date, such as ResNet50, ResNext, etc. C has M layers, where
{L1, L2, · · · , Lm · · · , LM} represents the layers of C from shallow to deep. {F1, F2, · · · , Fn · · · , FN}
are N features in diverse depths of the layer of the network based on M layers. Each feature
is composed of features output from a certain layer from L1 to LM; for example, Fn is
composed of layers from L1 to Lm, where 1 < m < M. Features {F1, F2, · · · , Fn · · · , FN}
gradually cover the layers of C from shallow to deep, and the deepest feature FN covers all
layers from L1 to LM.

Let {M1, M2, · · · , Mn · · · , MN} represent the feature maps at an intermediate stage
generated by C for features {F1, F2, · · · , Fn · · · , FN}, respectively, in diverse depths of the
layer of the network, and Mn ∈ RHn×Wn×Cn , where Hn, Wn, and Cn represent the height,
width, and number of channels of the feature map, respectively. We use a set of functions
{G1(·), G2(·), · · · , Gn(·), · · · , GN(·)} to ensure the reliability of the process of generating
feature maps {M1, M2, · · · , Mn · · · , MN}. The functions Gn (·) used to generate feature
maps x′(n) and x′′(n) are defined as follows:

x′′
n = f Elu

(
f bn

(
f conv
3×3×Cv/2×Cv

(
x′n

)))
(5)

x′n = f Elu
(

f bn
(

f conv
3×3×Cn×Cv/2(xn)

))
(6)

where 3 × 3 refers to the spatial dimension, Cn is the number of input channels, and Cv/2 is
the number of output channels. f bn(·) represents the batch sample normalization operation,
f Elu(·) represents the Elu operation, and f conv(·) represents the convolution operation
with different kernel sizes. For example, f conv

3×3×Cn×Cv/2(·) represents a two-dimensional
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convolution operation with a kernel size of 3 × 3 × Cn × Cv/2. The method based on
CAM can be used to identify discriminative regions of the image, denoted as x′′(n) and
x′′(n) ∈ RHn×Wn×Cv .

We define the discriminative region ϕn
(
ϕn ∈ RHn×Wn

)
generated by the CAM method

for features Fn in diverse depths of the layer as follows:

ϕn(α, β) = ∑Cv
c=1 pnx′′n(α, β) (7)

In this formula, the coordinates (α, β) represent the spatial positions of x′′ and ϕn, and
pnϕn(α, β) explains the importance of the spatial position (α, β).

At the same time, we further elaborate on the CAM, which is essentially a linear
weighted combination of visual motifs occurring at various spatial positions. These visual
patterns are obtained by activating every unit within the intermediate feature map x′′ ,
contributing to discriminative regions for image recognition. By up-sampling CAM to
obtain regions consistent with the size of input images, we have the capability to understand
the most discriminative regions in the image from diverse depths of the feature layers.

Therefore, after obtaining ϕ, we perform down-sampling on ϕn using a bilinear sam-
pling kernel to generate an attention map ϕ̃n

(
ϕ̃n ∈ RHin×Win

)
, where Hin and Win are the

height and width of the input image. Subsequently, we apply min–max normalization to
ϕ̃n, and every spatial component within the normalized attention map ϕ̃norm

n is defined
as follows:

ϕ̃norm
n (α, β) =

ϕ̃n(α, β)− min
(

ϕ̃n

)
max

(
ϕ̃n

)
− min

(
ϕ̃n

) (8)

We obtain the normalized attention map ϕ̃norm
n to find and crop out the discriminative

regions in the features by standardizing the attention map, providing guidance for the
matching task. First, we set elements in ϕ̃norm

n exceeding the threshold t(t ∈ [0, 1]) to 1, and
the rest of the elements to 0, generating a mask ϕ̃norm

n . In summary, each spatial element of
this mask is given by the following equation:

ϕ̃mask
n (α, β) =

{
1, if ϕ̃norm

n (α, β)− t > 0
0, if ϕ̃norm

n (α, β)− t ≤ 0
(9)

Similar to the mutual learning mechanism used for fine-grained visual classifica-
tion [53,54], we also locate a bounding box capable of covering the region of interest

highlighted by the mask ϕ̃mask
n . Simultaneously, we find and crop this region from the input

image. Subsequently, we resize the cropped region to match the dimensions of the input
images through up-sampling. The attention region On obtained through this method is
treated as additional data introduced during the training process.

Through this process, not only can we assist in training and help the network extract
more robust feature descriptors, but it also helps us expand the training data.

4. The Construction of Dataset

In this section, we introduce the ZHcity750 Dataset we constructed, explaining the
methods for collecting multi-temporal satellite-view images and capturing multi-angle
drone-view images.

We initially selected the publicly available dataset from the “Benchmark on High
Density Aerial Image Matching” project by ISPRS and EuroSDR. Specifically, we chose
multi-angle drone images captured over the Zurich area in Switzerland. These images
were categorized into five perspectives: east, west, south, north, and directly above, based
on the drone’s shooting orientation. Subsequently, we filtered out buildings with unclear
search results and significant changes using Google Maps. From this process, we identified
550 buildings as target locations and encoded their names. The encoding rule involved
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arranging the buildings sequentially, treating the drone as a shooting sensor, and con-
sidering the five different angles as five frames in a video segment. Finally, we located
the encoded buildings in the Google Maps satellite imagery in order of their numbers
to obtain corresponding satellite-view images. The selected satellite-view images are the
latest available from March 2023 for the target area on Google Maps, and we performed
preprocessing, including cropping, on the images. We named this dataset Zurich550, and
sample images of this dataset are shown in Figure 5.
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Figure 5. (a) shows the drone images from the publicly available dataset provided by the “Benchmark
on High Density Aerial Image Matching” project of ISPRS and EuroSDR, as well as the cropped
drone-view images; (b) contains the satellite images of the target area from Google Maps, along with
the preprocessed satellite-view images. The process of creating the Harbin200 dataset. The drone
flew around the buildings, capturing three video segments at different altitudes, which were then
trimmed. The corresponding target buildings were located in satellite images taken at different times,
and four satellite-view images from different seasons were cropped accordingly.

To expand the dataset size and delve deeper into the distinctions between real and
simulated data, we chose buildings in Harbin, China, as our target locations. Notably,
landmarks were not selected due to two unavoidable issues. First, landmarks often exhibit
specific architectural styles that might introduce unforeseen biases. Second, landmarks,
being city centers with large crowds, pose safety hazards for drone filming, often pro-
hibiting drone flights in these areas. Considering these challenges, we chose campus and
open-area buildings as targets, aligning more closely with real-world practices. Creating
the Harbin multi-domain dataset presented significant challenges, involving not only col-
lecting images but also filtering usable information from a vast amount of complex data.
Firstly, we selected areas in Harbin city that have not undergone significant changes in
recent years as our target areas and chose satellite images with minimal cloud cover and
seasonal variations from the Gaofen-2 satellite’s extensive archive. Secondly, we encoded
the names of buildings in the target area using Google Maps. To develop a model capable of
distinguishing subtle differences between buildings, we carefully selected 500 structurally
similar buildings. During the preliminary phase of capturing real drone-view images, we
conducted field surveys and drone test flights at the selected locations. We discovered
that drone flights in Harbin city faced height restrictions. Many of the initially chosen
500 target buildings exhibited an excessive height or oversized footprint, causing excessive
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area coverage issues. Therefore, we narrowed down our selection to 200 buildings for drone
photography. For the drone-view images of the target buildings, we manually collected
drone images of the target buildings (see Figure 4). To achieve scale variation and obtain
comprehensive perspectives, we first flew the drone to a designated position, determined
the hovering height based on the onsite building height (usually 100–120 m), adjusted the
gimbal to shoot at a horizontal angle of 0◦, and recorded a 360◦ flight video at 30 frames per
second. Then, we tilted the gimbal down by 30◦ and 60◦, recording flight videos at these
angles. Finally, we cropped images from the drone-view videos to obtain seven drone-view
images of different scales and perspectives.

Similarly, to ensure a more comprehensive dataset for studying image matching under
diverse conditions such as different lighting, weather conditions, and backgrounds, our
selection of satellite-view images encompassed all four seasons of the year. The original
satellite data were sourced from the Gaofen-2 satellite, equipped with two high-resolution
cameras (1 m panchromatic and 4 m multispectral). While the panchromatic images
lacked color information, the multispectral images provided spectral information with
lower spatial resolution. To obtain high-quality satellite images, we fused panchromatic
and multispectral images, and the necessary satellite-view images were derived through
cropping and preprocessing the fused satellite images. The dataset for the Harbin area,
named Harbin200, was created to include all shooting processes and examples, as illustrated
in Figure 4.

In summary, each building in the dataset has an average of 4 satellite-view images
and 3 drone-view videos. The satellite images include different seasonal images of Harbin
city, while the drone-view videos yield 7 images of varying sizes and perspectives after
processing. Additionally, for further research, we can provide satellite-view images of
300 other buildings, each featuring 4 satellite-view images from different times.

Compared to existing datasets (see Table 1), we summarize the capabilities of the
ZHcity750 Dataset as follows:

1. Multi-platform. The ZHcity750 Dataset comprises data from two distinct platforms:
satellites and real drone footage, as opposed to simulated data;

2. Multi-view. The ZHcity750 Dataset incorporates data from different angles with
real drone data images capturing the target building from various perspectives
and orientations;

3. Multi-temporal. The ZHcity750 Dataset encompasses data from various temporal
phases, featuring multi-temporal data that include satellite-view images captured
under different seasons, lighting conditions, and climatic variations.

Table 1. Comparison of the ZHcity750 Dataset with other geolocation datasets. Existing datasets
are typically composed of simulated drone data and single-temporal satellite data. In contrast, our
dataset focuses on capturing real multi-angle drone images and provides multi-temporal satellite
images. Additionally, the table shows the number of images used for training in each dataset, data
platforms, target types, evaluation methods, diversity in angles and temporality, and the authenticity
of the data.

Datasets Images for Training Platform Type of Target Evaluation
Method Multi-Angle Multi-Time

Phase Type of Data

ZHcity750 Zurich550 550 × (5 + 1) Drone, Satellite Building Rank@k&
mAP

✓ ✗
Real dataHarbin200 200 × (7 + 4) ✓ ✓

University-1652 [12] 701 × (54 + 16.64 + 1)
Drone,

Ground,
Satellite

Building Rank@k&AP ✓ ✗
Simulation

data

CVUSA [11] 35.5 k × 2 Ground,
Satellite User Recall@K ✗ ✗ Real data

CVACT [4] 35.5 k × 2 Ground,
Satellite User Recall@K ✗ ✗ Real data

Vo et al. [55] 900 k × 2 Ground,
Satellite User Recall@K ✗ ✗ Real data
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5. Experiment Results and Discussion

In this section, we first describe the datasets used in the experiment and the evaluation
methods, then detail the implementation specifics, followed by providing comparisons
with existing techniques and an ablation study.

5.1. Dataset and Evaluation Protocol

Dataset. To validate the performance of the model on real data, this study primarily
trains and evaluates our method using the ZHcity750 Dataset we created. Table 2 displays
the data distribution for training, testing, and querying in the dataset when addressing
various tasks.

Table 2. The data distribution for training, testing, and querying in the ZHcity750 Dataset for the
Drone→Satellite and Satellite→Drone tasks.

Dataset

Task

Drone→Satellite Satellite→Drone

Train Test Query Train Test Query

ZHcity750 Dataset Zurich550 2000 750 550 2000 1635 2200
Harbin200 1150 450 200 1150 450 1400

Evaluation Protocol. In our experiments, we employ Rank@1 to evaluate the perfor-
mance of the model. Rank@1 evaluates the model’s ability to correctly identify positive
instances, representing the proportion of images accurately matched at the first position in
the similarity ranking list. A higher Rank@1 indicates better network performance.

5.2. Implementation Details

We use ResNet50 pretrained on ImageNet as the backbone of our method. To ensure
fairness in results during training, we refrain from using data augmentation methods such
as cropping and flipping. Each input image is resized to a fixed size of 256 × 256 pixels. We
choose SGD as the optimizer with a momentum of 0.9 and a weight decay of 5 × 10−4, set
the learning rate to 0.01, and employ a batch size of 16. Our model is built in Pytorch, and
all the experiments are conducted on an NVIDIA RTX 3090 GPU. Training our network
takes approximately 2 h, and we stop after 200 epochs.

5.3. Comparison with State-of-the-Art

Results on Zurich550. As shown in Table 3, we compared our proposed method with
other advanced image-matching methods used for geo-localization. The matching accuracy
of Rank@1, achieved through our IRN and MUML, reached 77.13% in the Drone→Satellite
task and 77.13% in the Satellite→Drone task. The performance of our model on the
Zurich550 dataset has exceeded that of other competing methods reported in [10,23,24],
and our proposed method has a significant advantage over the best-performing method,
with an approximately 3% increase in Rank@1 for both tasks in matching satellite and
drone images.

Results on Harbin200. As shown in Table 3, we also trained and tested the model
on the Harbin200 dataset and compared it with other advanced methods. Our network
achieved a Rank@1 accuracy of 59.25% in the Drone→Satellite task and 63.99% in the
Satellite→Drone task. Based on the Harbin200 dataset, compared to the state-of-the-art
method FSRA [25], our method showed an accuracy improvement of about 3.2%.

Visualization. As shown in Figures 6 and 7, for additional qualitative evaluation,
we displayed the matching results of our network on the ZHcity750 Dataset test set. It
is evident that our designed IML-Net can successfully match drone images of different
perspectives with satellite images, accurately retrieving the target from various images. In
cases where images are incorrectly matched, they exhibit some similar structural patterns
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to the query image. When target buildings with nearly identical external conditions appear
in the test set, our network architecture encounters issues of target-matching errors.

Table 3. Comparison with the state-of-the-art results reported on the ZHcity750 Dataset.

Training Set Method
Drone→Satellite Satellite→Drone

Rank@1 AP Rank@1 AP

Zurich550

RK-Net [25] 66.91 70.12 69.18 73.01
LPN [10] 72.54 75.99 75.67 79.22
FSRA [24] 74.83 77.91 78.01 82.35

IML-Net (Ours) 77.13 79.82 81.19 83.89

Harbin200

RK-Net [25] 51.91 55.94 54.28 58.27
LPN [10] 53.58 58.67 56.13 60.78
FSRA [24] 56.62 60.78 60.75 64.32

IML-Net (Ours) 59.25 63.11 63.99 67.78
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Visualization. As shown in Figures 6 and 7, for additional qualitative evaluation, we 
displayed the matching results of our network on the ZHcity750 Dataset test set. It is evi-
dent that our designed IML-Net can successfully match drone images of different per-
spectives with satellite images, accurately retrieving the target from various images. In 
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Figure 6. Qualitative image-matching results on the Zurich550 dataset. We present the top three
retrieval results for Drone→Satellite (left) and Satellite→Drone (right). The results are sorted from
left to right according to their similarity scores. Images in the yellow boxes are correctly matched
images, while those in the blue boxes are incorrectly matched images.

Feature Distribution. To further demonstrate the effectiveness of IML-Net, we visu-
alized the distribution of initial images, features extracted by the baseline, and features
extracted by our method on the ZHcity750 Dataset using the t-SNE [56] algorithm. The
t-SNE algorithm maps high-dimensional features to a 2D space, and visualization is carried
out using the Matplotlib library, as shown in Figure 8. The original data consist of multi-
domain data, and due to the feature differences in satellite-view images and drone-view
images from different perspectives, their original features are completely separated in the
feature space. After introducing the baseline based on ResNet50, the distance between
features of the same target building gradually decreases. When replacing the baseline with
our IML-Net, the trend of reducing intra-class distance becomes more pronounced. This
proves that our method has a positive effect on cross-domain matching.



Remote Sens. 2024, 16, 1249 16 of 23Remote Sens. 2024, 16, x FOR PEER REVIEW 16 of 23 
 

 

 
Figure 7. Qualitative image-matching results on the Harbin200 dataset. We present the top three 
retrieval results for Drone→Satellite (left) and Satellite→Drone (right). The results are sorted from 
left to right according to their similarity scores. Images in the yellow boxes are correctly matched 
images, while those in the blue boxes are incorrectly matched images. 

Feature Distribution. To further demonstrate the effectiveness of IML-Net, we visu-
alized the distribution of initial images, features extracted by the baseline, and features 
extracted by our method on the ZHcity750 Dataset using the t-SNE [56] algorithm. The t-
SNE algorithm maps high-dimensional features to a 2D space, and visualization is carried 
out using the Matplotlib library, as shown in Figure 8. The original data consist of multi-
domain data, and due to the feature differences in satellite-view images and drone-view 
images from different perspectives, their original features are completely separated in the 
feature space. After introducing the baseline based on ResNet50, the distance between 
features of the same target building gradually decreases. When replacing the baseline 
with our IML-Net, the trend of reducing intra-class distance becomes more pronounced. 
This proves that our method has a positive effect on cross-domain matching. 

 
Figure 8. The feature distribution on the ZHcity750 Dataset. We selected 24 identities (IDs) from the 
dataset, with each ID having 1 satellite-view image and 6 drone-view images chosen to calculate the 
distance between features. “Stars” and “plus signs” represent satellite-view images and drone-view 
images, respectively. The circles in the figure contain features of drone-view images and satellite- 
view images with the same ID. The same color indicates features from the same target, representing 
intra-class distance, while symbols of different colors represent inter-class distance. (a) represents 
the feature distribution of untrained initial images; (b) represents that after the baseline, the intra-
class distance gradually decreases; (c) shows that, compared to the baseline, the feature distribution 
of the same class after IML-Net is more conducive to classification.  

  

Figure 7. Qualitative image-matching results on the Harbin200 dataset. We present the top three
retrieval results for Drone→Satellite (left) and Satellite→Drone (right). The results are sorted from
left to right according to their similarity scores. Images in the yellow boxes are correctly matched
images, while those in the blue boxes are incorrectly matched images.
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Figure 8. The feature distribution on the ZHcity750 Dataset. We selected 24 identities (IDs) from the
dataset, with each ID having 1 satellite-view image and 6 drone-view images chosen to calculate the
distance between features. “Stars” and “plus signs” represent satellite-view images and drone-view
images, respectively. The circles in the figure contain features of drone-view images and satellite-
view images with the same ID. The same color indicates features from the same target, representing
intra-class distance, while symbols of different colors represent inter-class distance. (a) represents the
feature distribution of untrained initial images; (b) represents that after the baseline, the intra-class
distance gradually decreases; (c) shows that, compared to the baseline, the feature distribution of the
same class after IML-Net is more conducive to classification.

5.4. Ablation Study

To demonstrate the impact of each module in the network on the matching task, we
designed a series of ablation experiments.

Contribution of IRN and MUML. In our evaluation of the individual effectiveness of
the IRN and MUML, we integrated each into our baseline separately. As outlined in Table 4,
the inclusion of the IRN enhanced the accuracy on Zurich550 by approximately 5%, while
the addition of the MUML contributed an extra 2% improvement. Notably, when both the
IRN and MUML were integrated into the baseline, the overall accuracy of our network saw
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an approximate 7% improvement. This underscores the synergistic impact of the IRN and
MUML on our constructed dataset.

Table 4. Ablation study on the effect of the IRN and MUML on ZHcity750.

Baseline

Zurich550

Drone→Satellite Satellite→Drone

Rank@1

Baseline 70.49 74.22
Baseline + IRN 75.41 79.35

Baseline + MUML 72.13 77.04
Baseline + IRN + MUML 77.13 81.19

Based on the visualization experiments of the feature distribution in the previous
section, we selected a target building from the dataset that had the most similar feature
distribution to other targets. We conducted histogram statistics for both intra-class and
inter-class distances of this target building. The distances between intra-class and inter-class
after the baseline and our architecture are shown in Figure 9. Images of inter-class refer to
images of the same target captured from different platforms and perspectives, while images
of intra-class refer to images of different targets. After passing through our framework, the
distance between images of the same target becomes smaller, while the distance between
different targets increases. Additionally, compared to the baseline, the confusion region
further decreases. This demonstrates that our IML-Net framework possesses excellent
recognition capability.
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Figure 9. This shows the variations of inter-class and intra-class. (a) After the input images go
through the baseline, the distance between different targets is very small, and the confusion region is
large, making classification challenging. (b) After the input images go through IML-Net, the distance
between different targets increases, and the confusion region decreases. Compared to the baseline, it
exhibits better matching capability.

Impact of the weights of the IRN. As mentioned in Section 3, our training loss is the
sum of the IRN’s DRCL and reconstruction loss, making the IRN weight one of the most
crucial parameters in the experiment. By default, we set the weight to 0.1 to achieve optimal
results. When the weight is 0, the reconstruction loss in our training becomes ineffective,
and the model is equivalent to the baseline with augmented training data. As shown in
Figure 10, an increase in the IRN weight significantly improves the Rank@1 of our model
on Zurich550. This suggests that the closer the reconstructed image is to the matching
image, the more distinctive the feature descriptor that can be constructed. However, it
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is important to note that when the IRN weight exceeds 0.1, the excessively high weight
of the reconstruction loss reduces the weight of the DRCL loss. This causes the feature
descriptors extracted by the encoder for different angles of drone input images to lack
detailed discriminative information, leading to a decline in matching accuracy.
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Figure 10. This is the ablation study on the effect of the weights of the IRN on ZHcity750. The blue
dashed line represents the accuracy for Drone→Satellite, while the purple dashed line represents the
accuracy for Satellite→Drone. The matching accuracy increases with the increase in IRN weight, but
when the weight reaches a certain value, Rank@1 actually decreases.

Impact of Input Image Size. Since images contain extremely detailed fine-grained
information, compressing the input image size affects the extraction and recognition of this
fine-grained information. During the training process, the larger input images will occupy
more memory space. To balance these factors, we investigated the impact of input image
size on our task. During the experiments, we resized the images without changing the
actual size of the targets. As shown in Table 5, on the Zurich550 dataset, there is a noticeable
improvement in the accuracy of both Drone→Satellite and Satellite→Drone tasks as the
input image size increases from 64 × 64 to 256 × 256. When we further increased the image
size to 512 × 512, the matching accuracy began to decline. We hope this experiment helps
in selecting the most effective input image size for future experiments, especially when
memory constraints are a consideration.

Table 5. Ablation study on the effect of size of inputs on Zhcity750.

Images Size

Zurich550

Drone→Satellite Satellite→Drone

Rank@1

64 × 64 69.47 72.33
128 × 128 71.55 75.38
256 × 256 77.13 81.19
384 × 384 76.99 80.96
512 × 512 75.96 80.17

Impact of Backbone. In IML-Net, different backbones result in varying decoder
structures, leading to differences in the constructed feature descriptors. The depth of
the extracted features also varies, so the network focuses differently on the images, and
the images used as augmented data in training can be quite different. To select one or
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several backbones that are most helpful for our task from the many widely used options,
we experimented with PatchNet [57], VGG16, Res2Next50, and ResNet50 as backbone
networks. As shown in Table 6, on the Zurich550 dataset, although ResNet50 has a structure
with residual blocks that do not allow for a completely symmetric IRN, it still ensures
the highest accuracy among the various backbones. The depths of layers in PatchNet
are too shallow to extract discriminative feature descriptors; however, all the remaining
networks achieve relatively high matching accuracy. This also demonstrates the generality
and effectiveness of the method we proposed.

Table 6. Ablation study on the effect of the backbone on Zhcity750.

Backbone

Zurich550

Drone→Satellite Satellite→Drone

Rank@1

PatchNet [57] 19.21 22.33
VGG16 71.55 73.38

Res2Next50 76.46 79.97
ResNet50 77.13 81.19

Impact of Loss Function. To address this question, we conducted a comparison
of three different loss functions. As depicted in Table 7, for both Drone→Satellite and
Satellite→Drone tasks, the DRCL exhibited a certain degree of improvement compared
to the other two loss functions on the Zurich550 dataset. The primary reason for this
improvement lies in the fact that the DRCL, as opposed to Triplet Loss, incorporates L2
regularization loss to mitigate overfitting of samples and enhance matching accuracy.

Table 7. Ablation study on the effect of loss function on Zhcity750.

Loss Function

Zurich550

Drone→Satellite Satellite→Drone

Rank@1

Triplet Loss 76.98 81.04
Soft Margin Triplet Loss 76.91 80.93

DRCL Loss 77.13 80.99

How is the generalization of IML-Net? In our previous experiments, we tended
to treat Zurich550 and Harbin200 as two separate datasets for individual training and
testing because (1) these two datasets target regions in different countries with significantly
different architectural styles, and (2) the satellite-view images included in these datasets
are derived from satellite remote sensing images of different resolutions. In real-world
scenarios, there may be significant differences in the resolution of images in our query
database and the geographical locations of corresponding targets. To investigate whether
our network can handle this phenomenon and has a certain level of generalizability, we
conducted validation by using either Zurich550 or Harbin200 as the training set and
the other as the test set. From Table 8, we observed that IML-Net, compared to the
baseline, achieves good performance on both tasks, which also proves that our IRN and
MUML contribute to enhancing the model’s generalizability. Notably, we observed higher
generalizability when the model was trained on Harbin200 and tested on Zurich550 within
the same model. Training with Harbin200, which involves matching tasks with real data
and increased difficulties, facilitates learning multi-domain feature descriptors crucial for
effective matching. Additionally, Zurich550 includes top-down perspective images, which
are more similar to satellite-view images, resulting in better performance.
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Table 8. Transfer learning from Zurich550 to Harbin200 on IML-Net.

Train Set Test Set

Baseline IML-Net (Ours)

Satellite→Drone Drone→Satellite Satellite→Drone Drone→Satellite

Rank@1

Zurich550 Harbin200 43.3 49.5 48.3 52.7
Harbin200 Zurich550 46.2 52.8 53.6 57.9

6. Conclusions

In this paper, we identify that the primary challenge in current cross-view geo-
localization is the absence of a dataset containing real-world data. Therefore, we cre-
ated a multi-domain dataset comprising true drone-view images from two regions and
multi-temporal satellite-view images, with a total size of 5.5 k. Additionally, we pro-
pose an effective matching framework for this dataset, constructing cross-domain feature
descriptors through the IRN. Specifically, this involves rebuilding the original images
based on a deconvolution network strategy, creating features that are more robust and
discriminative. To address the issue of limited real drone-view images in our dataset, we
employed an MUML module to identify attention regions in the images to expand the
training data. On our multi-domain dataset designed for cross-view geo-localization tasks,
our approach achieved competitive accuracy compared to three advanced methods: RK-
Net [27], LPN [10], and FSRA [26]. Moreover, The IML-Net has better generalizability. The
image reconstruction strategy also can be easily integrated into other backbone networks
for different tasks. In the future, we plan to research matching multi-temporal satellite-view
images within our multi-domain dataset.
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