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Abstract: Improving the precision of aboveground biomass (AGB) estimation in lowland tropical
forests is crucial to enhancing our understanding of carbon dynamics and formulating climate change
mitigation strategies. This study proposes an AGB estimation method for lowland tropical forests
in Xishuangbanna, which include various vegetation types, such as Pinus kesiya var. langbianensis,
oak, Hevea brasiliensis, and other broadleaf trees. In this study, 2016 forest management inventory
data are integrated with remote sensing variables from Landsat 8 OLI (L8) and Sentinel 2A (S2)
imagery to estimate forest AGB. The forest age and aspect were utilized as stratified variables to
construct the random forest (RF) models, which may improve the AGB estimation accuracy. The key
findings are as follows: (1) through variable screening, elevation was identified as the main factor
correlated with the AGB, with texture measures derived from a pixel window size of 7 × 7 perform
best for AGB sensitivity, followed by 5 × 5, with 3 × 3 being the least effective. (2) A comparative
analysis of imagery groups for the AGB estimation revealed that combining L8 and S2 imagery
achieved superior performance over S2 imagery alone, which, in turn, surpassed the accuracy of L8
imagery. (3) Stratified models, which integrated aspect and age variables, consistently outperformed
the unstratified models, offering a more refined fit for lowland tropical forest AGB estimation.
(4) Among the analyzed forest types, the AGB of P. kesiya var. langbianensis forests was estimated
with the highest accuracy, followed by H. brasiliensis, oak, and other broadleaf forests within the
RF models. These findings highlight the importance of selecting appropriate variables and sensor
combinations in addition to the potential of stratified modeling approaches to improve the precision
of forest biomass estimation. Overall, incorporating stratification theory and multi-source data can
enhance the AGB estimation accuracy in lowland tropical forests, thus offering crucial insights for
refining forest management strategies.

Keywords: lowland tropical forest; aboveground biomass; Landsat 8 OLI; Sentinel 2A;
stratification model

1. Introduction

Forests play a crucial role in regulating global carbon and water cycles [1]. In this
context, accurately estimating aboveground biomass (AGB) is essential for understanding
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the ecological functions of forests and providing an informed basis for sustainable forest
management practices [2]. Traditional field-based methods for AGB estimation are often
time-consuming, costly, and limited in their spatial coverage. In recent years, remote sens-
ing techniques, especially those using optical sensors, have been widely applied to forest
AGB estimation due to the advantages of their wide spatial coverage, cost-effectiveness, and
non-invasive nature [3,4]. However, significant challenges remain in terms of improving
the accuracy of forest AGB estimation using remote sensing data [5,6].

Optical remote sensing data, especially Landsat 8 Operational Land Imager (L8) and
Sentinel 2A (S2) imagery, have proven effective for forest AGB estimation due to the strong
correlations between their spectral bands and AGB [3,6,7]. Imran and Ahmed [8] and Li
et al. [9] demonstrated the effectiveness of L8 imagery in estimating forest biomass and
carbon stocks. Tang et al. [5] found that using L8 imagery and sample data can better
estimate the AGB of three common pine forests (Pinus yunnanensis forests, Pinus densata
forests, and Pinus kesiya forests) in Yunnan Province. While the L8 provides freely available
surface observation data, its applications in some scenarios are limited by its maximum
resolution (30 m), which can be effectively addressed by using freely available S2 data [10].
For example, one study presented an effective AGB estimation method for buffer zone
forests in Nepal using S2 data based on the random forest (RF) approach, highlighting the
viability of S2 as a hyperspectral data alternative [11].

Despite the strengths of these data, there are some accuracy and generalizability
limitations when using single-source remote sensing data to estimate forest AGB, which
can be addressed by employing multi-source remote sensing data to enhance the precision
and applicability of AGB estimation [12,13]. Multi-source remote sensing data have been
widely used in previous studies to estimate forest AGB [3,14]. For example, Huang et al. [15]
highlighted the impact of selecting appropriate variables and machine learning models
on accurately estimating AGB using L8 and S2 imagery for mixed forests in Yunnan. Sa
and Fan [16] proposed an approach to improve forest quality and carbon stock assessment
by integrating L8 and S2 data, in which they used spectral indices and texture analysis to
enhance vegetation parameter estimation. Overall, the use of multi-source remote sensing
offers integrated, high-resolution, temporally rich, accurate, and consistent data, which can
improve the AGB estimation accuracy [13,17]. In addition, various studies have also used
band combinations, vegetation indices, image transformations, and texture characteristics
to further enhance the forest AGB estimation accuracy [18,19].

In addition to classical approaches, machine learning models are also widely used in
forest AGB estimation [20]. For example, Li et al. [21] enhanced forest biomass estimation
in China by combining National Forest Inventory and L8 data with algorithms including
linear regression, RF, and XGBoost. Their results highlighted the importance of variable
selection and the performance of machine learning, especially the RF model, for accurately
modeling AGB by forest type. Karlson et al. [22] showed that L8 data, combined with RF
models and optimized variables, were able to accurately map AGB in Burkina Faso, offering
a viable, data-accessible method for woodland analysis. Another study achieved superior
accuracy in forest AGB estimation across diverse ecosystems using the RF model, with
multispectral satellite data and advanced variable selection techniques used to effectively
characterize the forest’s spatial distribution and complexity [23]. Some studies have also
suggested that RF models are typically more resilient to outliers and noise, as well as more
robust [24]. Therefore, given its robustness and precision, the RF model is the preferred
bagging learner for forest AGB estimation [6].

Furthermore, vegetation age and aspect have important impacts on biomass allocation
and distribution, as these parameters directly influence forest structure and productiv-
ity [25]. Ou et al. [26] incorporated stand age as a dummy variable in their study, which
significantly enhanced the AGB estimation accuracy of Pinus densata forests. The accuracy
of forest AGB estimation can be improved by considering the stratification of vegetation
types and/or aspects [27]. In addition, Chen et al. [28] investigated AGB estimation for
bamboo forests in Zhejiang with S2 data and identified spectral variations by growth
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stage; however, their analysis was affected by data saturation issues. This suggests that
integrating diverse imagery and variable stratification are potentially suitable approaches
to achieve improved accuracy when analyzing forest AGB. Additionally, lowland tropical
forests, recognized for their biodiversity, play a crucial role in global carbon storage [29]. A
key representative example of this ecosystem type is Xishuangbanna, China [30], which
has important biodiversity, ecological roles, climate influence, and cultural significance.

Overall, there have been few studies to date on estimating forest AGB that consider
aspect and age as stratified variables, the inclusion of which may improve AGB estimation
accuracy in lowland forests. To address this research gap, in this study, the forest AGB
was calculated from the forest management inventory (FMI) data from 2016, and contem-
poraneous L8 and S2 imagery were utilized to extract various types of remote sensing
variables. The forest AGB and selected variables were then used to develop an RF model,
with forest age and aspect chosen as stratification variables to improve estimation accuracy.
The objectives of this study are as follows:

(1) To explore the efficacy of L8, S2, and L8 + S2 classes in estimating lowland tropical
forest AGB.

(2) To explore improvements in AGB estimation through aspect and age stratification in
RF models.

2. Materials and Methods

The methodological framework of this study is shown in Figure 1, the main steps of
which are as follows: (1) obtaining the distribution of various forest types from FMI data;
(2) calculating the forest AGB; (3) acquiring and processing L8 and S2 imagery; (4) extracting
the original bands, vegetation indices, image transformations, and texture measures from
L8 and S2 imagery; (5) screening variables for significance level <0.01 and variance inflation
factor (VIF) <10 relative to forest AGB; (6) constructing RF models with aspect and age
stratification; (7) comparing the accuracy of stratified and unstratified RF models; and
(8) examining how stratification theory affects estimating forest AGB estimation.
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2.1. Study Area

The Xishuangbanna prefecture (~21◦08′–22◦36′N, ~99◦56′–101◦50′E) is located in the
south of Yunnan Province, China (Figure 2) and has an area of 19,582 km2. Most of the
prefecture consists of mountainous terrain, with elevations ranging from 369 to 2404 m
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and annual precipitation ranging from 1136 to 1513 mm [31]. This region is characterized
by a tropical monsoon climate, with yearly temperatures ranging from 15.1 ◦C to 21.7 ◦C,
typical of areas south of China’s Tropic of Cancer, and is warm year-round with high levels
of rainfall, supporting rich, dynamic ecosystems [30]. The abundant rainfall and ample
sunshine contribute to the rich vegetation types in the region. Xishuangbanna is home to a
diverse range of plant species, accounting for approximately 1/6th of the total plant species
in China [32]. Lowland tropical forests were once widespread across tropical southern
China; however, the coverage of this ecosystem type has substantially decreased. Currently,
these forests are limited to an extent of approximately 633,800 hectares, which are primarily
concentrated in Xishuangbanna [30]. The P. kesiya var. langbianensis, oak, H. brasiliensis,
and other broadleaf forests were the main lowland tropical forests of Xishuangbanna
according to the FMI data in 2016. Among these, P. kesiya var. langbianensis is an intolerant
species that thrives in sunny environments with less fertile soils [33]. Oak forests are shade-
tolerant, with significant adaptability and carbon sequestration capacity; thus, they play an
important role in the afforestation of barren areas. They also have significant importance in
ensuring timber security and sustaining ecological balance [34]. H. brasiliensis (or rubber
plant) is an intolerant species that requires a tropical climate with high humidity and higher
soil quality. This species is an important economic crop in many tropical regions, and
it is the second-largest growing region in China [35]. In addition, other broadleaf forest
species have substantial economic and practical value, contributing to forestry, landscaping,
and the timber industry; in addition, these species also contribute significantly to carbon
sequestration [36].
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Figure 2. The overview distribution of four forest types and study area; (a) is the location of Yunnan
province in China; (b) is the location of Xishuangbanna in Yunnan; (c,d) depict L8 and S2 imagery
from 2016 in study area.

2.2. Stratification Data

The forest aspect and age are key factors in stratifying forest AGB [37]. Based on the
vegetation of Yunnan [38], the ages of P. kesiya var. langbianensis forests, oak forests, and
other broadleaf forests were divided into young forest (YOF), half-mature forest (HMF),
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near-mature forest (NEF), and mature forest (MAF) classes, while the H. brasiliensis forests
were divided into the prenatal period (PRP), primipara period (PIP), and rich period
(RIP) [39]. Aspect classification is generally based on the duration of sunlight exposure
and the intensity of solar radiation. In this study, the aspects were categorized into sunny
aspects (135–225◦, SUS), semi-shaded aspects (45–135◦, SSS), shaded aspects (0–45◦ and
315–360◦, SHS), and semi-sunny aspects (225–315◦, SES) [27,40]. All the stratification data
for the four forest types are shown in Figure 3.
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2.3. Forest AGB Data Collection and Processing

The FMI data provide important insights into the spatial distribution patterns of
dominant species, notably P. kesiya var. langbianensis and H. brasiliensis, as well as collective
species groups such as oak and other broadleaf trees. The AGB of the four forest types was
then calculated using the biomass conversion variables method [41]. All the conversion
parameters of four forest types are listed in Table 1 [41]. The calculation formula for this
method is as follows:

B = V × SVD × BEF (1)

where B is the per unit area of AGB in the sub-compartment (Mg/ha), V is the volume
of storage per unit area in the sub-compartment (m3/ha), SVD is the basic wood density
(Mg/m3), and BEF is the biomass conversion factor (dimensionless).



Remote Sens. 2024, 16, 1276 6 of 23

Table 1. The parameters using the biomass conversion factor method.

Forest Types Age BEF SVD (Mg/ha)

P. kesiya
var. langbianensi All ages 1.3040 0.4540

Oak

Young forest (YOF) 1.3798 0.6760
Half-mature forest (HMF) 1.3947 0.6760
Near-mature forest (NMF) 1.2517 0.6760

Mature forest (MAF) 1.1087 0.6760

H.
brasiliensis

Prenatal period (PRP) 1.8210 0.4410
Primipara period (PIP) 1.4409 0.4410

Rich period (RIP) 1.3937 0.4410

Other broadleaf All ages 1.5136 0.4820

Before the estimation models were generated, the sub-compartments were screened,
with the outliers identified and filtered based on a threshold of three standard devia-
tions above and below the mean to enhance the reliability of the dataset. Finally, the
sub-compartments of the P. kesiya var. langbianensis forests (1993), oak forests (3707), H.
brasiliensis forests (2548), and other broadleaf forests (11,227) were utilized to estimate the
forest AGB. The statistical parameters of the sub-compartment datasets for the four species
or species groups are shown in Figure 3.

2.4. Remote Sensing Data and Variables
2.4.1. Data Accessing and Processing

The digital elevation model (DEM) data were downloaded from the Geospatial Data
Cloud website (http://www.gscloud.cn/ (accessed on 1 November 2022)), and processed
by georeferencing to match the distribution of the forests. The L8 imagery was also down-
loaded from the Geospatial Data Cloud website and then preprocessed with radiometric
calibration, FLAASH atmospheric correction, and topography correction steps using ENVI
5.3 software [42,43]. Finally, both the DEM and L8 images were resampled to 10 m to ensure
consistent image resolution between datasets (Figure 2).

Sentinel 2A is a multispectral instrument with 13 spectral bands spanning the vis-
ible to shortwave infrared range, providing imagery with high spatial resolutions of
10–20 m [44]. The S2 Level-1C imagery was downloaded from the Copernicus Open Access
Hub (https://scihub.copernicus.eu/dhus/#/home (accessed on 15 November 2022)); this
product was selected as there are no Level-2A data before May 2017 available in the study
area. The Level-1C data are orthorectified products that represent the reflectance at the
top of the atmosphere. These images can then be processed to yield equivalent data to
Level-2A products by applying atmospheric correction techniques. The Sen2Cor (version
02.05) plugin in the SNAP toolbox (http://step.esa.int/main/download/snap-download/
(accessed on 15 November 2022)) was used to create L2A products. All the spectral bands
were resampled to a 10 m resolution in SNAP. Subsequently, band fusion, radiometric cor-
rection, atmospheric correction, topographic correction, cropping, and image splicing [43]
were performed in ENVI 5.3 (Figure 2).

To enhance image quality and thereby improve the AGB estimation accuracy, all the
images used were chosen to coincide with the period represented by the FMI data. The
images with the least cloud cover were chosen to minimize the impact of cloud interference.
The details of the images that met these conditions are listed in Table 2.

http://www.gscloud.cn/
https://scihub.copernicus.eu/dhus/#/home
http://step.esa.int/main/download/snap-download/
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Table 2. The parameters of L8 and S2 imagery.

Sensor Image ID Acquisition Date Solar
Elevation (◦)

Solar
Azimuth (◦)

Mean Cloud
Cover (%)

Landsat 8 OLI (L8)

LC81300452016046LGN01 15 February 2016 46.3395 139.8294 0.01
LC81300442016046LGN00 15 February 2016 45.3711 141.0448 0.01
LC81310452016053LGN00 22 February 2016 48.3488 137.7022 1.85
LC81290452016119LGN00 28 April 2016 66.7992 104.7207 1.22

Sentinel 2A S2A_MSIL1C_20160412T0
12 April 2016 66.59 118.8 0.84(S2) 33552_N0201_R061_T47Q

QD_20160412T034713
S2A_MSIL1C_20160505T0

5 February 2016 72.25 102.7 0.6134542_N0202_R104_T47Q
PD_20160505T035143

S2A_MSIL1C_20160505T0
5 February 2016 73.12 103.7 0.2634542_N0202_R104_T47Q

QD_20160505T035143
S2A_MSIL1C_20160505T0

5 February 2016 71.98 105.4 3.634542_N0202_R104_T47
QPE_20160505T035143

S2A_MSIL1C_20160505T0
5 February 2016 72.84 106.5 7.9934542_N0202_R104_T47Q

QE_20160505T035143
S2A_MSIL1C_20160326T0

5 February 2016 61.37 130.7 0.9734552_N0201_R104_T47Q
NE_20160326T035729

2.4.2. Extracting Remote Sensing Variables

Original spectral bands, vegetation indices, and image transformations have been
widely used to estimate forest AGB [45,46]. Texture measures are also considered one of
the main factors that can improve AGB estimation accuracy and better reflect complex or
heterogeneous forest structures [19,47]. Therefore, the original spectral bands, vegetation
indices, image transformations, and texture measures were extracted from the L8 and S2
images, and the elevation was extracted from the DEM. As shown in Table 3, a comprehen-
sive set of features was extracted from the L8 imagery, encompassing five original spectral
bands, 20 vegetation indices, and three image transformations, in addition to 168 texture
metrics. These texture metrics were derived from the grey-level co-occurrence matrix
(GLCM), capturing various aspects of the texture including the mean (ME), variance (VA),
homogeneity (HO), contrast (CN), dissimilarity (Di), entropy (EN), second moment (SM),
and correlation (CO). The analysis was conducted using moving window sizes of 3 × 3,
5 × 5, and 7 × 7 pixels to provide a detailed understanding of the spatial characteristics of
the imagery. A total of 298 variables, including 11 original bands, 20 vegetation indices,
three image transformations, and 264 texture measure variables, were derived from the
S2 imagery.

2.4.3. Variable Screening

Variable selection refers to selecting the smallest and most effective subset of variables
from the original set to reduce the dimensionality of the variables [21]. Variable selection
plays a key role in fitting forest AGB models as it directly affects the performance, inter-
pretability, and applicability of the models [51]. In this study, the correlations between all
the variables and the forest AGB were calculated, and only the variables with a significance
level of 0.01 on the forest AGB were selected for further analysis. Subsequently, the VIF
was employed to screen the chosen variables and examine issues including potential in-
stability in model parameter estimates, reduced explanatory capacity, and poor statistical
reliability [52]. Finally, the variables with a significance level of 0.01 and VIF < 10 were
selected to estimate the forest AGB.
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Table 3. The remote sensing variables derived from L8 and S2 imagery.

Features
Set

Number of
Variables Variable Types Definition References

L8

5 Original bands Blue, Red, Green, NIR, SWIR2 [23]

20 Vegetation indices

NDVI (Normalized difference vegetation index), ND43
(NDVI with band3 and band4), ND67 (NDVI with band6
and band7), ND563 (NDVI with band3 and band5 with
band6), DVI (Difference vegetation index), SAVI (Soil

adjusted vegetation index), RVI (Ratio vegetation index), BVI
(Brightness vegetation index), GVI (Greenness vegetation

index), TVI (Temperature vegetation index), ARVI
(Atmospherically resistant vegetation index), MV17

(Mid-infrared temperature vegetation index), MSAVI
(Modified soil adjusted vegetation index), BVI (Bare soil

vegetation index), ALBEDO (Multiband linear combination),
SR (Simple ratio index), GARI (Green atmosphere response

index), SAV12 (Improved vegetation index), MSR
(Optimized simple ratio vegetation index), EVI (Enhanced

vegetation index)

[23]

3 Image
transformations KT-1, KT-2, KT-3 [46]

144 Texture measures

The 6 original bands of grey-level co-occurrence
matrix-based texture measures including the Mean (ME),

Variance (VA), Homogeneity (HO), Contrast (CN),
Dissimilarity (DI), Entropy (EN), Second Moment (SM),

Correlation (CO) using moving window sizes of 3 × 3, 5 × 5,
and 7 × 7 pixels

[48]

S2

11 Original band Blue, Green, Red, Vegetation red edge (B5, B6, B7), NIR,
Water vapor, SWIR-cirrus, SWIR (B11, B12) [45]

20 Vegetation indices

RVI (Ratio vegetation index), DVI (Difference vegetation
index), WDVI (Weighted difference vegetation index), IPVI
(Infrared vegetation index), PVI (Perpendicular vegetation

index), NDVI (Normalized difference vegetation index),
NDVI45 (NDVI with band4 and band5), GNDVI (NDVI of

the green band), IRECI (Inverted red edge chlorophyll
index), SAVI (Soil adjusted vegetation index), TSAVI
(Transformed soil adjusted vegetation index), MSAVI

(Modified soil adjusted vegetation index), REP (Red edge
position index), REIP (Red edge infection point index), GARI
(Green atmosphere response index), ARVI (Atmospherically
resistant vegetation index), PSSRa (Pigment specific simple
ratio chlorophyll index), MTCI (Meris terrestrial chlorophyll

index), MCARI (Modified chlorophyll absorption ratio
index), EVI (Enhanced vegetation index)

[45,49]

3 Image
transformations KT-1, KT-2, KT-3 [46]

264 Texture measures

Grey-level co-occurrence matrix-based texture measures
including the mean (ME), variance (VA), homogeneity (HO),

contrast (CN), dissimilarity (DI), entropy (EN), second
moment (SM), correlation (CO) using moving window sizes

of 3 × 3, 5 × 5, and 7 × 7 pixels

[19,49]

L8 + S2 470 All above All above All above

DEM 1 - Elevation [50]

2.5. Model Fitting

The RF approach is a widely used ensemble machine learning technique that excels in
addressing both classification and regression challenges. This technique achieves excellent
precision in AGB estimation, has strong robustness against overfitting, and can effectively



Remote Sens. 2024, 16, 1276 9 of 23

handle missing data and outliers [53]. The RF model generates new datasets by bootstrap-
ping from the original sample datasets, selecting approximately two-thirds of the data for
each bootstrap sample while treating the remaining one-third as out-of-bag (OOB) data [54].
In this study, the RF model was constructed using the randomForest package in R4.3.3 soft-
ware. To optimize the model’s performance further, we employed a grid search technique,
which is a robust method for hyperparameter tuning. This approach systematically searches
for each optimal combination of ntree and mtry within a predefined grid according to the
different datasets [55]. Specifically, we used a five-fold cross-validation strategy through
the CARET package, which allowed the model’s best parameter combination to be adjusted
and chosen based on different variables and datasets (https://topepo.github.io/caret/
(accessed on 30 March 2024)) [56]. Finally, 80% of the sub-compartments were used for
modeling, while the remaining 20% were used for validation.

2.6. Assessment and Validation of the Models

Model evaluation and validation play a vital role in assessing the accuracy and credi-
bility of the RF model. In this study, the coefficient of determination (R2) and relative root
mean square error (rRMSE) were used to evaluate and validate the RF model. The rRMSE
metric is a normalized measure of the differences between values predicted by a model and
the true values, expressed as a percentage of the observed values. Generally, higher R2 and
lower rRMSE values indicate better model performance. These metrics can be calculated
as follows:

R2 = 1 − ∑n
i=1

(
yi − ŷi)

2

∑n
i=1(yi − yi)

2 (2)

rRMSE =

√
∑n

i=1(ŷi−yi)
2

n
ŷi

× 100% (3)

where n is the number of sample observations, i is the ith sample observation, yi is the
actual value, ŷi is the estimated value, and yi is the mean of the observed samples.

3. Results
3.1. The Selected Variables for Forest AGB Estimation

As shown in Figure 4, the variables were selected with a significance level of 0.01.
Then, the variables selected to estimate the forest AGB also had a VIF < 10 (Table 4). This
selection process highlighted the main differences among the variables across the analyzed
forest types. The results showed that elevation was sensitive to AGB in all four forest types.
At the same time, the selected vegetation index or single bands—most of them are B5 (NIR)
and B7 (SWIR2) of the L8 image, B8A (NIR) of the S2 image—that were calculated by the
single bands above in both single images and combined images, indicated that in this
study area, B5 (NIR), B7 (SWIR2) of L8 and B8A (NIR) of S2 images were more sensitive to
forest AGB compared with the other bands. In addition, according to the selected texture
measures, the window size of 7 × 7 pixels showed the strongest sensitivity to AGB for four
forest types, followed by 5 × 5 pixels; 3 × 3 pixels are the weakest.

Table 4. The selected variables to construct RF model for four forest types in different imagery groups.

Forest Types Imagery Groups Selected Variables

P. var. langbianensi forests

L8 Elevation, B7, ND57, EN_33_B5, EN_33_B7, EN_55_B5, EN_55_B7, VA_77_B2,
VA_77_B3

S2 Elevation, B8A, EVI, REIP, EN_55_B12, CO_77_B3, CO_77_B5, EN_77_B5,
CO_77_B6, SM_77_B8A, CN_77_B11

L8 + S2

Elevation, S2&B8A, S2&EVI, S2&NDre2, S2&REIP, S2&EN_55_B12,
S2&CO_77_B3, S2&CO_77_B5, S2&EN_77_B5, S2&CO_77_B6, S2&SM_77_B8A,
S2&CO_77_B11, L8&EN_33_B4, L8&EN_33_B5, L8&EN_33_B7, L8&VA_77_B4,

L8&VA_77_B7

https://topepo.github.io/caret/
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Table 4. Cont.

Forest Types Imagery Groups Selected Variables

Oak forests

L8 Elevation, B5, ND67, GARI, ME_55_B2, ME_55_B3, ME_55_B4, HO_77_B5,
VA_77_B7

S2 Elevation, B8A, GARI, REIP, CO_33_B5, CO_33_B8A, CO_55_B4, CO_55_B5,
CO_77_B5, CO_77_B8A, CN_77_B9, CO_77_B12

L8 + S2

Elevation, S2&B8A, S2&GARI, S2&CO_33_B4, S2&CO_33_B8A,
S2&CO_33_B11, S2&CO_55_B6, S2&CO_55_B11, S2&CO_77_B8A,

S2&CO_77_B2, S2&CO_77_B12, L8&ND67, L8&GARI, L8&ME_55_B4,
L8&CN_77_B5, L8&ME_77_B5, L8&VA_77_B7

H. brasiliensis forests

L8 Elevation, NDVI, ND67, DVI, ME_33_B4, EN_77_B4, EN_77_B7, VA_77_B7

S2 Elevation, B8A, ARVI, CO_33_B2, ME_77_B3, EN_77_B6, EN_77_B8,
ME_77_B8A, EN_77_B12

L8 + S2
Elevation, S2&B8A, S2&ARVI, S2&CO_33_B2, S2&ME_77_B3, S2&EN_77_B6,

S2&EN_77_B8, S2&ME_77_B8A, S2&EN_77_B12, L8&NDVI, L8&ND67,
L8&DVI, L8&ME_33_B4, L8&EN_77_B4, L8&EN_77_B7, L8&VA_77_B7

Other broadleaf forests

L8 Elevation, ND67, GARI, CO_55_B4, CO_55_B5, VA_55_B7, VA_77_B4,
VA_77_B5, SE_77_B7

S2 Elevation, B8A, EVI, DVI, GARI, SE_33_B12, CO_55_B3, CO_55_B4,
CO_55_B8A, CO_55_B11, CO_55_B12, VA_77_B4, DI_77_B5

L8 + S2
Elevation, S2&B8A, S2&EVI, S2&GARI, S2&SM_33_B12, S2&CO_55_B12,
S2&CO_77_B8A, L8&ND67, L8&GARI, L8&CO_55_B4, L8&EN_55_B5,

L8&CN_55_B7, L8&VA_77_B4, L8&CN_77_B5, L8&VA_77_B5
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Figure 4. The correlation between the variables and forest AGB, and all the significance levels of
selected variables were at 0.01 with forest AGB.

3.2. P. kesiya var. langbianensis Forest Models

The results shown in Figure 5 indicate that when using L8, the stratified RF models
for P. kesiya var. langbianensis exhibited better model-fitting performance compared to the
unstratified models. The unstratified RF model exhibited an R2 value of 0.7036 and an
rRMSE of 14.5418 Mg/ha. Among the aspect stratification models, the SHS model achieved
the highest R2 value of 0.8214, along with an rRMSE of 9.7722 Mg/ha. Within the age
stratification models, the MAF model achieved the best performance, with an R2 value of
0.7928 and an rRMSE of 0.6443 Mg/ha.
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Similarly, the stratified models for S2 achieved better performance than the unstratified
models. The unstratified RF model achieved an R2 value of 0.7470 and an rRMSE of
14.0112 Mg/ha (Figure 6). In terms of aspect stratification, the SHS model was found to be
the most effective, with an R2 value of 0.8305 and an rRMSE of 13.0740 Mg/ha. Within the
age stratification models, the HMF model had the best accuracy, with the highest R2 value
of 0.8229 and an rRMSE of 9.5232 Mg/ha.
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Furthermore, the findings also highlighted that the stratified models integrating L8
and S2 imagery (Figure 7) outperform the unstratified models. The unstratified model
registered an R2 of 0.8040 with an rRMSE of 17.2450 Mg/ha. Among the aspect stratification
models based on combined L8 + S2 imagery, SHS achieved the best performance, achieving
an R2 of value 0.8657 and an rRMSE of 12.0676 Mg/ha. Among the age stratification models,
the NEF model recorded the highest R2 value of 0.8233, with an rRMSE of 6.0436 Mg/ha.
These results demonstrate the enhanced forest AGB estimation accuracy achieved by the
combination of L8 and S2 data. When used individually, the S2 images outperformed the
L8 images; however, combining these two datasets achieved the best overall performance.
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3.3. Oak Forest Models

The stratified models demonstrated superior fitting performance over unstratified
models across all oak forest groups, as evidenced from Figures 8–10. Among the aspect
models using L8 imagery, the SUS model achieved the highest model accuracy with an R2

value of 0.8204 and an rRMSE of 14.7955 Mg/ha. When using S2 imagery, the accuracy of the
SUS model further improved, with an R2 value of 0.8365 and an rRMSE of 10.9419 Mg/ha.
Within the age stratification models using combined L8 + S2 imagery, the NEF model
achieved the best performance in oak forest AGB estimation, with an R2 value of 0.8320 and
an rRMSE of 7.8496 Mg/ha. Consequently, the integration of L8 and S2 imagery emerged
as the most effective approach for forest AGB estimation in this study.

3.4. H. brasiliensis Forest Models

Figures 11–13 reveal that stratified models outperform their unstratified counterparts,
with the L8 + S2 combination achieving optimal model fitting for H. brasiliensis forest AGB
estimation. Among the tested models, the SHS model achieves superior performance using
L8 + S2 imagery and consistently outperforms the SUS models, while the SSS models
demonstrated improved performance over the SES models.
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3.5. Other Broadleaf Forest Models

Figures 14–16 demonstrate that, among the other broadleaf forest models, the strati-
fied approaches generally outperformed the unstratified ones. The SUS model, utilizing
L8 + S2 imagery, achieved the highest accuracy with an R2 value of 0.8240 and an rRMSE of
19.3026 Mg/ha. In contrast, the lowest accuracy was observed in unstratified models using
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L8 images, with an R2 value of 0.5876 and an rRMSE of 28.6699 Mg/ha. All the aspect strati-
fication models yielded comparable accuracy in forest AGB estimation across similar image
sets, while the NEF models achieved the best performance in the age stratification analysis.
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3.6. Models Comparison 
The analysis across stratified and unstratified models in this investigation highlights 

the effectiveness of age and aspect stratifications in enhancing model precision beyond 
that achieved by the unstratified models. The age stratification analysis revealed that the 
NEF models achieved markedly improved accuracy across all forest types relative to the 
unstratified models, with other models within this stratification showing similar levels of 
accuracy. In aspect stratification, the accuracy in the P. kesiya var. langbianensis and H. 
brasiliensis forests was notably higher in the SHS models than in SUS models, whereas oak 
and other broadleaf forests demonstrated greater accuracy in SUS models compared to 
SHS models. In descending order of accuracy, the hierarchy of forest types was as follows: 
P. kesiya var. langbianensis forests > H. brasiliensis forests > oak forests > other broadleaf 
forests. Furthermore, an analysis of the scatter plots revealed consistent patterns of both 
overestimation and underestimation among the models, with each model exhibiting 
distinct biases that varied in magnitude across different data ranges. 

4. Discussion 
4.1. Variables Affecting Forest AGB 

The analysis of the four forest types revealed marked differences in the impacts of 
variables on forest AGB, thus emphasizing the critical role played by variable selection in 
refining forest AGB estimation models for improved interpretability and optimal usage of 
remote sensing data utility [57]. The variables with a significance level below 0.01 and a 
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3.6. Models Comparison

The analysis across stratified and unstratified models in this investigation highlights
the effectiveness of age and aspect stratifications in enhancing model precision beyond
that achieved by the unstratified models. The age stratification analysis revealed that the
NEF models achieved markedly improved accuracy across all forest types relative to the
unstratified models, with other models within this stratification showing similar levels
of accuracy. In aspect stratification, the accuracy in the P. kesiya var. langbianensis and H.
brasiliensis forests was notably higher in the SHS models than in SUS models, whereas
oak and other broadleaf forests demonstrated greater accuracy in SUS models compared
to SHS models. In descending order of accuracy, the hierarchy of forest types was as
follows: P. kesiya var. langbianensis forests > H. brasiliensis forests > oak forests > other
broadleaf forests. Furthermore, an analysis of the scatter plots revealed consistent patterns
of both overestimation and underestimation among the models, with each model exhibiting
distinct biases that varied in magnitude across different data ranges.

4. Discussion
4.1. Variables Affecting Forest AGB

The analysis of the four forest types revealed marked differences in the impacts of
variables on forest AGB, thus emphasizing the critical role played by variable selection in
refining forest AGB estimation models for improved interpretability and optimal usage of
remote sensing data utility [57]. The variables with a significance level below 0.01 and a
VIF under 10 were selected to maximize their fit with forest AGB and improve estimation
accuracy. Furthermore, the comparison between different imagery configurations—L8 + S2
outperforming S2, which in turn surpassed S8—demonstrates the benefit of integrating L8
and S2 datasets. This data integration not only improves AGB estimation accuracy but also
emphasizes the additional insights gained from S2, particularly through its red-edge bands,
which provide important constraints for vegetation monitoring insights [58].

The hierarchy of selected variables (in which texture measures outperform the veg-
etation indices and original bands) highlights the important role of texture measures in
delineating complex surface features and spatial dynamics in AGB estimation [50,59]. Con-
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versely, image transformation variables were consistently excluded across all forest types
and sensors, likely due to their generalized variance focus and failure to constrain specific
or non-linear biomass correlations, including those involving texture indices [60]. Elevation
was found to be a key factor controlling forest AGB, as changes in elevation affect variations
in temperature, precipitation, and soil properties. For instance, at higher elevations, there
are typically lower temperatures, worse soil nutrition, and more uneven precipitation,
which collectively shape the dynamics and distribution of vegetation in lowland tropical
forests [61].

In addition, bands B5 (NIR) and B7 (SWIR2) of L8, along with B8A (NIR) of S2, were
found to be more strongly correlated with forest AGB, indicating their greater sensitivity to
vegetation health and biomass estimation [62]. These bands, especially NIR, are essential
for gauging vegetation structure, chlorophyll content, soil moisture, and biomass, and thus
form an important part of AGB estimation [63]. Furthermore, the superior performance
of 7 × 7 pixel windows in AGB estimation over smaller sizes can be attributed to the
ability of larger window sizes to capture more spatial information, mitigate noise, and offer
improved contextual insights [64].

4.2. Stratified and Unstratified RF Models

This investigation found that stratified models significantly outperform unstratified
models in the context of AGB estimation, with R2 values ranging from 0.5876 to 0.8675. For
comparison, Phua et al. [65] applied airborne LiDAR to AGB estimation for a logged-over
Malaysian lowland rainforest, highlighting a notable improvement in model accuracy,
represented by an increase in R2 values from 0.2700 to 0.6700. A similar study reported a
significant correlation in tropical forest AGB estimates using L- and C-band data, with R2

values ranging from 0.6900 to 0.7700 [66]. However, these studies achieved a lower forest
AGB estimation accuracy than the present work, highlighting the benefits of the stratified
model approach used in this study. The estimation accuracy of P. densata forest AGB in
Yunnan of Southwestern China was improved by incorporating the stand age as a dummy
variable in models [26]. The findings of the present study show that the integration of
age and aspect stratification can enhance the AGB estimation accuracy in lowland tropical
forests; these findings are consistent with previous findings that vegetation type and aspect
stratification can be used to improve AGB estimation [27].

Furthermore, the NEF models achieved the best performance among the age strat-
ification models. Higher forest heterogeneity may result in lower accuracy [3], and the
NEF and MAF forests have notably higher forest heterogeneity and more complex vertical
structures than the YOF and HMF forests. However, AGB underestimation may occur in
MAF forests due to the generally higher AGB values in these areas [67], while lower forest
heterogeneity can improve the estimation accuracy [26,68]. The higher accuracy of the NEF
stratification model compared to the YOF and HMF stratification models may relate to
the greater vertical structure variability, wider biomass range, greater diversity of growth
stages, and increased availability of data in near-mature forests; overestimation also often
occurs in areas with smaller AGB values [69]. Therefore, the NEF model showed the largest
improvement among the AGB estimation models.

Furthermore, the differences in peak accuracy between the aspect stratification models
across the four forest types can be attributed to the biological differences between species,
with P. kesiya var. langbianensis and H. brasiliensis classified as intolerant plants, and the
majority of oak and other broadleaf species identified as shade-tolerant plants [38]. This
difference suggests that masculine species grow better in sunlit aspects, benefiting from
and contributing to greater forest heterogeneity, in contrast to feminine species, which
exhibit reduced heterogeneity in sunny aspects relative to shaded aspects [70]. Across
the four forest types, the best AGB estimation accuracy was achieved in P. kesiya var.
langbianensis forests, followed by H. brasiliensis, oak, and then other broadleaf forests. This
pattern may relate to the inherent differences between coniferous and broad-leaved forests,
with improved estimation accuracy achieved in the former type, as demonstrated by the
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estimates for P. kesiya var. langbianensis [27]. The H. brasiliensis forests, primarily cultivated
in Xishuangbanna, contrast with the predominantly natural oak and other broadleaf forests;
thus, higher accuracy was achieved for AGB estimation in planted forests, likely due to their
reduced heterogeneity compared to natural forests [38]. Additionally, the other broadleaf
forests showed differences in their spectral reflection characteristics due to the complex
mixed species in these areas, leading to greater spectral heterogeneity and reduced AGB
estimation accuracy. Although the inclusion of different stratification factors improved the
estimation accuracy in other broadleaf forests, the estimates still showed lower accuracy
than those in other forest types [38].

In addition, AGB overestimation or underestimation also commonly occurs due to the
presence of a complex canopy structure, and high AGB values may cause the reflectance
saturation phenomenon to occur, leading to value underestimation. Conversely, the low
canopy density in young forests may cause the reflection values to be affected by understory
vegetation such as shrubs, grasses, and bare land, thus resulting in an overestimation of the
low biomass value of these forests [67,71]. These discrepancies in estimation were identified
as some of the main sources of error in forest AGB assessment [72]. However, implement-
ing stratified models has been shown to help mitigate these biases, thus improving the
estimation accuracy beyond that achievable with unstratified models. Overall, this finding
emphasizes the importance of using stratified variable approaches to achieve higher forest
AGB estimation accuracy.

4.3. Limitations and Future Research

In this study, we used stratified and unstratified models to estimate the AGB of four
types of tropical lowland forests in Xishuangbanna using L8 and S2 images. While both
the L8 and S2 were optical sensors, other remote sensing data, such as SPOT, MODIS,
Sentinel 1A, etc., are also commonly used in forest AGB estimation. Thus, it is important
to explore the effects of stratified models in other remote sensing sources. Additionally,
although the stratified models can reduce the effects of overestimation or underestimation,
the uncertainty caused by these factors was still a challenge and increased the error in our
models. We intend to explore other methods or models that could be used to reduce this
uncertainty and further improve the estimation accuracy. In addition, we only adopted
the dominant tree species of lowland tropical forests in Xishuangbanna as a case study: in
the future, we intend to apply this approach to other lowland tropical forests globally to
verify the applicability of the stratified models and compare inter-regional variations in the
characteristics of lowland tropical forests.

5. Conclusions

To enhance the precision of AGB estimation in lowland tropical forests, this study
focuses on refining the estimation capabilities of stratified models. We conducted a com-
prehensive evaluation of AGB in diverse lowland tropical forest types, including P. kesiya
var. langbianensis, oak, H. brasiliensis, and other broadleaf forests. This assessment was
performed with both stratified and unstratified RF models, using data from L8 and S2
imagery. The main results of this study are as follows:

(1) Among the four forest types, the fitting effect of L8 and S2 combined images is better
than that of S2 or L8 alone. The R2 values for the combined L8 + S2 analysis for the
four forest types were as follows: P. kesiya var. langbianensis (0.8040), oak (0.7741), H.
brasiliensis (0.8082), and other broadleaf forests (0.7123).

(2) Age and aspect stratification significantly improved the estimation accuracy of AGB,
and the accuracy of the NEF age stratification model was significantly improved. The
improvements in R2 values were as follows: P. kesiya var. langbianensis (0.02), oak
(0.06), H. brasiliensis (0.03), and other broadleaf forests (0.10). In aspect stratification,
the SHS model had the best fitting effect for P. kesiya var. langbianensis (0.8675) and H.
brasiliensis (0.8388), while the SUS model achieved the best fitting effect on the AGB
model of oak (0.8364) and other broad-leaved trees (0.8240).
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Overall, our study highlights the validity of using multi-source remote sensing
data for the accurate estimation of AGB in lowland tropical forests and the critical role
played by stratification in such assessments. This approach has important applications
in carbon accounting and forest management, both in Xishuangbanna and in similar
ecosystems worldwide.
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